|
1 |
|
2 /* |
|
3 * Copyright 2011 Google Inc. |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 #include "SkBitmapProcState.h" |
|
9 #include "SkColorPriv.h" |
|
10 #include "SkFilterProc.h" |
|
11 #include "SkPaint.h" |
|
12 #include "SkShader.h" // for tilemodes |
|
13 #include "SkUtilsArm.h" |
|
14 #include "SkBitmapScaler.h" |
|
15 #include "SkMipMap.h" |
|
16 #include "SkPixelRef.h" |
|
17 #include "SkScaledImageCache.h" |
|
18 |
|
19 #if !SK_ARM_NEON_IS_NONE |
|
20 // These are defined in src/opts/SkBitmapProcState_arm_neon.cpp |
|
21 extern const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[]; |
|
22 extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[]; |
|
23 extern void S16_D16_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, uint16_t*); |
|
24 extern void Clamp_S16_D16_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint16_t*, int); |
|
25 extern void Repeat_S16_D16_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint16_t*, int); |
|
26 extern void SI8_opaque_D32_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, SkPMColor*); |
|
27 extern void SI8_opaque_D32_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint32_t*, int); |
|
28 extern void Clamp_SI8_opaque_D32_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint32_t*, int); |
|
29 #endif |
|
30 |
|
31 #define NAME_WRAP(x) x |
|
32 #include "SkBitmapProcState_filter.h" |
|
33 #include "SkBitmapProcState_procs.h" |
|
34 |
|
35 /////////////////////////////////////////////////////////////////////////////// |
|
36 |
|
37 // true iff the matrix contains, at most, scale and translate elements |
|
38 static bool matrix_only_scale_translate(const SkMatrix& m) { |
|
39 return m.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask); |
|
40 } |
|
41 |
|
42 /** |
|
43 * For the purposes of drawing bitmaps, if a matrix is "almost" translate |
|
44 * go ahead and treat it as if it were, so that subsequent code can go fast. |
|
45 */ |
|
46 static bool just_trans_clamp(const SkMatrix& matrix, const SkBitmap& bitmap) { |
|
47 SkASSERT(matrix_only_scale_translate(matrix)); |
|
48 |
|
49 if (matrix.getType() & SkMatrix::kScale_Mask) { |
|
50 SkRect src, dst; |
|
51 bitmap.getBounds(&src); |
|
52 |
|
53 // Can't call mapRect(), since that will fix up inverted rectangles, |
|
54 // e.g. when scale is negative, and we don't want to return true for |
|
55 // those. |
|
56 matrix.mapPoints(SkTCast<SkPoint*>(&dst), |
|
57 SkTCast<const SkPoint*>(&src), |
|
58 2); |
|
59 |
|
60 // Now round all 4 edges to device space, and then compare the device |
|
61 // width/height to the original. Note: we must map all 4 and subtract |
|
62 // rather than map the "width" and compare, since we care about the |
|
63 // phase (in pixel space) that any translate in the matrix might impart. |
|
64 SkIRect idst; |
|
65 dst.round(&idst); |
|
66 return idst.width() == bitmap.width() && idst.height() == bitmap.height(); |
|
67 } |
|
68 // if we got here, we're either kTranslate_Mask or identity |
|
69 return true; |
|
70 } |
|
71 |
|
72 static bool just_trans_general(const SkMatrix& matrix) { |
|
73 SkASSERT(matrix_only_scale_translate(matrix)); |
