|
1 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
2 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
4 |
|
5 /* |
|
6 * Encryption/decryption routines for CMS implementation, none of which are exported. |
|
7 */ |
|
8 |
|
9 #include "cmslocal.h" |
|
10 |
|
11 #include "secoid.h" |
|
12 #include "secitem.h" |
|
13 #include "pk11func.h" |
|
14 #include "secerr.h" |
|
15 #include "secpkcs5.h" |
|
16 |
|
17 /* |
|
18 * ------------------------------------------------------------------- |
|
19 * Cipher stuff. |
|
20 */ |
|
21 |
|
22 typedef SECStatus (*nss_cms_cipher_function) (void *, unsigned char *, unsigned int *, |
|
23 unsigned int, const unsigned char *, unsigned int); |
|
24 typedef SECStatus (*nss_cms_cipher_destroy) (void *, PRBool); |
|
25 |
|
26 #define BLOCK_SIZE 4096 |
|
27 |
|
28 struct NSSCMSCipherContextStr { |
|
29 void * cx; /* PK11 cipher context */ |
|
30 nss_cms_cipher_function doit; |
|
31 nss_cms_cipher_destroy destroy; |
|
32 PRBool encrypt; /* encrypt / decrypt switch */ |
|
33 int block_size; /* block & pad sizes for cipher */ |
|
34 int pad_size; |
|
35 int pending_count; /* pending data (not yet en/decrypted */ |
|
36 unsigned char pending_buf[BLOCK_SIZE];/* because of blocking */ |
|
37 }; |
|
38 |
|
39 /* |
|
40 * NSS_CMSCipherContext_StartDecrypt - create a cipher context to do decryption |
|
41 * based on the given bulk encryption key and algorithm identifier (which |
|
42 * may include an iv). |
|
43 * |
|
44 * XXX Once both are working, it might be nice to combine this and the |
|
45 * function below (for starting up encryption) into one routine, and just |
|
46 * have two simple cover functions which call it. |
|
47 */ |
|
48 NSSCMSCipherContext * |
|
49 NSS_CMSCipherContext_StartDecrypt(PK11SymKey *key, SECAlgorithmID *algid) |
|
50 { |
|
51 NSSCMSCipherContext *cc; |
|
52 void *ciphercx; |
|
53 CK_MECHANISM_TYPE cryptoMechType; |
|
54 PK11SlotInfo *slot; |
|
55 SECOidTag algtag; |
|
56 SECItem *param = NULL; |
|
57 |
|
58 algtag = SECOID_GetAlgorithmTag(algid); |
|
59 |
|
60 /* set param and mechanism */ |
|
61 if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) { |
|
62 SECItem *pwitem; |
|
63 |
|
64 pwitem = PK11_GetSymKeyUserData(key); |
|
65 if (!pwitem) |
|
66 return NULL; |
|
67 |
|
68 cryptoMechType = PK11_GetPBECryptoMechanism(algid, ¶m, pwitem); |
|
69 if (cryptoMechType == CKM_INVALID_MECHANISM) { |
|
70 SECITEM_FreeItem(param,PR_TRUE); |
|
71 return NULL; |
|
72 } |
|
73 |
|
74 } else { |
|
75 cryptoMechType = PK11_AlgtagToMechanism(algtag); |
|
76 if ((param = PK11_ParamFromAlgid(algid)) == NULL) |
|
77 return NULL; |
|
78 } |
|
79 |
|
80 cc = (NSSCMSCipherContext *)PORT_ZAlloc(sizeof(NSSCMSCipherContext)); |
|
81 if (cc == NULL) { |
|
82 SECITEM_FreeItem(param,PR_TRUE); |
|
83 return NULL; |
|
84 } |
|
85 |
|
86 /* figure out pad and block sizes */ |
|
87 cc->pad_size = PK11_GetBlockSize(cryptoMechType, param); |
|
88 slot = PK11_GetSlotFromKey(key); |
|
89 cc->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : cc->pad_size; |
|
90 PK11_FreeSlot(slot); |
|
91 |
|
92 /* create PK11 cipher context */ |
|
93 ciphercx = PK11_CreateContextBySymKey(cryptoMechType, CKA_DECRYPT, |
|
94 key, param); |
|
95 SECITEM_FreeItem(param, PR_TRUE); |
