| |
1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
| |
2 /* This Source Code Form is subject to the terms of the Mozilla Public |
| |
3 * License, v. 2.0. If a copy of the MPL was not distributed with this |
| |
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
| |
5 |
| |
6 #include "nsISupports.h" |
| |
7 #include "nsIDOMNodeList.h" |
| |
8 #include "nsIContentIterator.h" |
| |
9 #include "nsRange.h" |
| |
10 #include "nsIContent.h" |
| |
11 #include "nsCOMPtr.h" |
| |
12 #include "nsTArray.h" |
| |
13 #include "nsContentUtils.h" |
| |
14 #include "nsINode.h" |
| |
15 #include "nsCycleCollectionParticipant.h" |
| |
16 |
| |
17 // couple of utility static functs |
| |
18 |
| |
19 /////////////////////////////////////////////////////////////////////////// |
| |
20 // NodeToParentOffset: returns the node's parent and offset. |
| |
21 // |
| |
22 |
| |
23 static nsINode* |
| |
24 NodeToParentOffset(nsINode* aNode, int32_t* aOffset) |
| |
25 { |
| |
26 *aOffset = 0; |
| |
27 |
| |
28 nsINode* parent = aNode->GetParentNode(); |
| |
29 |
| |
30 if (parent) { |
| |
31 *aOffset = parent->IndexOf(aNode); |
| |
32 } |
| |
33 |
| |
34 return parent; |
| |
35 } |
| |
36 |
| |
37 /////////////////////////////////////////////////////////////////////////// |
| |
38 // NodeIsInTraversalRange: returns true if content is visited during |
| |
39 // the traversal of the range in the specified mode. |
| |
40 // |
| |
41 static bool |
| |
42 NodeIsInTraversalRange(nsINode* aNode, bool aIsPreMode, |
| |
43 nsINode* aStartNode, int32_t aStartOffset, |
| |
44 nsINode* aEndNode, int32_t aEndOffset) |
| |
45 { |
| |
46 if (!aStartNode || !aEndNode || !aNode) { |
| |
47 return false; |
| |
48 } |
| |
49 |
| |
50 // If a chardata node contains an end point of the traversal range, it is |
| |
51 // always in the traversal range. |
| |
52 if (aNode->IsNodeOfType(nsINode::eDATA_NODE) && |
| |
53 (aNode == aStartNode || aNode == aEndNode)) { |
| |
54 return true; |
| |
55 } |
| |
56 |
| |
57 nsINode* parent = aNode->GetParentNode(); |
| |
58 if (!parent) { |
| |
59 return false; |
| |
60 } |
| |
61 |
| |
62 int32_t indx = parent->IndexOf(aNode); |
| |
63 |
| |
64 if (!aIsPreMode) { |
| |
65 ++indx; |
| |
66 } |
| |
67 |
| |
68 return nsContentUtils::ComparePoints(aStartNode, aStartOffset, |
| |
69 parent, indx) <= 0 && |
| |
70 nsContentUtils::ComparePoints(aEndNode, aEndOffset, |
| |
71 parent, indx) >= 0; |
| |
72 } |
| |
73 |
| |
74 |
| |
75 |
| |
76 /* |
| |
77 * A simple iterator class for traversing the content in "close tag" order |
| |
78 */ |
| |
79 class nsContentIterator : public nsIContentIterator |
| |
80 { |
| |
81 public: |
| |
82 NS_DECL_CYCLE_COLLECTING_ISUPPORTS |
| |
83 NS_DECL_CYCLE_COLLECTION_CLASS(nsContentIterator) |
| |
84 |
| |
85 explicit nsContentIterator(bool aPre); |
| |
86 virtual ~nsContentIterator(); |
| |
87 |
| |
88 // nsIContentIterator interface methods ------------------------------ |
| |
89 |
| |
90 virtual nsresult Init(nsINode* aRoot); |
| |
91 |
| |
92 virtual nsresult Init(nsIDOMRange* aRange); |
| |
93 |
| |
94 virtual void First(); |
| |
95 |
| |
96 virtual void Last(); |
| |
97 |
| |
98 virtual void Next(); |
| |
99 |
| |
100 virtual void Prev(); |
| |
101 |
| |
102 virtual nsINode* GetCurrentNode(); |
| |
103 |
| |
104 virtual bool IsDone(); |
| |
105 |
| |
106 virtual nsresult PositionAt(nsINode* aCurNode); |
| |
107 |
| |
108 protected: |
| |
109 |
| |
110 // Recursively get the deepest first/last child of aRoot. This will return |
| |
111 // aRoot itself if it has no children. |
| |
112 nsINode* GetDeepFirstChild(nsINode* aRoot, |
| |
113 nsTArray<int32_t>* aIndexes = nullptr); |
| |
114 nsIContent* GetDeepFirstChild(nsIContent* aRoot, |
| |
115 nsTArray<int32_t>* aIndexes = nullptr); |
| |
116 nsINode* GetDeepLastChild(nsINode* aRoot, |
| |
117 nsTArray<int32_t>* aIndexes = nullptr); |
| |
118 nsIContent* GetDeepLastChild(nsIContent* aRoot, |
| |
119 nsTArray<int32_t>* aIndexes = nullptr); |
| |
120 |
| |
121 // Get the next/previous sibling of aNode, or its parent's, or grandparent's, |
| |
122 // etc. Returns null if aNode and all its ancestors have no next/previous |
| |
123 // sibling. |
| |
124 nsIContent* GetNextSibling(nsINode* aNode, |
| |
125 nsTArray<int32_t>* aIndexes = nullptr); |
| |
126 nsIContent* GetPrevSibling(nsINode* aNode, |
| |
127 nsTArray<int32_t>* aIndexes = nullptr); |
| |
128 |
| |
129 nsINode* NextNode(nsINode* aNode, nsTArray<int32_t>* aIndexes = nullptr); |
| |
130 nsINode* PrevNode(nsINode* aNode, nsTArray<int32_t>* aIndexes = nullptr); |
| |
131 |
| |
132 // WARNING: This function is expensive |
| |
133 nsresult RebuildIndexStack(); |
| |
134 |
| |
135 void MakeEmpty(); |
| |
136 |
| |
137 virtual void LastRelease(); |
| |
138 |
| |
139 nsCOMPtr<nsINode> mCurNode; |
| |
140 nsCOMPtr<nsINode> mFirst; |
| |
141 nsCOMPtr<nsINode> mLast; |
| |
142 nsCOMPtr<nsINode> mCommonParent; |
| |
143 |
| |
144 // used by nsContentIterator to cache indices |
| |
145 nsAutoTArray<int32_t, 8> mIndexes; |
| |
146 |
| |
147 // used by nsSubtreeIterator to cache indices. Why put them in the base |
| |
148 // class? Because otherwise I have to duplicate the routines GetNextSibling |
| |
149 // etc across both classes, with slight variations for caching. Or |
| |
150 // alternately, create a base class for the cache itself and have all the |
| |
151 // cache manipulation go through a vptr. I think this is the best space and |
| |
152 // speed combo, even though it's ugly. |
| |
153 int32_t mCachedIndex; |
| |
154 // another note about mCachedIndex: why should the subtree iterator use a |
| |
155 // trivial cached index instead of the mre robust array of indicies (which is |
| |
156 // what the basic content iterator uses)? The reason is that subtree |
| |
157 // iterators do not do much transitioning between parents and children. They |
| |
158 // tend to stay at the same level. In fact, you can prove (though I won't |
| |
159 // attempt it here) that they change levels at most n+m times, where n is the |
| |
160 // height of the parent hierarchy from the range start to the common |
| |
161 // ancestor, and m is the the height of the parent hierarchy from the range |
| |
162 // end to the common ancestor. If we used the index array, we would pay the |
| |