|
74 |
|
75 if (matrix.getType() & SkMatrix::kScale_Mask) { |
|
76 const SkScalar tol = SK_Scalar1 / 32768; |
|
77 |
|
78 if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol)) { |
|
79 return false; |
|
80 } |
|
81 if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol)) { |
|
82 return false; |
|
83 } |
|
84 } |
|
85 // if we got here, treat us as either kTranslate_Mask or identity |
|
86 return true; |
|
87 } |
|
88 |
|
89 /////////////////////////////////////////////////////////////////////////////// |
|
90 |
|
91 static bool valid_for_filtering(unsigned dimension) { |
|
92 // for filtering, width and height must fit in 14bits, since we use steal |
|
93 // 2 bits from each to store our 4bit subpixel data |
|
94 return (dimension & ~0x3FFF) == 0; |
|
95 } |
|
96 |
|
97 static SkScalar effective_matrix_scale_sqrd(const SkMatrix& mat) { |
|
98 SkPoint v1, v2; |
|
99 |
|
100 v1.fX = mat.getScaleX(); |
|
101 v1.fY = mat.getSkewY(); |
|
102 |
|
103 v2.fX = mat.getSkewX(); |
|
104 v2.fY = mat.getScaleY(); |
|
105 |
|
106 return SkMaxScalar(v1.lengthSqd(), v2.lengthSqd()); |
|
107 } |
|
108 |
|
109 class AutoScaledCacheUnlocker { |
|
110 public: |
|
111 AutoScaledCacheUnlocker(SkScaledImageCache::ID** idPtr) : fIDPtr(idPtr) {} |
|
112 ~AutoScaledCacheUnlocker() { |
|
113 if (fIDPtr && *fIDPtr) { |
|
114 SkScaledImageCache::Unlock(*fIDPtr); |
|
115 *fIDPtr = NULL; |
|
116 } |
|
117 } |
|
118 |
|
119 // forgets the ID, so it won't call Unlock |
|
120 void release() { |
|
121 fIDPtr = NULL; |
|
122 } |
|
123 |
|
124 private: |
|
125 SkScaledImageCache::ID** fIDPtr; |
|
126 }; |
|
127 #define AutoScaledCacheUnlocker(...) SK_REQUIRE_LOCAL_VAR(AutoScaledCacheUnlocker) |
|
128 |
|
129 // TODO -- we may want to pass the clip into this function so we only scale |
|
130 // the portion of the image that we're going to need. This will complicate |
|
131 // the interface to the cache, but might be well worth it. |
|
132 |
|
133 bool SkBitmapProcState::possiblyScaleImage() { |
|
134 AutoScaledCacheUnlocker unlocker(&fScaledCacheID); |
|
135 |
|
136 SkASSERT(NULL == fBitmap); |
|
137 SkASSERT(NULL == fScaledCacheID); |
|
138 |
|
139 if (fFilterLevel <= SkPaint::kLow_FilterLevel) { |
|
140 return false; |
|
141 } |
|
142 |
|
143 // Check to see if the transformation matrix is simple, and if we're |
|
144 // doing high quality scaling. If so, do the bitmap scale here and |
|
145 // remove the scaling component from the matrix. |
|
146 |
|
147 if (SkPaint::kHigh_FilterLevel == fFilterLevel && |
|
148 fInvMatrix.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask) && |
|
149 fOrigBitmap.config() == SkBitmap::kARGB_8888_Config) { |
|
150 |
|
151 SkScalar invScaleX = fInvMatrix.getScaleX(); |
|
152 SkScalar invScaleY = fInvMatrix.getScaleY(); |
|
153 |
|
154 fScaledCacheID = SkScaledImageCache::FindAndLock(fOrigBitmap, |
|
155 invScaleX, invScaleY, |
|
156 &fScaledBitmap); |
|
157 if (fScaledCacheID) { |
|
158 fScaledBitmap.lockPixels(); |
|
159 if (!fScaledBitmap.getPixels()) { |
|
160 fScaledBitmap.unlockPixels(); |
|
161 // found a purged entry (discardablememory?), release it |
|
162 SkScaledImageCache::Unlock(fScaledCacheID); |