|
96 if (ciphercx == NULL) { |
|
97 PORT_Free (cc); |
|
98 return NULL; |
|
99 } |
|
100 |
|
101 cc->cx = ciphercx; |
|
102 cc->doit = (nss_cms_cipher_function) PK11_CipherOp; |
|
103 cc->destroy = (nss_cms_cipher_destroy) PK11_DestroyContext; |
|
104 cc->encrypt = PR_FALSE; |
|
105 cc->pending_count = 0; |
|
106 |
|
107 return cc; |
|
108 } |
|
109 |
|
110 /* |
|
111 * NSS_CMSCipherContext_StartEncrypt - create a cipher object to do encryption, |
|
112 * based on the given bulk encryption key and algorithm tag. Fill in the |
|
113 * algorithm identifier (which may include an iv) appropriately. |
|
114 * |
|
115 * XXX Once both are working, it might be nice to combine this and the |
|
116 * function above (for starting up decryption) into one routine, and just |
|
117 * have two simple cover functions which call it. |
|
118 */ |
|
119 NSSCMSCipherContext * |
|
120 NSS_CMSCipherContext_StartEncrypt(PLArenaPool *poolp, PK11SymKey *key, SECAlgorithmID *algid) |
|
121 { |
|
122 NSSCMSCipherContext *cc; |
|
123 void *ciphercx; |
|
124 SECStatus rv; |
|
125 CK_MECHANISM_TYPE cryptoMechType; |
|
126 PK11SlotInfo *slot; |
|
127 SECItem *param = NULL; |
|
128 PRBool needToEncodeAlgid = PR_FALSE; |
|
129 SECOidTag algtag = SECOID_GetAlgorithmTag(algid); |
|
130 |
|
131 /* set param and mechanism */ |
|
132 if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) { |
|
133 SECItem *pwitem; |
|
134 |
|
135 pwitem = PK11_GetSymKeyUserData(key); |
|
136 if (!pwitem) |
|
137 return NULL; |
|
138 |
|
139 cryptoMechType = PK11_GetPBECryptoMechanism(algid, ¶m, pwitem); |
|
140 if (cryptoMechType == CKM_INVALID_MECHANISM) { |
|
141 SECITEM_FreeItem(param,PR_TRUE); |
|
142 return NULL; |
|
143 } |
|
144 } else { |
|
145 cryptoMechType = PK11_AlgtagToMechanism(algtag); |
|
146 if ((param = PK11_GenerateNewParam(cryptoMechType, key)) == NULL) |
|
147 return NULL; |
|
148 needToEncodeAlgid = PR_TRUE; |
|
149 } |
|
150 |
|
151 cc = (NSSCMSCipherContext *)PORT_ZAlloc(sizeof(NSSCMSCipherContext)); |
|
152 if (cc == NULL) { |
|
153 goto loser; |
|
154 } |
|
155 |
|
156 /* now find pad and block sizes for our mechanism */ |
|
157 cc->pad_size = PK11_GetBlockSize(cryptoMechType, param); |
|
158 slot = PK11_GetSlotFromKey(key); |
|
159 cc->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : cc->pad_size; |
|
160 PK11_FreeSlot(slot); |
|
161 |
|
162 /* and here we go, creating a PK11 cipher context */ |
|
163 ciphercx = PK11_CreateContextBySymKey(cryptoMechType, CKA_ENCRYPT, |
|
164 key, param); |
|
165 if (ciphercx == NULL) { |
|
166 PORT_Free(cc); |
|
167 cc = NULL; |
|
168 goto loser; |
|
169 } |
|
170 |
|
171 /* |
|
172 * These are placed after the CreateContextBySymKey() because some |
|
173 * mechanisms have to generate their IVs from their card (i.e. FORTEZZA). |
|
174 * Don't move it from here. |
|
175 * XXX is that right? the purpose of this is to get the correct algid |
|
176 * containing the IVs etc. for encoding. this means we need to set this up |
|
177 * BEFORE encoding the algid in the contentInfo, right? |
|
178 */ |
|
179 if (needToEncodeAlgid) { |
|
180 rv = PK11_ParamToAlgid(algtag, param, poolp, algid); |
|
181 if(rv != SECSuccess) { |
|
182 PORT_Free(cc); |
|
183 cc = NULL; |
|
184 goto loser; |