163 // price up front for n, and then pay the cost for m on the fly later on. |
| |
164 // With the simple cache, we only "pay as we go". Either way, we call |
| |
165 // IndexOf() once for each change of level in the hierarchy. Since a trivial |
| |
166 // index is much simpler, we use it for the subtree iterator. |
| |
167 |
| |
168 bool mIsDone; |
| |
169 bool mPre; |
| |
170 |
| |
171 private: |
| |
172 |
| |
173 // no copies or assigns FIX ME |
| |
174 nsContentIterator(const nsContentIterator&); |
| |
175 nsContentIterator& operator=(const nsContentIterator&); |
| |
176 |
| |
177 }; |
| |
178 |
| |
179 |
| |
180 /****************************************************** |
| |
181 * repository cruft |
| |
182 ******************************************************/ |
| |
183 |
| |
184 already_AddRefed<nsIContentIterator> |
| |
185 NS_NewContentIterator() |
| |
186 { |
| |
187 nsCOMPtr<nsIContentIterator> iter = new nsContentIterator(false); |
| |
188 return iter.forget(); |
| |
189 } |
| |
190 |
| |
191 |
| |
192 already_AddRefed<nsIContentIterator> |
| |
193 NS_NewPreContentIterator() |
| |
194 { |
| |
195 nsCOMPtr<nsIContentIterator> iter = new nsContentIterator(true); |
| |
196 return iter.forget(); |
| |
197 } |
| |
198 |
| |
199 |
| |
200 /****************************************************** |
| |
201 * XPCOM cruft |
| |
202 ******************************************************/ |
| |
203 |
| |
204 NS_IMPL_CYCLE_COLLECTING_ADDREF(nsContentIterator) |
| |
205 NS_IMPL_CYCLE_COLLECTING_RELEASE_WITH_LAST_RELEASE(nsContentIterator, |
| |
206 LastRelease()) |
| |
207 |
| |
208 NS_INTERFACE_MAP_BEGIN(nsContentIterator) |
| |
209 NS_INTERFACE_MAP_ENTRY(nsIContentIterator) |
| |
210 NS_INTERFACE_MAP_ENTRY_AMBIGUOUS(nsISupports, nsIContentIterator) |
| |
211 NS_INTERFACE_MAP_ENTRIES_CYCLE_COLLECTION(nsContentIterator) |
| |
212 NS_INTERFACE_MAP_END |
| |
213 |
| |
214 NS_IMPL_CYCLE_COLLECTION(nsContentIterator, |
| |
215 mCurNode, |
| |
216 mFirst, |
| |
217 mLast, |
| |
218 mCommonParent) |
| |
219 |
| |
220 void |
| |
221 nsContentIterator::LastRelease() |
| |
222 { |
| |
223 mCurNode = nullptr; |
| |
224 mFirst = nullptr; |
| |
225 mLast = nullptr; |
| |
226 mCommonParent = nullptr; |
| |
227 } |
| |
228 |
| |
229 /****************************************************** |
| |
230 * constructor/destructor |
| |
231 ******************************************************/ |
| |
232 |
| |
233 nsContentIterator::nsContentIterator(bool aPre) : |
| |
234 // don't need to explicitly initialize |nsCOMPtr|s, they will automatically |
| |
235 // be nullptr |
| |
236 mCachedIndex(0), mIsDone(false), mPre(aPre) |
| |
237 { |
| |
238 } |
| |
239 |
| |
240 |
| |
241 nsContentIterator::~nsContentIterator() |
| |
242 { |
| |
243 } |
| |
244 |
| |
245 |
| |
246 /****************************************************** |
| |
247 * Init routines |
| |
248 ******************************************************/ |
| |
249 |
| |
250 |
| |
251 nsresult |
| |
252 nsContentIterator::Init(nsINode* aRoot) |
| |
253 { |
| |
254 if (!aRoot) { |
| |
255 return NS_ERROR_NULL_POINTER; |
| |
256 } |
| |
257 |
| |
258 mIsDone = false; |
| |
259 mIndexes.Clear(); |
| |
260 |
| |
261 if (mPre) { |
| |
262 mFirst = aRoot; |
| |
263 mLast = GetDeepLastChild(aRoot); |
| |
264 } else { |
| |
265 mFirst = GetDeepFirstChild(aRoot); |
| |
266 mLast = aRoot; |
| |
267 } |
| |
268 |
| |
269 mCommonParent = aRoot; |
| |
270 mCurNode = mFirst; |
| |
271 RebuildIndexStack(); |
| |
272 return NS_OK; |
| |
273 } |
| |
274 |
| |
275 nsresult |
| |
276 nsContentIterator::Init(nsIDOMRange* aDOMRange) |
| |
277 { |
| |
278 NS_ENSURE_ARG_POINTER(aDOMRange); |
| |
279 nsRange* range = static_cast<nsRange*>(aDOMRange); |
| |
280 |
| |
281 mIsDone = false; |
| |
282 |
| |
283 // get common content parent |
| |
284 mCommonParent = range->GetCommonAncestor(); |
| |
285 NS_ENSURE_TRUE(mCommonParent, NS_ERROR_FAILURE); |
| |
286 |
| |
287 // get the start node and offset |
| |
288 int32_t startIndx = range->StartOffset(); |
| |
289 nsINode* startNode = range->GetStartParent(); |
| |
290 NS_ENSURE_TRUE(startNode, NS_ERROR_FAILURE); |
| |
291 |
| |
292 // get the end node and offset |
| |
293 int32_t endIndx = range->EndOffset(); |
| |
294 nsINode* endNode = range->GetEndParent(); |
| |
295 NS_ENSURE_TRUE(endNode, NS_ERROR_FAILURE); |
| |
296 |
| |
297 bool startIsData = startNode->IsNodeOfType(nsINode::eDATA_NODE); |
| |
298 |
| |
299 // short circuit when start node == end node |
| |
300 if (startNode == endNode) { |
| |
301 // Check to see if we have a collapsed range, if so, there is nothing to |
| |
302 // iterate over. |
| |
303 // |
| |
304 // XXX: CharacterDataNodes (text nodes) are currently an exception, since |
| |
305 // we always want to be able to iterate text nodes at the end points |
| |
306 // of a range. |
| |
307 |
| |
308 if (!startIsData && startIndx == endIndx) { |
| |
309 MakeEmpty(); |
| |
310 return NS_OK; |
| |
311 } |
| |
312 |
| |
313 if (startIsData) { |
| |
314 // It's a character data node. |
| |
315 mFirst = startNode->AsContent(); |
| |
316 mLast = mFirst; |
| |
317 mCurNode = mFirst; |
| |
318 |
| |
319 RebuildIndexStack(); |
| |
320 return NS_OK; |
| |
321 } |
| |
322 } |
| |
323 |
| |
324 // Find first node in range. |
| |
325 |
| |
326 nsIContent* cChild = nullptr; |
| |
327 |
| |
328 if (!startIsData && startNode->HasChildren()) { |
| |
329 cChild = startNode->GetChildAt(startIndx); |
| |
330 } |
| |
331 |
| |
332 if (!cChild) { |
| |
333 // no children, must be a text node |
| |
334 // |
| |
335 // XXXbz no children might also just mean no children. So I'm not |
| |
336 // sure what that comment above is talking about. |
| |
337 |
| |
338 if (mPre) { |
| |
339 // XXX: In the future, if start offset is after the last |
| |
340 // character in the cdata node, should we set mFirst to |
| |
341 // the next sibling? |
| |
342 |
| |
343 if (!startIsData) { |
| |
344 mFirst = GetNextSibling(startNode); |
| |
345 |
| |
346 // Does mFirst node really intersect the range? The range could be |
| |
347 // 'degenerate', i.e., not collapsed but still contain no content. |
| |
348 |
| |
349 if (mFirst && !NodeIsInTraversalRange(mFirst, mPre, startNode, |
| |
350 startIndx, endNode, endIndx)) { |
| |
351 mFirst = nullptr; |
| |
352 } |
| |
353 } else { |
| |
