|
1 // Copyright 2010 the V8 project authors. All rights reserved. |
|
2 // Redistribution and use in source and binary forms, with or without |
|
3 // modification, are permitted provided that the following conditions are |
|
4 // met: |
|
5 // |
|
6 // * Redistributions of source code must retain the above copyright |
|
7 // notice, this list of conditions and the following disclaimer. |
|
8 // * Redistributions in binary form must reproduce the above |
|
9 // copyright notice, this list of conditions and the following |
|
10 // disclaimer in the documentation and/or other materials provided |
|
11 // with the distribution. |
|
12 // * Neither the name of Google Inc. nor the names of its |
|
13 // contributors may be used to endorse or promote products derived |
|
14 // from this software without specific prior written permission. |
|
15 // |
|
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
27 |
|
28 #include <math.h> |
|
29 |
|
30 #include "fixed-dtoa.h" |
|
31 #include "ieee.h" |
|
32 |
|
33 namespace double_conversion { |
|
34 |
|
35 // Represents a 128bit type. This class should be replaced by a native type on |
|
36 // platforms that support 128bit integers. |
|
37 class UInt128 { |
|
38 public: |
|
39 UInt128() : high_bits_(0), low_bits_(0) { } |
|
40 UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { } |
|
41 |
|
42 void Multiply(uint32_t multiplicand) { |
|
43 uint64_t accumulator; |
|
44 |
|
45 accumulator = (low_bits_ & kMask32) * multiplicand; |
|
46 uint32_t part = static_cast<uint32_t>(accumulator & kMask32); |
|
47 accumulator >>= 32; |
|
48 accumulator = accumulator + (low_bits_ >> 32) * multiplicand; |
|
49 low_bits_ = (accumulator << 32) + part; |
|
50 accumulator >>= 32; |
|
51 accumulator = accumulator + (high_bits_ & kMask32) * multiplicand; |
|
52 part = static_cast<uint32_t>(accumulator & kMask32); |
|
53 accumulator >>= 32; |
|
54 accumulator = accumulator + (high_bits_ >> 32) * multiplicand; |
|
55 high_bits_ = (accumulator << 32) + part; |
|
56 ASSERT((accumulator >> 32) == 0); |
|
57 } |
|
58 |
|
59 void Shift(int shift_amount) { |
|
60 ASSERT(-64 <= shift_amount && shift_amount <= 64); |
|
61 if (shift_amount == 0) { |
|
62 return; |
|
63 } else if (shift_amount == -64) { |
|
64 high_bits_ = low_bits_; |
|
65 low_bits_ = 0; |
|
66 } else if (shift_amount == 64) { |
|
67 low_bits_ = high_bits_; |
|
68 high_bits_ = 0; |
|
69 } else if (shift_amount <= 0) { |
|
70 high_bits_ <<= -shift_amount; |
|
71 high_bits_ += low_bits_ >> (64 + shift_amount); |
|
72 low_bits_ <<= -shift_amount; |
|
73 } else { |
|
74 low_bits_ >>= shift_amount; |
|
75 low_bits_ += high_bits_ << (64 - shift_amount); |
|
76 high_bits_ >>= shift_amount; |
|
77 } |
|
78 } |
|
79 |
|
80 // Modifies *this to *this MOD (2^power). |
|
81 // Returns *this DIV (2^power). |
|
82 int DivModPowerOf2(int power) { |
|
83 if (power >= 64) { |
|
84 int result = static_cast<int>(high_bits_ >> (power - 64)); |
|
85 high_bits_ -= static_cast<uint64_t>(result) << (power - 64); |
|
86 return result; |
|
87 } else { |
|
88 uint64_t part_low = low_bits_ >> power; |
|
89 uint64_t part_high = high_bits_ << (64 - power); |
|
90 int result = static_cast<int>(part_low + part_high); |
|
91 high_bits_ = 0; |
|
92 low_bits_ -= part_low << power; |
|
93 return result; |
|
94 } |
|
95 } |
|
96 |
|
97 bool IsZero() const { |
|
98 return high_bits_ == 0 && low_bits_ == 0; |
|
99 } |
|
100 |
|
101 int BitAt(int position) { |
|
102 if (position >= 64) { |
|
103 return static_cast<int>(high_bits_ >> (position - 64)) & 1; |
|
104 } else { |
|
105 return static_cast<int>(low_bits_ >> position) & 1; |
|
106 } |
|
107 } |
|
108 |
|
109 private: |
|
110 static const uint64_t kMask32 = 0xFFFFFFFF; |
|
111 // Value == (high_bits_ << 64) + low_bits_ |
|
112 uint64_t high_bits_; |
|
113 uint64_t low_bits_; |
|
114 }; |
|
115 |
|
116 |
|
117 static const int kDoubleSignificandSize = 53; // Includes the hidden bit. |