|
185 } |
|
186 } |
|
187 |
|
188 cc->cx = ciphercx; |
|
189 cc->doit = (nss_cms_cipher_function)PK11_CipherOp; |
|
190 cc->destroy = (nss_cms_cipher_destroy)PK11_DestroyContext; |
|
191 cc->encrypt = PR_TRUE; |
|
192 cc->pending_count = 0; |
|
193 |
|
194 loser: |
|
195 SECITEM_FreeItem(param, PR_TRUE); |
|
196 |
|
197 return cc; |
|
198 } |
|
199 |
|
200 void |
|
201 NSS_CMSCipherContext_Destroy(NSSCMSCipherContext *cc) |
|
202 { |
|
203 PORT_Assert(cc != NULL); |
|
204 if (cc == NULL) |
|
205 return; |
|
206 (*cc->destroy)(cc->cx, PR_TRUE); |
|
207 PORT_Free(cc); |
|
208 } |
|
209 |
|
210 /* |
|
211 * NSS_CMSCipherContext_DecryptLength - find the output length of the next call to decrypt. |
|
212 * |
|
213 * cc - the cipher context |
|
214 * input_len - number of bytes used as input |
|
215 * final - true if this is the final chunk of data |
|
216 * |
|
217 * Result can be used to perform memory allocations. Note that the amount |
|
218 * is exactly accurate only when not doing a block cipher or when final |
|
219 * is false, otherwise it is an upper bound on the amount because until |
|
220 * we see the data we do not know how many padding bytes there are |
|
221 * (always between 1 and bsize). |
|
222 * |
|
223 * Note that this can return zero, which does not mean that the decrypt |
|
224 * operation can be skipped! (It simply means that there are not enough |
|
225 * bytes to make up an entire block; the bytes will be reserved until |
|
226 * there are enough to encrypt/decrypt at least one block.) However, |
|
227 * if zero is returned it *does* mean that no output buffer need be |
|
228 * passed in to the subsequent decrypt operation, as no output bytes |
|
229 * will be stored. |
|
230 */ |
|
231 unsigned int |
|
232 NSS_CMSCipherContext_DecryptLength(NSSCMSCipherContext *cc, unsigned int input_len, PRBool final) |
|
233 { |
|
234 int blocks, block_size; |
|
235 |
|
236 PORT_Assert (! cc->encrypt); |
|
237 |
|
238 block_size = cc->block_size; |
|
239 |
|
240 /* |
|
241 * If this is not a block cipher, then we always have the same |
|
242 * number of output bytes as we had input bytes. |
|
243 */ |
|
244 if (block_size == 0) |
|
245 return input_len; |
|
246 |
|
247 /* |
|
248 * On the final call, we will always use up all of the pending |
|
249 * bytes plus all of the input bytes, *but*, there will be padding |
|
250 * at the end and we cannot predict how many bytes of padding we |
|
251 * will end up removing. The amount given here is actually known |
|
252 * to be at least 1 byte too long (because we know we will have |
|
253 * at least 1 byte of padding), but seemed clearer/better to me. |
|
254 */ |
|
255 if (final) |
|
256 return cc->pending_count + input_len; |
|
257 |
|
258 /* |
|
259 * Okay, this amount is exactly what we will output on the |
|
260 * next cipher operation. We will always hang onto the last |
|
261 * 1 - block_size bytes for non-final operations. That is, |
|
262 * we will do as many complete blocks as we can *except* the |
|
263 * last block (complete or partial). (This is because until |
|
264 * we know we are at the end, we cannot know when to interpret |
|
265 * and removing the padding byte(s), which are guaranteed to |
|
266 * be there.) |
|
267 */ |
|