|
163 fScaledCacheID = NULL; |
|
164 // fall through to rebuild |
|
165 } |
|
166 } |
|
167 |
|
168 if (NULL == fScaledCacheID) { |
|
169 int dest_width = SkScalarCeilToInt(fOrigBitmap.width() / invScaleX); |
|
170 int dest_height = SkScalarCeilToInt(fOrigBitmap.height() / invScaleY); |
|
171 |
|
172 // All the criteria are met; let's make a new bitmap. |
|
173 |
|
174 SkConvolutionProcs simd; |
|
175 sk_bzero(&simd, sizeof(simd)); |
|
176 this->platformConvolutionProcs(&simd); |
|
177 |
|
178 if (!SkBitmapScaler::Resize(&fScaledBitmap, |
|
179 fOrigBitmap, |
|
180 SkBitmapScaler::RESIZE_BEST, |
|
181 dest_width, |
|
182 dest_height, |
|
183 simd, |
|
184 SkScaledImageCache::GetAllocator())) { |
|
185 // we failed to create fScaledBitmap, so just return and let |
|
186 // the scanline proc handle it. |
|
187 return false; |
|
188 |
|
189 } |
|
190 SkASSERT(NULL != fScaledBitmap.getPixels()); |
|
191 fScaledCacheID = SkScaledImageCache::AddAndLock(fOrigBitmap, |
|
192 invScaleX, |
|
193 invScaleY, |
|
194 fScaledBitmap); |
|
195 if (!fScaledCacheID) { |
|
196 fScaledBitmap.reset(); |
|
197 return false; |
|
198 } |
|
199 SkASSERT(NULL != fScaledBitmap.getPixels()); |
|
200 } |
|
201 |
|
202 SkASSERT(NULL != fScaledBitmap.getPixels()); |
|
203 fBitmap = &fScaledBitmap; |
|
204 |
|
205 // set the inv matrix type to translate-only; |
|
206 fInvMatrix.setTranslate(fInvMatrix.getTranslateX() / fInvMatrix.getScaleX(), |
|
207 fInvMatrix.getTranslateY() / fInvMatrix.getScaleY()); |
|
208 |
|
209 // no need for any further filtering; we just did it! |
|
210 fFilterLevel = SkPaint::kNone_FilterLevel; |
|
211 unlocker.release(); |
|
212 return true; |
|
213 } |
|
214 |
|
215 /* |
|
216 * If High, then our special-case for scale-only did not take, and so we |
|
217 * have to make a choice: |
|
218 * 1. fall back on mipmaps + bilerp |
|
219 * 2. fall back on scanline bicubic filter |
|
220 * For now, we compute the "scale" value from the matrix, and have a |
|
221 * threshold to decide when bicubic is better, and when mips are better. |
|
222 * No doubt a fancier decision tree could be used uere. |
|
223 * |
|
224 * If Medium, then we just try to build a mipmap and select a level, |
|
225 * setting the filter-level to kLow to signal that we just need bilerp |
|
226 * to process the selected level. |
|
227 */ |
|
228 |
|
229 SkScalar scaleSqd = effective_matrix_scale_sqrd(fInvMatrix); |
|
230 |
|
231 if (SkPaint::kHigh_FilterLevel == fFilterLevel) { |
|
232 // Set the limit at 0.25 for the CTM... if the CTM is scaling smaller |
|
233 // than this, then the mipmaps quality may be greater (certainly faster) |
|
234 // so we only keep High quality if the scale is greater than this. |
|
235 // |
|
236 // Since we're dealing with the inverse, we compare against its inverse. |
|
237 const SkScalar bicubicLimit = 4.0f; |
|
238 const SkScalar bicubicLimitSqd = bicubicLimit * bicubicLimit; |
|
239 if (scaleSqd < bicubicLimitSqd) { // use bicubic scanline |
|
240 return false; |
|
241 } |
|
242 |
|
243 // else set the filter-level to Medium, since we're scaling down and |
|
244 // want to reqeust mipmaps |
|