|
118 |
|
119 |
|
120 static void FillDigits32FixedLength(uint32_t number, int requested_length, |
|
121 Vector<char> buffer, int* length) { |
|
122 for (int i = requested_length - 1; i >= 0; --i) { |
|
123 buffer[(*length) + i] = '0' + number % 10; |
|
124 number /= 10; |
|
125 } |
|
126 *length += requested_length; |
|
127 } |
|
128 |
|
129 |
|
130 static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) { |
|
131 int number_length = 0; |
|
132 // We fill the digits in reverse order and exchange them afterwards. |
|
133 while (number != 0) { |
|
134 int digit = number % 10; |
|
135 number /= 10; |
|
136 buffer[(*length) + number_length] = '0' + digit; |
|
137 number_length++; |
|
138 } |
|
139 // Exchange the digits. |
|
140 int i = *length; |
|
141 int j = *length + number_length - 1; |
|
142 while (i < j) { |
|
143 char tmp = buffer[i]; |
|
144 buffer[i] = buffer[j]; |
|
145 buffer[j] = tmp; |
|
146 i++; |
|
147 j--; |
|
148 } |
|
149 *length += number_length; |
|
150 } |
|
151 |
|
152 |
|
153 static void FillDigits64FixedLength(uint64_t number, int requested_length, |
|
154 Vector<char> buffer, int* length) { |
|
155 const uint32_t kTen7 = 10000000; |
|
156 // For efficiency cut the number into 3 uint32_t parts, and print those. |
|
157 uint32_t part2 = static_cast<uint32_t>(number % kTen7); |
|
158 number /= kTen7; |
|
159 uint32_t part1 = static_cast<uint32_t>(number % kTen7); |
|
160 uint32_t part0 = static_cast<uint32_t>(number / kTen7); |
|
161 |
|
162 FillDigits32FixedLength(part0, 3, buffer, length); |
|
163 FillDigits32FixedLength(part1, 7, buffer, length); |
|
164 FillDigits32FixedLength(part2, 7, buffer, length); |
|
165 } |
|
166 |
|
167 |
|
168 static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) { |
|
169 const uint32_t kTen7 = 10000000; |
|
170 // For efficiency cut the number into 3 uint32_t parts, and print those. |
|
171 uint32_t part2 = static_cast<uint32_t>(number % kTen7); |
|
172 number /= kTen7; |
|
173 uint32_t part1 = static_cast<uint32_t>(number % kTen7); |
|
174 uint32_t part0 = static_cast<uint32_t>(number / kTen7); |
|
175 |
|
176 if (part0 != 0) { |
|
177 FillDigits32(part0, buffer, length); |
|
178 FillDigits32FixedLength(part1, 7, buffer, length); |
|
179 FillDigits32FixedLength(part2, 7, buffer, length); |
|
180 } else if (part1 != 0) { |
|
181 FillDigits32(part1, buffer, length); |
|
182 FillDigits32FixedLength(part2, 7, buffer, length); |
|
183 } else { |
|
184 FillDigits32(part2, buffer, length); |
|
185 } |
|
186 } |
|
187 |
|
188 |
|
189 static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) { |
|
190 // An empty buffer represents 0. |
|
191 if (*length == 0) { |
|
192 buffer[0] = '1'; |
|
193 *decimal_point = 1; |
|
194 *length = 1; |
|
195 return; |
|
196 } |
|
197 // Round the last digit until we either have a digit that was not '9' or until |
|
198 // we reached the first digit. |
|
199 buffer[(*length) - 1]++; |
|
200 for (int i = (*length) - 1; i > 0; --i) { |
|
201 if (buffer[i] != '0' + 10) { |
|
202 return; |
|
203 } |
|
204 buffer[i] = '0'; |
|
205 buffer[i - 1]++; |
|
206 } |
|
207 // If the first digit is now '0' + 10, we would need to set it to '0' and add |
|
208 // a '1' in front. However we reach the first digit only if all following |
|
209 // digits had been '9' before rounding up. Now all trailing digits are '0' and |
|
210 // we simply switch the first digit to '1' and update the decimal-point |
|
211 // (indicating that the point is now one digit to the right). |
|
212 if (buffer[0] == '0' + 10) { |
|
213 buffer[0] = '1'; |
|
214 (*decimal_point)++; |
|
215 } |
|
216 } |
|
217 |
|
218 |
|
219 // The given fractionals number represents a fixed-point number with binary |
|
220 // point at bit (-exponent). |
|
221 // Preconditions: |
|
222 // -128 <= exponent <= 0. |
|
223 // 0 <= fractionals * 2^exponent < 1 |
|
224 // The buffer holds the result. |
|