268 blocks = (cc->pending_count + input_len - 1) / block_size; |
|
269 return blocks * block_size; |
|
270 } |
|
271 |
|
272 /* |
|
273 * NSS_CMSCipherContext_EncryptLength - find the output length of the next call to encrypt. |
|
274 * |
|
275 * cc - the cipher context |
|
276 * input_len - number of bytes used as input |
|
277 * final - true if this is the final chunk of data |
|
278 * |
|
279 * Result can be used to perform memory allocations. |
|
280 * |
|
281 * Note that this can return zero, which does not mean that the encrypt |
|
282 * operation can be skipped! (It simply means that there are not enough |
|
283 * bytes to make up an entire block; the bytes will be reserved until |
|
284 * there are enough to encrypt/decrypt at least one block.) However, |
|
285 * if zero is returned it *does* mean that no output buffer need be |
|
286 * passed in to the subsequent encrypt operation, as no output bytes |
|
287 * will be stored. |
|
288 */ |
|
289 unsigned int |
|
290 NSS_CMSCipherContext_EncryptLength(NSSCMSCipherContext *cc, unsigned int input_len, PRBool final) |
|
291 { |
|
292 int blocks, block_size; |
|
293 int pad_size; |
|
294 |
|
295 PORT_Assert (cc->encrypt); |
|
296 |
|
297 block_size = cc->block_size; |
|
298 pad_size = cc->pad_size; |
|
299 |
|
300 /* |
|
301 * If this is not a block cipher, then we always have the same |
|
302 * number of output bytes as we had input bytes. |
|
303 */ |
|
304 if (block_size == 0) |
|
305 return input_len; |
|
306 |
|
307 /* |
|
308 * On the final call, we only send out what we need for |
|
309 * remaining bytes plus the padding. (There is always padding, |
|
310 * so even if we have an exact number of blocks as input, we |
|
311 * will add another full block that is just padding.) |
|
312 */ |
|
313 if (final) { |
|
314 if (pad_size == 0) { |
|
315 return cc->pending_count + input_len; |
|
316 } else { |
|
317 blocks = (cc->pending_count + input_len) / pad_size; |
|
318 blocks++; |
|
319 return blocks*pad_size; |
|
320 } |
|
321 } |
|
322 |
|
323 /* |
|
324 * Now, count the number of complete blocks of data we have. |
|
325 */ |
|
326 blocks = (cc->pending_count + input_len) / block_size; |
|
327 |
|
328 |
|
329 return blocks * block_size; |
|
330 } |
|
331 |
|
332 |
|
333 /* |
|
334 * NSS_CMSCipherContext_Decrypt - do the decryption |
|
335 * |
|
336 * cc - the cipher context |
|
337 * output - buffer for decrypted result bytes |
|
338 * output_len_p - number of bytes in output |
|
339 * max_output_len - upper bound on bytes to put into output |
|
340 * input - pointer to input bytes |
|
341 * input_len - number of input bytes |
|
342 * final - true if this is the final chunk of data |
|
343 * |
|
344 * Decrypts a given length of input buffer (starting at "input" and |
|
345 * containing "input_len" bytes), placing the decrypted bytes in |
|
346 * "output" and storing the output length in "*output_len_p". |
|
347 * "cc" is the return value from NSS_CMSCipher_StartDecrypt. |
|
348 * When "final" is true, this is the last of the data to be decrypted. |
|
349 * |
|
350 * This is much more complicated than it sounds when the cipher is |
|
351 * a block-type, meaning that the decryption function will only |
|