354 mFirst = startNode->AsContent(); |
| |
355 } |
| |
356 } else { |
| |
357 // post-order |
| |
358 if (startNode->IsContent()) { |
| |
359 mFirst = startNode->AsContent(); |
| |
360 } else { |
| |
361 // What else can we do? |
| |
362 mFirst = nullptr; |
| |
363 } |
| |
364 } |
| |
365 } else { |
| |
366 if (mPre) { |
| |
367 mFirst = cChild; |
| |
368 } else { |
| |
369 // post-order |
| |
370 mFirst = GetDeepFirstChild(cChild); |
| |
371 |
| |
372 // Does mFirst node really intersect the range? The range could be |
| |
373 // 'degenerate', i.e., not collapsed but still contain no content. |
| |
374 |
| |
375 if (mFirst && !NodeIsInTraversalRange(mFirst, mPre, startNode, startIndx, |
| |
376 endNode, endIndx)) { |
| |
377 mFirst = nullptr; |
| |
378 } |
| |
379 } |
| |
380 } |
| |
381 |
| |
382 |
| |
383 // Find last node in range. |
| |
384 |
| |
385 bool endIsData = endNode->IsNodeOfType(nsINode::eDATA_NODE); |
| |
386 |
| |
387 if (endIsData || !endNode->HasChildren() || endIndx == 0) { |
| |
388 if (mPre) { |
| |
389 if (endNode->IsContent()) { |
| |
390 mLast = endNode->AsContent(); |
| |
391 } else { |
| |
392 // Not much else to do here... |
| |
393 mLast = nullptr; |
| |
394 } |
| |
395 } else { |
| |
396 // post-order |
| |
397 // |
| |
398 // XXX: In the future, if end offset is before the first character in the |
| |
399 // cdata node, should we set mLast to the prev sibling? |
| |
400 |
| |
401 if (!endIsData) { |
| |
402 mLast = GetPrevSibling(endNode); |
| |
403 |
| |
404 if (!NodeIsInTraversalRange(mLast, mPre, startNode, startIndx, |
| |
405 endNode, endIndx)) { |
| |
406 mLast = nullptr; |
| |
407 } |
| |
408 } else { |
| |
409 mLast = endNode->AsContent(); |
| |
410 } |
| |
411 } |
| |
412 } else { |
| |
413 int32_t indx = endIndx; |
| |
414 |
| |
415 cChild = endNode->GetChildAt(--indx); |
| |
416 |
| |
417 if (!cChild) { |
| |
418 // No child at offset! |
| |
419 NS_NOTREACHED("nsContentIterator::nsContentIterator"); |
| |
420 return NS_ERROR_FAILURE; |
| |
421 } |
| |
422 |
| |
423 if (mPre) { |
| |
424 mLast = GetDeepLastChild(cChild); |
| |
425 |
| |
426 if (!NodeIsInTraversalRange(mLast, mPre, startNode, startIndx, |
| |
427 endNode, endIndx)) { |
| |
428 mLast = nullptr; |
| |
429 } |
| |
430 } else { |
| |
431 // post-order |
| |
432 mLast = cChild; |
| |
433 } |
| |
434 } |
| |
435 |
| |
436 // If either first or last is null, they both have to be null! |
| |
437 |
| |
438 if (!mFirst || !mLast) { |
| |
439 mFirst = nullptr; |
| |
440 mLast = nullptr; |
| |
441 } |
| |
442 |
| |
443 mCurNode = mFirst; |
| |
444 mIsDone = !mCurNode; |
| |
445 |
| |
446 if (!mCurNode) { |
| |
447 mIndexes.Clear(); |
| |
448 } else { |
| |
449 RebuildIndexStack(); |
| |
450 } |
| |
451 |
| |
452 return NS_OK; |
| |
453 } |
| |
454 |
| |
455 |
| |
456 /****************************************************** |
| |
457 * Helper routines |
| |
458 ******************************************************/ |
| |
459 // WARNING: This function is expensive |
| |
460 nsresult |
| |
461 nsContentIterator::RebuildIndexStack() |
| |
462 { |
| |
463 // Make sure we start at the right indexes on the stack! Build array up |
| |
464 // to common parent of start and end. Perhaps it's too many entries, but |
| |
465 // that's far better than too few. |
| |
466 nsINode* parent; |
| |
467 nsINode* current; |
| |
468 |
| |
469 mIndexes.Clear(); |
| |
470 current = mCurNode; |
| |
471 if (!current) { |
| |
472 return NS_OK; |
| |
473 } |
| |
474 |
| |
475 while (current != mCommonParent) { |
| |
476 parent = current->GetParentNode(); |
| |
477 |
| |
478 if (!parent) { |
| |
479 return NS_ERROR_FAILURE; |
| |
480 } |
| |
481 |
| |
482 mIndexes.InsertElementAt(0, parent->IndexOf(current)); |
| |
483 |
| |
484 current = parent; |
| |
485 } |
| |
486 |
| |
487 return NS_OK; |
| |
488 } |
| |
489 |
| |
490 void |
| |
491 nsContentIterator::MakeEmpty() |
| |
492 { |
| |
493 mCurNode = nullptr; |
| |
494 mFirst = nullptr; |
| |
495 mLast = nullptr; |
| |
496 mCommonParent = nullptr; |
| |
497 mIsDone = true; |
| |
498 mIndexes.Clear(); |
| |
499 } |
| |
500 |
| |
501 nsINode* |
| |
502 nsContentIterator::GetDeepFirstChild(nsINode* aRoot, |
| |
503 nsTArray<int32_t>* aIndexes) |
| |
504 { |
| |
505 if (!aRoot || !aRoot->HasChildren()) { |
| |
506 return aRoot; |
| |
507 } |
| |
508 // We can't pass aRoot itself to the full GetDeepFirstChild, because that |
| |
509 // will only take nsIContent and aRoot might be a document. Pass aRoot's |
| |
510 // child, but be sure to preserve aIndexes. |
| |
511 if (aIndexes) { |
| |
512 aIndexes->AppendElement(0); |
| |
513 } |
| |
514 return GetDeepFirstChild(aRoot->GetFirstChild(), aIndexes); |
| |
515 } |
| |
516 |
| |
517 nsIContent* |
| |
518 nsContentIterator::GetDeepFirstChild(nsIContent* aRoot, |
| |
519 nsTArray<int32_t>* aIndexes) |
| |
520 { |
| |
521 if (!aRoot) { |
| |
522 return nullptr; |
| |
523 } |
| |
524 |
| |
525 nsIContent* node = aRoot; |
| |
526 nsIContent* child = node->GetFirstChild(); |
| |
527 |
| |
528 while (child) { |
| |
529 if (aIndexes) { |
| |
530 // Add this node to the stack of indexes |
| |
531 aIndexes->AppendElement(0); |
| |
532 } |
| |
533 node = child; |
| |
534 child = node->GetFirstChild(); |
| |
535 } |
| |
536 |
| |
537 return node; |
| |
538 } |
| |
539 |
| |
540 nsINode* |
| |
541 nsContentIterator::GetDeepLastChild(nsINode* aRoot, |
| |
542 nsTArray<int32_t>* aIndexes) |
| |
543 { |
| |
544 if (!aRoot || !aRoot->HasChildren()) { |
| |
545 return aRoot; |
| |
546 } |
| |
547 // We can't pass aRoot itself to the full GetDeepLastChild, because that will |
| |
548 // only take nsIContent and aRoot might be a document. Pass aRoot's child, |
| |
549 // but be sure to preserve aIndexes. |
| |
550 if (aIndexes) { |
| |
551 aIndexes->AppendElement(aRoot->GetChildCount() - 1); |
| |
552 } |
| |
553 return GetDeepLastChild(aRoot->GetLastChild(), aIndexes); |
| |
554 } |
| |
555 |
| |
556 nsIContent* |
| |
557 nsContentIterator::GetDeepLastChild(nsIContent* aRoot, |
| |
558 nsTArray<int32_t>* aIndexes) |
| |
559 { |
| |
560 if (!aRoot) { |
| |
561 return nullptr; |
| |
562 } |
| |
563 |
| |
564 nsIContent* node = aRoot; |
| |
565 int32_t numChildren = node->GetChildCount(); |
| |
566 |
| |
567 while (numChildren) { |
| |
568 nsIContent* child = node->GetChildAt(--numChildren); |