225 // The function will round its result. During the rounding-process digits not |
|
226 // generated by this function might be updated, and the decimal-point variable |
|
227 // might be updated. If this function generates the digits 99 and the buffer |
|
228 // already contained "199" (thus yielding a buffer of "19999") then a |
|
229 // rounding-up will change the contents of the buffer to "20000". |
|
230 static void FillFractionals(uint64_t fractionals, int exponent, |
|
231 int fractional_count, Vector<char> buffer, |
|
232 int* length, int* decimal_point) { |
|
233 ASSERT(-128 <= exponent && exponent <= 0); |
|
234 // 'fractionals' is a fixed-point number, with binary point at bit |
|
235 // (-exponent). Inside the function the non-converted remainder of fractionals |
|
236 // is a fixed-point number, with binary point at bit 'point'. |
|
237 if (-exponent <= 64) { |
|
238 // One 64 bit number is sufficient. |
|
239 ASSERT(fractionals >> 56 == 0); |
|
240 int point = -exponent; |
|
241 for (int i = 0; i < fractional_count; ++i) { |
|
242 if (fractionals == 0) break; |
|
243 // Instead of multiplying by 10 we multiply by 5 and adjust the point |
|
244 // location. This way the fractionals variable will not overflow. |
|
245 // Invariant at the beginning of the loop: fractionals < 2^point. |
|
246 // Initially we have: point <= 64 and fractionals < 2^56 |
|
247 // After each iteration the point is decremented by one. |
|
248 // Note that 5^3 = 125 < 128 = 2^7. |
|
249 // Therefore three iterations of this loop will not overflow fractionals |
|
250 // (even without the subtraction at the end of the loop body). At this |
|
251 // time point will satisfy point <= 61 and therefore fractionals < 2^point |
|
252 // and any further multiplication of fractionals by 5 will not overflow. |
|
253 fractionals *= 5; |
|
254 point--; |
|
255 int digit = static_cast<int>(fractionals >> point); |
|
256 buffer[*length] = '0' + digit; |
|
257 (*length)++; |
|
258 fractionals -= static_cast<uint64_t>(digit) << point; |
|
259 } |
|
260 // If the first bit after the point is set we have to round up. |
|
261 if (((fractionals >> (point - 1)) & 1) == 1) { |
|
262 RoundUp(buffer, length, decimal_point); |
|
263 } |
|
264 } else { // We need 128 bits. |
|
265 ASSERT(64 < -exponent && -exponent <= 128); |
|
266 UInt128 fractionals128 = UInt128(fractionals, 0); |
|
267 fractionals128.Shift(-exponent - 64); |
|
268 int point = 128; |
|
269 for (int i = 0; i < fractional_count; ++i) { |
|
270 if (fractionals128.IsZero()) break; |
|
271 // As before: instead of multiplying by 10 we multiply by 5 and adjust the |
|
272 // point location. |
|
273 // This multiplication will not overflow for the same reasons as before. |
|
274 fractionals128.Multiply(5); |
|
275 point--; |
|
276 int digit = fractionals128.DivModPowerOf2(point); |
|
277 buffer[*length] = '0' + digit; |
|
278 (*length)++; |
|
279 } |
|
280 if (fractionals128.BitAt(point - 1) == 1) { |
|
281 RoundUp(buffer, length, decimal_point); |
|
282 } |
|
283 } |
|
284 } |
|
285 |
|
286 |
|
287 // Removes leading and trailing zeros. |
|
288 // If leading zeros are removed then the decimal point position is adjusted. |
|
289 static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) { |
|
290 while (*length > 0 && buffer[(*length) - 1] == '0') { |
|
291 (*length)--; |
|
292 } |
|
293 int first_non_zero = 0; |
|
294 while (first_non_zero < *length && buffer[first_non_zero] == '0') { |
|
295 first_non_zero++; |
|
296 } |
|
297 if (first_non_zero != 0) { |
|
298 for (int i = first_non_zero; i < *length; ++i) { |
|
299 buffer[i - first_non_zero] = buffer[i]; |
|
300 } |
|
301 *length -= first_non_zero; |
|
302 *decimal_point -= first_non_zero; |
|
303 } |
|
304 } |
|
305 |
|
306 |
|
307 bool FastFixedDtoa(double v, |
|
308 int fractional_count, |
|
309 Vector<char> buffer, |
|
310 int* length, |
|
311 int* decimal_point) { |
|
312 const uint32_t kMaxUInt32 = 0xFFFFFFFF; |