352 * operate on whole blocks. But our caller is operating stream-wise, |
|
353 * and can pass in any number of bytes. So we need to keep track |
|
354 * of block boundaries. We save excess bytes between calls in "cc". |
|
355 * We also need to determine which bytes are padding, and remove |
|
356 * them from the output. We can only do this step when we know we |
|
357 * have the final block of data. PKCS #7 specifies that the padding |
|
358 * used for a block cipher is a string of bytes, each of whose value is |
|
359 * the same as the length of the padding, and that all data is padded. |
|
360 * (Even data that starts out with an exact multiple of blocks gets |
|
361 * added to it another block, all of which is padding.) |
|
362 */ |
|
363 SECStatus |
|
364 NSS_CMSCipherContext_Decrypt(NSSCMSCipherContext *cc, unsigned char *output, |
|
365 unsigned int *output_len_p, unsigned int max_output_len, |
|
366 const unsigned char *input, unsigned int input_len, |
|
367 PRBool final) |
|
368 { |
|
369 int blocks, bsize, pcount, padsize; |
|
370 unsigned int max_needed, ifraglen, ofraglen, output_len; |
|
371 unsigned char *pbuf; |
|
372 SECStatus rv; |
|
373 |
|
374 PORT_Assert (! cc->encrypt); |
|
375 |
|
376 /* |
|
377 * Check that we have enough room for the output. Our caller should |
|
378 * already handle this; failure is really an internal error (i.e. bug). |
|
379 */ |
|
380 max_needed = NSS_CMSCipherContext_DecryptLength(cc, input_len, final); |
|
381 PORT_Assert (max_output_len >= max_needed); |
|
382 if (max_output_len < max_needed) { |
|
383 /* PORT_SetError (XXX); */ |
|
384 return SECFailure; |
|
385 } |
|
386 |
|
387 /* |
|
388 * hardware encryption does not like small decryption sizes here, so we |
|
389 * allow both blocking and padding. |
|
390 */ |
|
391 bsize = cc->block_size; |
|
392 padsize = cc->pad_size; |
|
393 |
|
394 /* |
|
395 * When no blocking or padding work to do, we can simply call the |
|
396 * cipher function and we are done. |
|
397 */ |
|
398 if (bsize == 0) { |
|
399 return (* cc->doit) (cc->cx, output, output_len_p, max_output_len, |
|
400 input, input_len); |
|
401 } |
|
402 |
|
403 pcount = cc->pending_count; |
|
404 pbuf = cc->pending_buf; |
|
405 |
|
406 output_len = 0; |
|
407 |
|
408 if (pcount) { |
|
409 /* |
|
410 * Try to fill in an entire block, starting with the bytes |
|
411 * we already have saved away. |
|
412 */ |
|
413 while (input_len && pcount < bsize) { |
|
414 pbuf[pcount++] = *input++; |
|
415 input_len--; |
|
416 } |
|
417 /* |
|
418 * If we have at most a whole block and this is not our last call, |
|
419 * then we are done for now. (We do not try to decrypt a lone |
|
420 * single block because we cannot interpret the padding bytes |
|
421 * until we know we are handling the very last block of all input.) |
|
422 */ |
|
423 if (input_len == 0 && !final) { |
|
424 cc->pending_count = pcount; |
|
425 if (output_len_p) |
|
426 *output_len_p = 0; |
|
427 return SECSuccess; |
|
428 } |
|
429 /* |
|
430 * Given the logic above, we expect to have a full block by now. |
|
431 * If we do not, there is something wrong, either with our own |
|
432 * logic or with (length of) the data given to us. |
|
433 */ |
|
434 if ((padsize != 0) && (pcount % padsize) != 0) { |
|
435 PORT_Assert (final); |