| |
569 |
| |
570 if (aIndexes) { |
| |
571 // Add this node to the stack of indexes |
| |
572 aIndexes->AppendElement(numChildren); |
| |
573 } |
| |
574 numChildren = child->GetChildCount(); |
| |
575 node = child; |
| |
576 } |
| |
577 |
| |
578 return node; |
| |
579 } |
| |
580 |
| |
581 // Get the next sibling, or parent's next sibling, or grandpa's next sibling... |
| |
582 nsIContent* |
| |
583 nsContentIterator::GetNextSibling(nsINode* aNode, |
| |
584 nsTArray<int32_t>* aIndexes) |
| |
585 { |
| |
586 if (!aNode) { |
| |
587 return nullptr; |
| |
588 } |
| |
589 |
| |
590 nsINode* parent = aNode->GetParentNode(); |
| |
591 if (!parent) { |
| |
592 return nullptr; |
| |
593 } |
| |
594 |
| |
595 int32_t indx = 0; |
| |
596 |
| |
597 NS_ASSERTION(!aIndexes || !aIndexes->IsEmpty(), |
| |
598 "ContentIterator stack underflow"); |
| |
599 if (aIndexes && !aIndexes->IsEmpty()) { |
| |
600 // use the last entry on the Indexes array for the current index |
| |
601 indx = (*aIndexes)[aIndexes->Length()-1]; |
| |
602 } else { |
| |
603 indx = mCachedIndex; |
| |
604 } |
| |
605 |
| |
606 // reverify that the index of the current node hasn't changed. |
| |
607 // not super cheap, but a lot cheaper than IndexOf(), and still O(1). |
| |
608 // ignore result this time - the index may now be out of range. |
| |
609 nsIContent* sib = parent->GetChildAt(indx); |
| |
610 if (sib != aNode) { |
| |
611 // someone changed our index - find the new index the painful way |
| |
612 indx = parent->IndexOf(aNode); |
| |
613 } |
| |
614 |
| |
615 // indx is now canonically correct |
| |
616 if ((sib = parent->GetChildAt(++indx))) { |
| |
617 // update index cache |
| |
618 if (aIndexes && !aIndexes->IsEmpty()) { |
| |
619 aIndexes->ElementAt(aIndexes->Length()-1) = indx; |
| |
620 } else { |
| |
621 mCachedIndex = indx; |
| |
622 } |
| |
623 } else { |
| |
624 if (parent != mCommonParent) { |
| |
625 if (aIndexes) { |
| |
626 // pop node off the stack, go up one level and return parent or fail. |
| |
627 // Don't leave the index empty, especially if we're |
| |
628 // returning nullptr. This confuses other parts of the code. |
| |
629 if (aIndexes->Length() > 1) { |
| |
630 aIndexes->RemoveElementAt(aIndexes->Length()-1); |
| |
631 } |
| |
632 } |
| |
633 } |
| |
634 |
| |
635 // ok to leave cache out of date here if parent == mCommonParent? |
| |
636 sib = GetNextSibling(parent, aIndexes); |
| |
637 } |
| |
638 |
| |
639 return sib; |
| |
640 } |
| |
641 |
| |
642 // Get the prev sibling, or parent's prev sibling, or grandpa's prev sibling... |
| |
643 nsIContent* |
| |
644 nsContentIterator::GetPrevSibling(nsINode* aNode, |
| |
645 nsTArray<int32_t>* aIndexes) |
| |
646 { |
| |
647 if (!aNode) { |
| |
648 return nullptr; |
| |
649 } |
| |
650 |
| |
651 nsINode* parent = aNode->GetParentNode(); |
| |
652 if (!parent) { |
| |
653 return nullptr; |
| |
654 } |
| |
655 |
| |
656 int32_t indx = 0; |
| |
657 |
| |
658 NS_ASSERTION(!aIndexes || !aIndexes->IsEmpty(), |
| |
659 "ContentIterator stack underflow"); |
| |
660 if (aIndexes && !aIndexes->IsEmpty()) { |
| |
661 // use the last entry on the Indexes array for the current index |
| |
662 indx = (*aIndexes)[aIndexes->Length()-1]; |
| |
663 } else { |
| |
664 indx = mCachedIndex; |
| |
665 } |
| |
666 |
| |
667 // reverify that the index of the current node hasn't changed |
| |
668 // ignore result this time - the index may now be out of range. |
| |
669 nsIContent* sib = parent->GetChildAt(indx); |
| |
670 if (sib != aNode) { |
| |
671 // someone changed our index - find the new index the painful way |
| |
672 indx = parent->IndexOf(aNode); |
| |
673 } |
| |
674 |
| |
675 // indx is now canonically correct |
| |
676 if (indx > 0 && (sib = parent->GetChildAt(--indx))) { |
| |
677 // update index cache |
| |
678 if (aIndexes && !aIndexes->IsEmpty()) { |
| |
679 aIndexes->ElementAt(aIndexes->Length()-1) = indx; |
| |
680 } else { |
| |
681 mCachedIndex = indx; |
| |
682 } |
| |
683 } else if (parent != mCommonParent) { |
| |
684 if (aIndexes && !aIndexes->IsEmpty()) { |
| |
685 // pop node off the stack, go up one level and try again. |
| |
686 aIndexes->RemoveElementAt(aIndexes->Length()-1); |
| |
687 } |
| |
688 return GetPrevSibling(parent, aIndexes); |
| |
689 } |
| |
690 |
| |
691 return sib; |
| |
692 } |
| |
693 |
| |
694 nsINode* |
| |
695 nsContentIterator::NextNode(nsINode* aNode, nsTArray<int32_t>* aIndexes) |
| |
696 { |
| |
697 nsINode* node = aNode; |
| |
698 |
| |
699 // if we are a Pre-order iterator, use pre-order |
| |
700 if (mPre) { |
| |
701 // if it has children then next node is first child |
| |
702 if (node->HasChildren()) { |
| |
703 nsIContent* firstChild = node->GetFirstChild(); |
| |
704 |
| |
705 // update cache |
| |
706 if (aIndexes) { |
| |
707 // push an entry on the index stack |
| |
708 aIndexes->AppendElement(0); |
| |
709 } else { |
| |
710 mCachedIndex = 0; |
| |
711 } |
| |
712 |
| |
713 return firstChild; |
| |
714 } |
| |
715 |
| |
716 // else next sibling is next |
| |
717 return GetNextSibling(node, aIndexes); |
| |
718 } |
| |
719 |
| |
720 // post-order |
| |
721 nsINode* parent = node->GetParentNode(); |
| |
722 nsIContent* sibling = nullptr; |
| |
723 int32_t indx = 0; |
| |
724 |
| |
725 // get the cached index |
| |
726 NS_ASSERTION(!aIndexes || !aIndexes->IsEmpty(), |
| |
727 "ContentIterator stack underflow"); |
| |
728 if (aIndexes && !aIndexes->IsEmpty()) { |
| |
729 // use the last entry on the Indexes array for the current index |
| |
730 indx = (*aIndexes)[aIndexes->Length()-1]; |
| |
731 } else { |
| |
732 indx = mCachedIndex; |
| |
733 } |
| |
734 |
| |
735 // reverify that the index of the current node hasn't changed. not super |
| |
736 // cheap, but a lot cheaper than IndexOf(), and still O(1). ignore result |
| |
737 // this time - the index may now be out of range. |
| |
738 if (indx >= 0) { |
| |
739 sibling = parent->GetChildAt(indx); |
| |
740 } |
| |
741 if (sibling != node) { |
| |
742 // someone changed our index - find the new index the painful way |
| |
743 indx = parent->IndexOf(node); |
| |
744 } |
| |
745 |
| |
746 // indx is now canonically correct |
| |
747 sibling = parent->GetChildAt(++indx); |
| |
748 if (sibling) { |
| |
749 // update cache |
| |
750 if (aIndexes && !aIndexes->IsEmpty()) { |