|
313 uint64_t significand = Double(v).Significand(); |
|
314 int exponent = Double(v).Exponent(); |
|
315 // v = significand * 2^exponent (with significand a 53bit integer). |
|
316 // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we |
|
317 // don't know how to compute the representation. 2^73 ~= 9.5*10^21. |
|
318 // If necessary this limit could probably be increased, but we don't need |
|
319 // more. |
|
320 if (exponent > 20) return false; |
|
321 if (fractional_count > 20) return false; |
|
322 *length = 0; |
|
323 // At most kDoubleSignificandSize bits of the significand are non-zero. |
|
324 // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero |
|
325 // bits: 0..11*..0xxx..53*..xx |
|
326 if (exponent + kDoubleSignificandSize > 64) { |
|
327 // The exponent must be > 11. |
|
328 // |
|
329 // We know that v = significand * 2^exponent. |
|
330 // And the exponent > 11. |
|
331 // We simplify the task by dividing v by 10^17. |
|
332 // The quotient delivers the first digits, and the remainder fits into a 64 |
|
333 // bit number. |
|
334 // Dividing by 10^17 is equivalent to dividing by 5^17*2^17. |
|
335 const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5); // 5^17 |
|
336 uint64_t divisor = kFive17; |
|
337 int divisor_power = 17; |
|
338 uint64_t dividend = significand; |
|
339 uint32_t quotient; |
|
340 uint64_t remainder; |
|
341 // Let v = f * 2^e with f == significand and e == exponent. |
|
342 // Then need q (quotient) and r (remainder) as follows: |
|
343 // v = q * 10^17 + r |
|
344 // f * 2^e = q * 10^17 + r |
|
345 // f * 2^e = q * 5^17 * 2^17 + r |
|
346 // If e > 17 then |
|
347 // f * 2^(e-17) = q * 5^17 + r/2^17 |
|
348 // else |
|
349 // f = q * 5^17 * 2^(17-e) + r/2^e |
|
350 if (exponent > divisor_power) { |
|
351 // We only allow exponents of up to 20 and therefore (17 - e) <= 3 |
|
352 dividend <<= exponent - divisor_power; |
|
353 quotient = static_cast<uint32_t>(dividend / divisor); |
|
354 remainder = (dividend % divisor) << divisor_power; |
|
355 } else { |
|
356 divisor <<= divisor_power - exponent; |
|
357 quotient = static_cast<uint32_t>(dividend / divisor); |
|
358 remainder = (dividend % divisor) << exponent; |
|
359 } |
|
360 FillDigits32(quotient, buffer, length); |
|
361 FillDigits64FixedLength(remainder, divisor_power, buffer, length); |
|
362 *decimal_point = *length; |
|
363 } else if (exponent >= 0) { |
|
364 // 0 <= exponent <= 11 |
|
365 significand <<= exponent; |
|
366 FillDigits64(significand, buffer, length); |
|
367 *decimal_point = *length; |
|
368 } else if (exponent > -kDoubleSignificandSize) { |
|
369 // We have to cut the number. |
|
370 uint64_t integrals = significand >> -exponent; |
|
371 uint64_t fractionals = significand - (integrals << -exponent); |
|
372 if (integrals > kMaxUInt32) { |
|
373 FillDigits64(integrals, buffer, length); |
|
374 } else { |
|
375 FillDigits32(static_cast<uint32_t>(integrals), buffer, length); |
|
376 } |
|
377 *decimal_point = *length; |
|
378 FillFractionals(fractionals, exponent, fractional_count, |
|
379 buffer, length, decimal_point); |
|
380 } else if (exponent < -128) { |
|
381 // This configuration (with at most 20 digits) means that all digits must be |
|
382 // 0. |
|
383 ASSERT(fractional_count <= 20); |
|
384 buffer[0] = '\0'; |
|
385 *length = 0; |
|
386 *decimal_point = -fractional_count; |
|
387 } else { |
|
388 *decimal_point = 0; |
|
389 FillFractionals(significand, exponent, fractional_count, |
|
390 buffer, length, decimal_point); |
|
391 } |
|
392 TrimZeros(buffer, length, decimal_point); |
|
393 buffer[*length] = '\0'; |
|
394 if ((*length) == 0) { |
|
395 // The string is empty and the decimal_point thus has no importance. Mimick |
|
396 // Gay's dtoa and and set it to -fractional_count. |
|
397 *decimal_point = -fractional_count; |
|
398 } |
|
399 return true; |
|
400 } |
|
401 |
|
402 } // namespace double_conversion |