|
436 PORT_SetError (SEC_ERROR_BAD_DATA); |
|
437 return SECFailure; |
|
438 } |
|
439 /* |
|
440 * Decrypt the block. |
|
441 */ |
|
442 rv = (*cc->doit)(cc->cx, output, &ofraglen, max_output_len, |
|
443 pbuf, pcount); |
|
444 if (rv != SECSuccess) |
|
445 return rv; |
|
446 |
|
447 /* |
|
448 * For now anyway, all of our ciphers have the same number of |
|
449 * bytes of output as they do input. If this ever becomes untrue, |
|
450 * then NSS_CMSCipherContext_DecryptLength needs to be made smarter! |
|
451 */ |
|
452 PORT_Assert(ofraglen == pcount); |
|
453 |
|
454 /* |
|
455 * Account for the bytes now in output. |
|
456 */ |
|
457 max_output_len -= ofraglen; |
|
458 output_len += ofraglen; |
|
459 output += ofraglen; |
|
460 } |
|
461 |
|
462 /* |
|
463 * If this is our last call, we expect to have an exact number of |
|
464 * blocks left to be decrypted; we will decrypt them all. |
|
465 * |
|
466 * If not our last call, we always save between 1 and bsize bytes |
|
467 * until next time. (We must do this because we cannot be sure |
|
468 * that none of the decrypted bytes are padding bytes until we |
|
469 * have at least another whole block of data. You cannot tell by |
|
470 * looking -- the data could be anything -- you can only tell by |
|
471 * context, knowing you are looking at the last block.) We could |
|
472 * decrypt a whole block now but it is easier if we just treat it |
|
473 * the same way we treat partial block bytes. |
|
474 */ |
|
475 if (final) { |
|
476 if (padsize) { |
|
477 blocks = input_len / padsize; |
|
478 ifraglen = blocks * padsize; |
|
479 } else ifraglen = input_len; |
|
480 PORT_Assert (ifraglen == input_len); |
|
481 |
|
482 if (ifraglen != input_len) { |
|
483 PORT_SetError(SEC_ERROR_BAD_DATA); |
|
484 return SECFailure; |
|
485 } |
|
486 } else { |
|
487 blocks = (input_len - 1) / bsize; |
|
488 ifraglen = blocks * bsize; |
|
489 PORT_Assert (ifraglen < input_len); |
|
490 |
|
491 pcount = input_len - ifraglen; |
|
492 PORT_Memcpy (pbuf, input + ifraglen, pcount); |
|
493 cc->pending_count = pcount; |
|
494 } |
|
495 |
|
496 if (ifraglen) { |
|
497 rv = (* cc->doit)(cc->cx, output, &ofraglen, max_output_len, |
|
498 input, ifraglen); |
|
499 if (rv != SECSuccess) |
|
500 return rv; |
|
501 |
|
502 /* |
|
503 * For now anyway, all of our ciphers have the same number of |
|
504 * bytes of output as they do input. If this ever becomes untrue, |
|
505 * then sec_PKCS7DecryptLength needs to be made smarter! |
|
506 */ |
|
507 PORT_Assert (ifraglen == ofraglen); |
|
508 if (ifraglen != ofraglen) { |
|
509 PORT_SetError(SEC_ERROR_BAD_DATA); |
|
510 return SECFailure; |
|
511 } |
|
512 |
|
513 output_len += ofraglen; |
|
514 } else { |
|
515 ofraglen = 0; |
|
516 } |
|
517 |
|
518 /* |
|
519 * If we just did our very last block, "remove" the padding by |
|
520 * adjusting the output length. |
|
521 */ |
|
522 if (final && (padsize != 0)) { |
|
523 unsigned int padlen = *(output + ofraglen - 1); |
|
524 |
|
525 if (padlen == 0 || padlen > padsize) { |
|
526 PORT_SetError(SEC_ERROR_BAD_DATA); |
|
527 return SECFailure; |
|
528 } |
|
529 output_len -= padlen; |
|
530 } |
|
531 |
|
532 PORT_Assert (output_len_p != NULL || output_len == 0); |
|