| |
751 // replace an entry on the index stack |
| |
752 aIndexes->ElementAt(aIndexes->Length()-1) = indx; |
| |
753 } else { |
| |
754 mCachedIndex = indx; |
| |
755 } |
| |
756 |
| |
757 // next node is sibling's "deep left" child |
| |
758 return GetDeepFirstChild(sibling, aIndexes); |
| |
759 } |
| |
760 |
| |
761 // else it's the parent, update cache |
| |
762 if (aIndexes) { |
| |
763 // Pop an entry off the index stack. Don't leave the index empty, |
| |
764 // especially if we're returning nullptr. This confuses other parts of the |
| |
765 // code. |
| |
766 if (aIndexes->Length() > 1) { |
| |
767 aIndexes->RemoveElementAt(aIndexes->Length()-1); |
| |
768 } |
| |
769 } else { |
| |
770 // this might be wrong, but we are better off guessing |
| |
771 mCachedIndex = 0; |
| |
772 } |
| |
773 |
| |
774 return parent; |
| |
775 } |
| |
776 |
| |
777 nsINode* |
| |
778 nsContentIterator::PrevNode(nsINode* aNode, nsTArray<int32_t>* aIndexes) |
| |
779 { |
| |
780 nsINode* node = aNode; |
| |
781 |
| |
782 // if we are a Pre-order iterator, use pre-order |
| |
783 if (mPre) { |
| |
784 nsINode* parent = node->GetParentNode(); |
| |
785 nsIContent* sibling = nullptr; |
| |
786 int32_t indx = 0; |
| |
787 |
| |
788 // get the cached index |
| |
789 NS_ASSERTION(!aIndexes || !aIndexes->IsEmpty(), |
| |
790 "ContentIterator stack underflow"); |
| |
791 if (aIndexes && !aIndexes->IsEmpty()) { |
| |
792 // use the last entry on the Indexes array for the current index |
| |
793 indx = (*aIndexes)[aIndexes->Length()-1]; |
| |
794 } else { |
| |
795 indx = mCachedIndex; |
| |
796 } |
| |
797 |
| |
798 // reverify that the index of the current node hasn't changed. not super |
| |
799 // cheap, but a lot cheaper than IndexOf(), and still O(1). ignore result |
| |
800 // this time - the index may now be out of range. |
| |
801 if (indx >= 0) { |
| |
802 sibling = parent->GetChildAt(indx); |
| |
803 } |
| |
804 |
| |
805 if (sibling != node) { |
| |
806 // someone changed our index - find the new index the painful way |
| |
807 indx = parent->IndexOf(node); |
| |
808 } |
| |
809 |
| |
810 // indx is now canonically correct |
| |
811 if (indx && (sibling = parent->GetChildAt(--indx))) { |
| |
812 // update cache |
| |
813 if (aIndexes && !aIndexes->IsEmpty()) { |
| |
814 // replace an entry on the index stack |
| |
815 aIndexes->ElementAt(aIndexes->Length()-1) = indx; |
| |
816 } else { |
| |
817 mCachedIndex = indx; |
| |
818 } |
| |
819 |
| |
820 // prev node is sibling's "deep right" child |
| |
821 return GetDeepLastChild(sibling, aIndexes); |
| |
822 } |
| |
823 |
| |
824 // else it's the parent, update cache |
| |
825 if (aIndexes && !aIndexes->IsEmpty()) { |
| |
826 // pop an entry off the index stack |
| |
827 aIndexes->RemoveElementAt(aIndexes->Length()-1); |
| |
828 } else { |
| |
829 // this might be wrong, but we are better off guessing |
| |
830 mCachedIndex = 0; |
| |
831 } |
| |
832 return parent; |
| |
833 } |
| |
834 |
| |
835 // post-order |
| |
836 int32_t numChildren = node->GetChildCount(); |
| |
837 |
| |
838 // if it has children then prev node is last child |
| |
839 if (numChildren) { |
| |
840 nsIContent* lastChild = node->GetLastChild(); |
| |
841 numChildren--; |
| |
842 |
| |
843 // update cache |
| |
844 if (aIndexes) { |
| |
845 // push an entry on the index stack |
| |
846 aIndexes->AppendElement(numChildren); |
| |
847 } else { |
| |
848 mCachedIndex = numChildren; |
| |
849 } |
| |
850 |
| |
851 return lastChild; |
| |
852 } |
| |
853 |
| |
854 // else prev sibling is previous |
| |
855 return GetPrevSibling(node, aIndexes); |
| |
856 } |
| |
857 |
| |
858 /****************************************************** |
| |
859 * ContentIterator routines |
| |
860 ******************************************************/ |
| |
861 |
| |
862 void |
| |
863 nsContentIterator::First() |
| |
864 { |
| |
865 if (mFirst) { |
| |
866 #ifdef DEBUG |
| |
867 nsresult rv = |
| |
868 #endif |
| |
869 PositionAt(mFirst); |
| |
870 |
| |
871 NS_ASSERTION(NS_SUCCEEDED(rv), "Failed to position iterator!"); |
| |
872 } |
| |
873 |
| |
874 mIsDone = mFirst == nullptr; |
| |
875 } |
| |
876 |
| |
877 |
| |
878 void |
| |
879 nsContentIterator::Last() |
| |
880 { |
| |
881 NS_ASSERTION(mLast, "No last node!"); |
| |
882 |
| |
883 if (mLast) { |
| |
884 #ifdef DEBUG |
| |
885 nsresult rv = |
| |
886 #endif |
| |
887 PositionAt(mLast); |
| |
888 |
| |
889 NS_ASSERTION(NS_SUCCEEDED(rv), "Failed to position iterator!"); |
| |
890 } |
| |
891 |
| |
892 mIsDone = mLast == nullptr; |
| |
893 } |
| |
894 |
| |
895 |
| |
896 void |
| |
897 nsContentIterator::Next() |
| |
898 { |
| |
899 if (mIsDone || !mCurNode) { |
| |
900 return; |
| |
901 } |
| |
902 |
| |
903 if (mCurNode == mLast) { |
| |
904 mIsDone = true; |
| |
905 return; |
| |
906 } |
| |
907 |
| |
908 mCurNode = NextNode(mCurNode, &mIndexes); |
| |
909 } |
| |
910 |
| |
911 |
| |
912 void |
| |
913 nsContentIterator::Prev() |
| |
914 { |
| |
915 if (mIsDone || !mCurNode) { |
| |
916 return; |
| |
917 } |
| |
918 |
| |
919 if (mCurNode == mFirst) { |
| |
920 mIsDone = true; |
| |
921 return; |
| |
922 } |
| |
923 |
| |
924 mCurNode = PrevNode(mCurNode, &mIndexes); |
| |
925 } |
| |
926 |
| |
927 |
| |
928 bool |
| |
929 nsContentIterator::IsDone() |
| |
930 { |
| |
931 return mIsDone; |
| |
932 } |
| |
933 |
| |
934 |
| |
935 // Keeping arrays of indexes for the stack of nodes makes PositionAt |
| |
936 // interesting... |
| |
937 nsresult |
| |
938 nsContentIterator::PositionAt(nsINode* aCurNode) |
| |
939 { |
| |
940 if (!aCurNode) { |
| |
941 return NS_ERROR_NULL_POINTER; |
| |
942 } |
| |
943 |
| |
944 nsINode* newCurNode = aCurNode; |
| |
945 nsINode* tempNode = mCurNode; |
| |
946 |
| |
947 mCurNode = aCurNode; |
| |
948 // take an early out if this doesn't actually change the position |
| |
949 if (mCurNode == tempNode) { |
| |
950 mIsDone = false; // paranoia |
| |
951 return NS_OK; |
| |
952 } |
| |
953 |
| |
954 // Check to see if the node falls within the traversal range. |
| |
955 |
| |
956 nsINode* firstNode = mFirst; |
| |
957 nsINode* lastNode = mLast; |
| |
958 int32_t firstOffset = 0, lastOffset = 0; |
| |
959 |
| |
960 if (firstNode && lastNode) { |
| |
961 if (mPre) { |
| |
962 firstNode = NodeToParentOffset(mFirst, &firstOffset); |
| |
963 |
| |
964 if (lastNode->GetChildCount()) { |
| |
965 lastOffset = 0; |
| |
966 } else { |
| |
967 lastNode = NodeToParentOffset(mLast, &lastOffset); |
| |
968 ++lastOffset; |
| |
969 } |
| |
970 } else { |
| |
971 uint32_t numChildren = firstNode->GetChildCount(); |
| |
972 |
| |
973 if (numChildren) { |
| |
974 firstOffset = numChildren; |
| |
975 } else { |
| |
976 firstNode = NodeToParentOffset(mFirst, &firstOffset); |
| |
977 } |
| |
978 |
| |
979 lastNode = NodeToParentOffset(mLast, &lastOffset); |
| |
980 ++lastOffset; |
| |
981 } |
| |
982 } |
| |
983 |
| |
984 // The end positions are always in the range even if it has no parent. We |
| |
985 // need to allow that or 'iter->Init(root)' would assert in Last() or First() |
| |
986 // for example, bug 327694. |
| |
987 if (mFirst != mCurNode && mLast != mCurNode && |
| |
988 (!firstNode || !lastNode || |
| |
989 !NodeIsInTraversalRange(mCurNode, mPre, firstNode, firstOffset, |
| |
990 lastNode, lastOffset))) { |
| |
991 mIsDone = true; |
| |
992 return NS_ERROR_FAILURE; |
| |
993 } |
| |
994 |
| |
995 // We can be at ANY node in the sequence. Need to regenerate the array of |
| |
996 // indexes back to the root or common parent! |
| |
997 nsAutoTArray<nsINode*, 8> oldParentStack; |
| |
998 nsAutoTArray<int32_t, 8> newIndexes; |
| |
999 |
| |
1000 // Get a list of the parents up to the root, then compare the new node with |
| |
1001 // entries in that array until we find a match (lowest common ancestor). If |
| |
1002 // no match, use IndexOf, take the parent, and repeat. This avoids using |
| |
1003 // IndexOf() N times on possibly large arrays. We still end up doing it a |
| |
1004 // fair bit. It's better to use Clone() if possible. |
| |
1005 |
| |
1006 // we know the depth we're down (though we may not have started at the top). |
| |
1007 oldParentStack.SetCapacity(mIndexes.Length() + 1); |
| |
1008 |
| |
1009 // We want to loop mIndexes.Length() + 1 times here, because we want to make |
| |
1010 // sure we include mCommonParent in the oldParentStack, for use in the next |
| |
1011 // for loop, and mIndexes only has entries for nodes from tempNode up through |
| |
1012 // an ancestor of tempNode that's a child of mCommonParent. |
| |
1013 for (int32_t i = mIndexes.Length() + 1; i > 0 && tempNode; i--) { |
| |
1014 // Insert at head since we're walking up |
| |
1015 oldParentStack.InsertElementAt(0, tempNode); |
| |
1016 |
| |
1017 nsINode* parent = tempNode->GetParentNode(); |
| |
1018 |
| |
1019 if (!parent) { |
| |
1020 // this node has no parent, and thus no index |
| |
1021 break; |
| |
1022 } |
| |
1023 |
| |
1024 if (parent == mCurNode) { |
| |
1025 // The position was moved to a parent of the current position. All we |
| |
1026 // need to do is drop some indexes. Shortcut here. |
| |
1027 mIndexes.RemoveElementsAt(mIndexes.Length() - oldParentStack.Length(), |
| |
1028 oldParentStack.Length()); |
| |
1029 mIsDone = false; |
| |
1030 return NS_OK; |
| |
1031 } |
| |
1032 tempNode = parent; |
| |
1033 } |
| |
1034 |
| |
1035 // Ok. We have the array of old parents. Look for a match. |
| |
1036 while (newCurNode) { |
| |
1037 nsINode* parent = newCurNode->GetParentNode(); |
| |
1038 |
| |
1039 if (!parent) { |
| |
1040 // this node has no parent, and thus no index |
| |
1041 break; |
| |
1042 } |
| |
1043 |
| |
1044 int32_t indx = parent->IndexOf(newCurNode); |
| |
1045 |
| |
1046 // insert at the head! |
| |
1047 newIndexes.InsertElementAt(0, indx); |
| |
1048 |
| |
1049 // look to see if the parent is in the stack |
| |
1050 indx = oldParentStack.IndexOf(parent); |
| |
1051 if (indx >= 0) { |
| |
1052 // ok, the parent IS on the old stack! Rework things. We want |
| |
1053 // newIndexes to replace all nodes equal to or below the match. Note |
| |
1054 // that index oldParentStack.Length() - 1 is the last node, which is one |
| |
1055 // BELOW the last index in the mIndexes stack. In other words, we want |
| |
1056 // to remove elements starting at index (indx + 1). |
| |
1057 int32_t numToDrop = oldParentStack.Length() - (1 + indx); |
| |
1058 if (numToDrop > 0) { |
| |
1059 mIndexes.RemoveElementsAt(mIndexes.Length() - numToDrop, numToDrop); |
| |
1060 } |
| |
1061 mIndexes.AppendElements(newIndexes); |
| |
1062 |
| |
1063 break; |
| |
1064 } |
| |
1065 newCurNode = parent; |
| |
1066 } |
| |
1067 |
| |
1068 // phew! |
| |
1069 |
| |
1070 mIsDone = false; |
| |
1071 return NS_OK; |
| |
1072 } |
| |
1073 |
| |
1074 nsINode* |
| |
1075 nsContentIterator::GetCurrentNode() |
| |
1076 { |
| |
1077 if (mIsDone) { |
| |
1078 return nullptr; |
| |
1079 } |
| |
1080 |
| |
1081 NS_ASSERTION(mCurNode, "Null current node in an iterator that's not done!"); |
| |
1082 |
| |
1083 return mCurNode; |
| |
1084 } |
| |
1085 |
| |
1086 |
| |
1087 |
| |
1088 |
| |
1089 |
| |
1090 /*====================================================================================*/ |
| |
1091 /*====================================================================================*/ |
| |
1092 |
| |
1093 |
| |
1094 |
| |
1095 |
| |
1096 |
| |
1097 |
| |
1098 /****************************************************** |
| |
1099 * nsContentSubtreeIterator |
| |
1100 ******************************************************/ |
| |
1101 |
| |
1102 |
| |
1103 /* |
| |
1104 * A simple iterator class for traversing the content in "top subtree" order |
| |
1105 */ |
| |
1106 class nsContentSubtreeIterator : public nsContentIterator |
| |
1107 { |
| |
1108 public: |
| |
1109 nsContentSubtreeIterator() : nsContentIterator(false) {} |
| |
1110 virtual ~nsContentSubtreeIterator() {} |
| |
1111 |
| |
1112 NS_DECL_ISUPPORTS_INHERITED |
| |
1113 NS_DECL_CYCLE_COLLECTION_CLASS_INHERITED(nsContentSubtreeIterator, nsContentIterator) |
| |
1114 |
| |
1115 // nsContentIterator overrides ------------------------------ |
| |
1116 |
| |
1117 virtual nsresult Init(nsINode* aRoot); |
| |
1118 |
| |
1119 virtual nsresult Init(nsIDOMRange* aRange); |
| |
1120 |
| |
1121 virtual void Next(); |
| |
1122 |
| |
1123 virtual void Prev(); |
| |
1124 |
| |
1125 virtual nsresult PositionAt(nsINode* aCurNode); |
| |
1126 |
| |
1127 // Must override these because we don't do PositionAt |
| |
1128 virtual void First(); |
| |
1129 |
| |
1130 // Must override these because we don't do PositionAt |
| |