533 if (output_len_p != NULL) |
|
534 *output_len_p = output_len; |
|
535 |
|
536 return SECSuccess; |
|
537 } |
|
538 |
|
539 /* |
|
540 * NSS_CMSCipherContext_Encrypt - do the encryption |
|
541 * |
|
542 * cc - the cipher context |
|
543 * output - buffer for decrypted result bytes |
|
544 * output_len_p - number of bytes in output |
|
545 * max_output_len - upper bound on bytes to put into output |
|
546 * input - pointer to input bytes |
|
547 * input_len - number of input bytes |
|
548 * final - true if this is the final chunk of data |
|
549 * |
|
550 * Encrypts a given length of input buffer (starting at "input" and |
|
551 * containing "input_len" bytes), placing the encrypted bytes in |
|
552 * "output" and storing the output length in "*output_len_p". |
|
553 * "cc" is the return value from NSS_CMSCipher_StartEncrypt. |
|
554 * When "final" is true, this is the last of the data to be encrypted. |
|
555 * |
|
556 * This is much more complicated than it sounds when the cipher is |
|
557 * a block-type, meaning that the encryption function will only |
|
558 * operate on whole blocks. But our caller is operating stream-wise, |
|
559 * and can pass in any number of bytes. So we need to keep track |
|
560 * of block boundaries. We save excess bytes between calls in "cc". |
|
561 * We also need to add padding bytes at the end. PKCS #7 specifies |
|
562 * that the padding used for a block cipher is a string of bytes, |
|
563 * each of whose value is the same as the length of the padding, |
|
564 * and that all data is padded. (Even data that starts out with |
|
565 * an exact multiple of blocks gets added to it another block, |
|
566 * all of which is padding.) |
|
567 * |
|
568 * XXX I would kind of like to combine this with the function above |
|
569 * which does decryption, since they have a lot in common. But the |
|
570 * tricky parts about padding and filling blocks would be much |
|
571 * harder to read that way, so I left them separate. At least for |
|
572 * now until it is clear that they are right. |
|
573 */ |
|
574 SECStatus |
|
575 NSS_CMSCipherContext_Encrypt(NSSCMSCipherContext *cc, unsigned char *output, |
|
576 unsigned int *output_len_p, unsigned int max_output_len, |
|
577 const unsigned char *input, unsigned int input_len, |
|
578 PRBool final) |
|
579 { |
|
580 int blocks, bsize, padlen, pcount, padsize; |
|
581 unsigned int max_needed, ifraglen, ofraglen, output_len; |
|
582 unsigned char *pbuf; |
|
583 SECStatus rv; |
|
584 |
|
585 PORT_Assert (cc->encrypt); |
|
586 |
|
587 /* |
|
588 * Check that we have enough room for the output. Our caller should |
|
589 * already handle this; failure is really an internal error (i.e. bug). |
|
590 */ |
|
591 max_needed = NSS_CMSCipherContext_EncryptLength (cc, input_len, final); |
|
592 PORT_Assert (max_output_len >= max_needed); |
|
593 if (max_output_len < max_needed) { |
|
594 /* PORT_SetError (XXX); */ |
|
595 return SECFailure; |
|
596 } |
|
597 |
|
598 bsize = cc->block_size; |
|
599 padsize = cc->pad_size; |
|
600 |
|
601 /* |
|
602 * When no blocking and padding work to do, we can simply call the |
|
603 * cipher function and we are done. |
|
604 */ |
|
605 if (bsize == 0) { |
|
606 return (*cc->doit)(cc->cx, output, output_len_p, max_output_len, |