1131 virtual void Last(); |
| |
1132 |
| |
1133 protected: |
| |
1134 |
| |
1135 // Returns the highest inclusive ancestor of aNode that's in the range |
| |
1136 // (possibly aNode itself). Returns null if aNode is null, or is not itself |
| |
1137 // in the range. A node is in the range if (node, 0) comes strictly after |
| |
1138 // the range endpoint, and (node, node.length) comes strictly before it, so |
| |
1139 // the range's start and end nodes will never be considered "in" it. |
| |
1140 nsIContent* GetTopAncestorInRange(nsINode* aNode); |
| |
1141 |
| |
1142 // no copy's or assigns FIX ME |
| |
1143 nsContentSubtreeIterator(const nsContentSubtreeIterator&); |
| |
1144 nsContentSubtreeIterator& operator=(const nsContentSubtreeIterator&); |
| |
1145 |
| |
1146 virtual void LastRelease() MOZ_OVERRIDE; |
| |
1147 |
| |
1148 nsRefPtr<nsRange> mRange; |
| |
1149 |
| |
1150 // these arrays all typically are used and have elements |
| |
1151 nsAutoTArray<nsIContent*, 8> mEndNodes; |
| |
1152 nsAutoTArray<int32_t, 8> mEndOffsets; |
| |
1153 }; |
| |
1154 |
| |
1155 NS_IMPL_ADDREF_INHERITED(nsContentSubtreeIterator, nsContentIterator) |
| |
1156 NS_IMPL_RELEASE_INHERITED(nsContentSubtreeIterator, nsContentIterator) |
| |
1157 |
| |
1158 NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION_INHERITED(nsContentSubtreeIterator) |
| |
1159 NS_INTERFACE_MAP_END_INHERITING(nsContentIterator) |
| |
1160 |
| |
1161 NS_IMPL_CYCLE_COLLECTION_INHERITED(nsContentSubtreeIterator, nsContentIterator, |
| |
1162 mRange) |
| |
1163 |
| |
1164 void |
| |
1165 nsContentSubtreeIterator::LastRelease() |
| |
1166 { |
| |
1167 mRange = nullptr; |
| |
1168 nsContentIterator::LastRelease(); |
| |
1169 } |
| |
1170 |
| |
1171 /****************************************************** |
| |
1172 * repository cruft |
| |
1173 ******************************************************/ |
| |
1174 |
| |
1175 already_AddRefed<nsIContentIterator> |
| |
1176 NS_NewContentSubtreeIterator() |
| |
1177 { |
| |
1178 nsCOMPtr<nsIContentIterator> iter = new nsContentSubtreeIterator(); |
| |
1179 return iter.forget(); |
| |
1180 } |
| |
1181 |
| |
1182 |
| |
1183 |
| |
1184 /****************************************************** |
| |
1185 * Init routines |
| |
1186 ******************************************************/ |
| |
1187 |
| |
1188 |
| |
1189 nsresult |
| |
1190 nsContentSubtreeIterator::Init(nsINode* aRoot) |
| |
1191 { |
| |
1192 return NS_ERROR_NOT_IMPLEMENTED; |
| |
1193 } |
| |
1194 |
| |
1195 |
| |
1196 nsresult |
| |
1197 nsContentSubtreeIterator::Init(nsIDOMRange* aRange) |
| |
1198 { |
| |
1199 MOZ_ASSERT(aRange); |
| |
1200 |
| |
1201 mIsDone = false; |
| |
1202 |
| |
1203 mRange = static_cast<nsRange*>(aRange); |
| |
1204 |
| |
1205 // get the start node and offset, convert to nsINode |
| |
1206 mCommonParent = mRange->GetCommonAncestor(); |
| |
1207 nsINode* startParent = mRange->GetStartParent(); |
| |
1208 int32_t startOffset = mRange->StartOffset(); |
| |
1209 nsINode* endParent = mRange->GetEndParent(); |
| |
1210 int32_t endOffset = mRange->EndOffset(); |
| |
1211 MOZ_ASSERT(mCommonParent && startParent && endParent); |
| |
1212 // Bug 767169 |
| |
1213 MOZ_ASSERT(uint32_t(startOffset) <= startParent->Length() && |
| |
1214 uint32_t(endOffset) <= endParent->Length()); |
| |
1215 |
| |
1216 // short circuit when start node == end node |
| |
1217 if (startParent == endParent) { |
| |
1218 nsINode* child = startParent->GetFirstChild(); |
| |
1219 |
| |
1220 if (!child || startOffset == endOffset) { |
| |
1221 // Text node, empty container, or collapsed |
| |
1222 MakeEmpty(); |
| |
1223 return NS_OK; |
| |
1224 } |
| |
1225 } |
| |
1226 |
| |
1227 // cache ancestors |
| |
1228 nsContentUtils::GetAncestorsAndOffsets(endParent->AsDOMNode(), endOffset, |
| |
1229 &mEndNodes, &mEndOffsets); |
| |
1230 |
| |
1231 nsIContent* firstCandidate = nullptr; |
| |
1232 nsIContent* lastCandidate = nullptr; |
| |
1233 |
| |
1234 // find first node in range |
| |
1235 int32_t offset = mRange->StartOffset(); |
| |
1236 |
| |
1237 nsINode* node; |
| |
1238 if (!startParent->GetChildCount()) { |
| |
1239 // no children, start at the node itself |
| |
1240 node = startParent; |
| |
1241 } else { |
| |
1242 nsIContent* child = startParent->GetChildAt(offset); |
| |
1243 if (!child) { |
| |
1244 // offset after last child |
| |
1245 node = startParent; |
| |
1246 } else { |
| |
1247 firstCandidate = child; |
| |
1248 } |
| |
1249 } |
| |
1250 |
| |
1251 if (!firstCandidate) { |
| |
1252 // then firstCandidate is next node after node |
| |
1253 firstCandidate = GetNextSibling(node); |
| |
1254 |
| |
1255 if (!firstCandidate) { |
| |
1256 MakeEmpty(); |
| |
1257 return NS_OK; |
| |
1258 } |
| |
1259 } |
| |
1260 |
| |
1261 firstCandidate = GetDeepFirstChild(firstCandidate); |
| |
1262 |
| |
1263 // confirm that this first possible contained node is indeed contained. Else |
| |
1264 // we have a range that does not fully contain any node. |
| |
1265 |
| |
1266 bool nodeBefore, nodeAfter; |
| |
1267 MOZ_ALWAYS_TRUE(NS_SUCCEEDED( |
| |
1268 nsRange::CompareNodeToRange(firstCandidate, mRange, &nodeBefore, &nodeAfter))); |
| |
1269 |
| |
1270 if (nodeBefore || nodeAfter) { |
| |
1271 MakeEmpty(); |
| |
1272 return NS_OK; |
| |
1273 } |
| |
1274 |
| |
1275 // cool, we have the first node in the range. Now we walk up its ancestors |
| |
1276 // to find the most senior that is still in the range. That's the real first |
| |
1277 // node. |
| |
1278 mFirst = GetTopAncestorInRange(firstCandidate); |
| |
1279 |
| |
1280 // now to find the last node |
| |
1281 offset = mRange->EndOffset(); |
| |
1282 int32_t numChildren = endParent->GetChildCount(); |
| |
1283 |
| |
1284 if (offset > numChildren) { |
| |
1285 // Can happen for text nodes |
| |
1286 offset = numChildren; |
| |
1287 } |
| |
1288 if (!offset || !numChildren) { |
| |
1289 node = endParent; |
| |
1290 } else { |
| |
1291 lastCandidate = endParent->GetChildAt(--offset); |
| |
1292 NS_ASSERTION(lastCandidate, |
| |
1293 "tree traversal trouble in nsContentSubtreeIterator::Init"); |
| |
1294 } |
| |
1295 |
| |
1296 if (!lastCandidate) { |
| |
1297 // then lastCandidate is prev node before node |
| |
1298 lastCandidate = GetPrevSibling(node); |
| |
1299 } |
| |
1300 |
| |
1301 if (!lastCandidate) { |
| |
1302 MakeEmpty(); |