|
607 input, input_len); |
|
608 } |
|
609 |
|
610 pcount = cc->pending_count; |
|
611 pbuf = cc->pending_buf; |
|
612 |
|
613 output_len = 0; |
|
614 |
|
615 if (pcount) { |
|
616 /* |
|
617 * Try to fill in an entire block, starting with the bytes |
|
618 * we already have saved away. |
|
619 */ |
|
620 while (input_len && pcount < bsize) { |
|
621 pbuf[pcount++] = *input++; |
|
622 input_len--; |
|
623 } |
|
624 /* |
|
625 * If we do not have a full block and we know we will be |
|
626 * called again, then we are done for now. |
|
627 */ |
|
628 if (pcount < bsize && !final) { |
|
629 cc->pending_count = pcount; |
|
630 if (output_len_p != NULL) |
|
631 *output_len_p = 0; |
|
632 return SECSuccess; |
|
633 } |
|
634 /* |
|
635 * If we have a whole block available, encrypt it. |
|
636 */ |
|
637 if ((padsize == 0) || (pcount % padsize) == 0) { |
|
638 rv = (* cc->doit) (cc->cx, output, &ofraglen, max_output_len, |
|
639 pbuf, pcount); |
|
640 if (rv != SECSuccess) |
|
641 return rv; |
|
642 |
|
643 /* |
|
644 * For now anyway, all of our ciphers have the same number of |
|
645 * bytes of output as they do input. If this ever becomes untrue, |
|
646 * then sec_PKCS7EncryptLength needs to be made smarter! |
|
647 */ |
|
648 PORT_Assert (ofraglen == pcount); |
|
649 |
|
650 /* |
|
651 * Account for the bytes now in output. |
|
652 */ |
|
653 max_output_len -= ofraglen; |
|
654 output_len += ofraglen; |
|
655 output += ofraglen; |
|
656 |
|
657 pcount = 0; |
|
658 } |
|
659 } |
|
660 |
|
661 if (input_len) { |
|
662 PORT_Assert (pcount == 0); |
|
663 |
|
664 blocks = input_len / bsize; |
|
665 ifraglen = blocks * bsize; |
|
666 |
|
667 if (ifraglen) { |
|
668 rv = (* cc->doit) (cc->cx, output, &ofraglen, max_output_len, |
|
669 input, ifraglen); |
|
670 if (rv != SECSuccess) |
|
671 return rv; |
|
672 |
|
673 /* |
|
674 * For now anyway, all of our ciphers have the same number of |
|
675 * bytes of output as they do input. If this ever becomes untrue, |
|
676 * then sec_PKCS7EncryptLength needs to be made smarter! |
|
677 */ |
|
678 PORT_Assert (ifraglen == ofraglen); |
|
679 |
|
680 max_output_len -= ofraglen; |
|
681 output_len += ofraglen; |
|
682 output += ofraglen; |
|
683 } |
|
684 |
|
685 pcount = input_len - ifraglen; |
|
686 PORT_Assert (pcount < bsize); |
|
687 if (pcount) |
|
688 PORT_Memcpy (pbuf, input + ifraglen, pcount); |
|
689 } |
|
690 |
|
691 if (final) { |
|
692 padlen = padsize - (pcount % padsize); |
|
693 PORT_Memset (pbuf + pcount, padlen, padlen); |
|
694 rv = (* cc->doit) (cc->cx, output, &ofraglen, max_output_len, |
|
695 pbuf, pcount+padlen); |
|
696 if (rv != SECSuccess) |
|
697 return rv; |
|
698 |
|
699 /* |
|
700 * For now anyway, all of our ciphers have the same number of |
|
701 * bytes of output as they do input. If this ever becomes untrue, |
|
702 * then sec_PKCS7EncryptLength needs to be made smarter! |
|
703 */ |
|
704 PORT_Assert (ofraglen == (pcount+padlen)); |
|
705 output_len += ofraglen; |
|
706 } else { |
|
707 cc->pending_count = pcount; |
|
708 } |
|
709 |
|
710 PORT_Assert (output_len_p != NULL || output_len == 0); |
|
711 if (output_len_p != NULL) |
|
712 *output_len_p = output_len; |
|
713 |
|
714 return SECSuccess; |
|
715 } |