| |
1303 return NS_OK; |
| |
1304 } |
| |
1305 |
| |
1306 lastCandidate = GetDeepLastChild(lastCandidate); |
| |
1307 |
| |
1308 // confirm that this last possible contained node is indeed contained. Else |
| |
1309 // we have a range that does not fully contain any node. |
| |
1310 |
| |
1311 MOZ_ALWAYS_TRUE(NS_SUCCEEDED( |
| |
1312 nsRange::CompareNodeToRange(lastCandidate, mRange, &nodeBefore, &nodeAfter))); |
| |
1313 |
| |
1314 if (nodeBefore || nodeAfter) { |
| |
1315 MakeEmpty(); |
| |
1316 return NS_OK; |
| |
1317 } |
| |
1318 |
| |
1319 // cool, we have the last node in the range. Now we walk up its ancestors to |
| |
1320 // find the most senior that is still in the range. That's the real first |
| |
1321 // node. |
| |
1322 mLast = GetTopAncestorInRange(lastCandidate); |
| |
1323 |
| |
1324 mCurNode = mFirst; |
| |
1325 |
| |
1326 return NS_OK; |
| |
1327 } |
| |
1328 |
| |
1329 /**************************************************************** |
| |
1330 * nsContentSubtreeIterator overrides of ContentIterator routines |
| |
1331 ****************************************************************/ |
| |
1332 |
| |
1333 // we can't call PositionAt in a subtree iterator... |
| |
1334 void |
| |
1335 nsContentSubtreeIterator::First() |
| |
1336 { |
| |
1337 mIsDone = mFirst == nullptr; |
| |
1338 |
| |
1339 mCurNode = mFirst; |
| |
1340 } |
| |
1341 |
| |
1342 // we can't call PositionAt in a subtree iterator... |
| |
1343 void |
| |
1344 nsContentSubtreeIterator::Last() |
| |
1345 { |
| |
1346 mIsDone = mLast == nullptr; |
| |
1347 |
| |
1348 mCurNode = mLast; |
| |
1349 } |
| |
1350 |
| |
1351 |
| |
1352 void |
| |
1353 nsContentSubtreeIterator::Next() |
| |
1354 { |
| |
1355 if (mIsDone || !mCurNode) { |
| |
1356 return; |
| |
1357 } |
| |
1358 |
| |
1359 if (mCurNode == mLast) { |
| |
1360 mIsDone = true; |
| |
1361 return; |
| |
1362 } |
| |
1363 |
| |
1364 nsINode* nextNode = GetNextSibling(mCurNode); |
| |
1365 NS_ASSERTION(nextNode, "No next sibling!?! This could mean deadlock!"); |
| |
1366 |
| |
1367 int32_t i = mEndNodes.IndexOf(nextNode); |
| |
1368 while (i != -1) { |
| |
1369 // as long as we are finding ancestors of the endpoint of the range, |
| |
1370 // dive down into their children |
| |
1371 nextNode = nextNode->GetFirstChild(); |
| |
1372 NS_ASSERTION(nextNode, "Iterator error, expected a child node!"); |
| |
1373 |
| |
1374 // should be impossible to get a null pointer. If we went all the way |
| |
1375 // down the child chain to the bottom without finding an interior node, |
| |
1376 // then the previous node should have been the last, which was |
| |
1377 // was tested at top of routine. |
| |
1378 i = mEndNodes.IndexOf(nextNode); |
| |
1379 } |
| |
1380 |
| |
1381 mCurNode = nextNode; |
| |
1382 |
| |
1383 // This shouldn't be needed, but since our selection code can put us |
| |
1384 // in a situation where mLast is in generated content, we need this |
| |
1385 // to stop the iterator when we've walked past past the last node! |
| |
1386 mIsDone = mCurNode == nullptr; |
| |
1387 } |
| |
1388 |
| |
1389 |
| |
1390 void |
| |
1391 nsContentSubtreeIterator::Prev() |
| |
1392 { |
| |
1393 // Prev should be optimized to use the mStartNodes, just as Next |
| |
1394 // uses mEndNodes. |
| |
1395 if (mIsDone || !mCurNode) { |
| |
1396 return; |
| |
1397 } |
| |
1398 |
| |
1399 if (mCurNode == mFirst) { |
| |
1400 mIsDone = true; |
| |
1401 return; |
| |
1402 } |
| |
1403 |
| |
1404 // If any of these function calls return null, so will all succeeding ones, |
| |
1405 // so mCurNode will wind up set to null. |
| |
1406 nsINode* prevNode = GetDeepFirstChild(mCurNode); |
| |
1407 |
| |
1408 prevNode = PrevNode(prevNode); |
| |
1409 |
| |
1410 prevNode = GetDeepLastChild(prevNode); |
| |
1411 |
| |
1412 mCurNode = GetTopAncestorInRange(prevNode); |
| |
1413 |
| |
1414 // This shouldn't be needed, but since our selection code can put us |
| |
1415 // in a situation where mFirst is in generated content, we need this |
| |
1416 // to stop the iterator when we've walked past past the first node! |
| |
1417 mIsDone = mCurNode == nullptr; |
| |
1418 } |
| |
1419 |
| |
1420 |
| |
1421 nsresult |
| |
1422 nsContentSubtreeIterator::PositionAt(nsINode* aCurNode) |
| |
1423 { |
| |
1424 NS_ERROR("Not implemented!"); |
| |
1425 |
| |
1426 return NS_ERROR_NOT_IMPLEMENTED; |
| |
1427 } |
| |
1428 |
| |
1429 /**************************************************************** |
| |
1430 * nsContentSubtreeIterator helper routines |
| |
1431 ****************************************************************/ |
| |
1432 |
| |
1433 nsIContent* |
| |
1434 nsContentSubtreeIterator::GetTopAncestorInRange(nsINode* aNode) |
| |
1435 { |
| |
1436 if (!aNode || !aNode->GetParentNode()) { |
| |
1437 return nullptr; |
| |
1438 } |
| |
1439 |
| |
1440 // aNode has a parent, so it must be content. |
| |
1441 nsIContent* content = aNode->AsContent(); |
| |
1442 |
| |
1443 // sanity check: aNode is itself in the range |
| |
1444 bool nodeBefore, nodeAfter; |
| |
1445 nsresult res = nsRange::CompareNodeToRange(aNode, mRange, |
| |
1446 &nodeBefore, &nodeAfter); |
| |
1447 NS_ASSERTION(NS_SUCCEEDED(res) && !nodeBefore && !nodeAfter, |
| |
1448 "aNode isn't in mRange, or something else weird happened"); |
| |
1449 if (NS_FAILED(res) || nodeBefore || nodeAfter) { |
| |
1450 return nullptr; |
| |
1451 } |
| |
1452 |
| |
1453 while (content) { |
| |
1454 nsIContent* parent = content->GetParent(); |
| |
1455 // content always has a parent. If its parent is the root, however -- |
| |
1456 // i.e., either it's not content, or it is content but its own parent is |
| |
1457 // null -- then we're finished, since we don't go up to the root. |
| |
1458 // |
| |
1459 // We have to special-case this because CompareNodeToRange treats the root |
| |
1460 // node differently -- see bug 765205. |
| |
1461 if (!parent || !parent->GetParentNode()) { |
| |
1462 return content; |
| |
1463 } |
| |
1464 MOZ_ALWAYS_TRUE(NS_SUCCEEDED( |
| |
1465 nsRange::CompareNodeToRange(parent, mRange, &nodeBefore, &nodeAfter))); |
| |
1466 |
| |
1467 if (nodeBefore || nodeAfter) { |
| |
1468 return content; |
| |
1469 } |
| |
1470 content = parent; |
| |
1471 } |
| |
1472 |
| |
1473 MOZ_CRASH("This should only be possible if aNode was null"); |
| |
1474 } |