245 fFilterLevel = SkPaint::kMedium_FilterLevel; |
|
246 } |
|
247 |
|
248 SkASSERT(SkPaint::kMedium_FilterLevel == fFilterLevel); |
|
249 |
|
250 /** |
|
251 * Medium quality means use a mipmap for down-scaling, and just bilper |
|
252 * for upscaling. Since we're examining the inverse matrix, we look for |
|
253 * a scale > 1 to indicate down scaling by the CTM. |
|
254 */ |
|
255 if (scaleSqd > SK_Scalar1) { |
|
256 const SkMipMap* mip = NULL; |
|
257 |
|
258 SkASSERT(NULL == fScaledCacheID); |
|
259 fScaledCacheID = SkScaledImageCache::FindAndLockMip(fOrigBitmap, &mip); |
|
260 if (!fScaledCacheID) { |
|
261 SkASSERT(NULL == mip); |
|
262 mip = SkMipMap::Build(fOrigBitmap); |
|
263 if (mip) { |
|
264 fScaledCacheID = SkScaledImageCache::AddAndLockMip(fOrigBitmap, |
|
265 mip); |
|
266 mip->unref(); // the cache took a ref |
|
267 SkASSERT(fScaledCacheID); |
|
268 } |
|
269 } else { |
|
270 SkASSERT(mip); |
|
271 } |
|
272 |
|
273 if (mip) { |
|
274 SkScalar levelScale = SkScalarInvert(SkScalarSqrt(scaleSqd)); |
|
275 SkMipMap::Level level; |
|
276 if (mip->extractLevel(levelScale, &level)) { |
|
277 SkScalar invScaleFixup = level.fScale; |
|
278 fInvMatrix.postScale(invScaleFixup, invScaleFixup); |
|
279 |
|
280 fScaledBitmap.setConfig(fOrigBitmap.config(), |
|
281 level.fWidth, level.fHeight, |
|
282 level.fRowBytes); |
|
283 fScaledBitmap.setPixels(level.fPixels); |
|
284 fBitmap = &fScaledBitmap; |
|
285 fFilterLevel = SkPaint::kLow_FilterLevel; |
|
286 unlocker.release(); |
|
287 return true; |
|
288 } |
|
289 } |
|
290 } |
|
291 |
|
292 return false; |
|
293 } |
|
294 |
|
295 static bool get_locked_pixels(const SkBitmap& src, int pow2, SkBitmap* dst) { |
|
296 SkPixelRef* pr = src.pixelRef(); |
|
297 if (pr && pr->decodeInto(pow2, dst)) { |
|
298 return true; |
|
299 } |
|
300 |
|
301 /* |
|
302 * If decodeInto() fails, it is possibe that we have an old subclass that |
|
303 * does not, or cannot, implement that. In that case we fall back to the |
|
304 * older protocol of having the pixelRef handle the caching for us. |
|
305 */ |
|
306 *dst = src; |
|
307 dst->lockPixels(); |
|
308 return SkToBool(dst->getPixels()); |
|
309 } |
|
310 |
|
311 bool SkBitmapProcState::lockBaseBitmap() { |
|
312 AutoScaledCacheUnlocker unlocker(&fScaledCacheID); |
|
313 |
|
314 SkPixelRef* pr = fOrigBitmap.pixelRef(); |
|
315 |
|
316 SkASSERT(NULL == fScaledCacheID); |
|
317 |
|
318 if (pr->isLocked() || !pr->implementsDecodeInto()) { |
|
319 // fast-case, no need to look in our cache |
|
320 fScaledBitmap = fOrigBitmap; |
|
321 fScaledBitmap.lockPixels(); |
|
322 if (NULL == fScaledBitmap.getPixels()) { |
|
323 return false; |
|
324 } |
|
325 } else { |
|
326 fScaledCacheID = SkScaledImageCache::FindAndLock(fOrigBitmap, |
|
327 SK_Scalar1, SK_Scalar1, |
|
328 &fScaledBitmap); |
|
329 if (fScaledCacheID) { |
|
330 fScaledBitmap.lockPixels(); |
|
331 if (!fScaledBitmap.getPixels()) { |
|
332 fScaledBitmap.unlockPixels(); |
|
333 // found a purged entry (discardablememory?), release it |
|
334 SkScaledImageCache::Unlock(fScaledCacheID); |
|
335 fScaledCacheID = NULL; |
|
336 // fall through to rebuild |
|
337 } |
|
338 } |
|
339 |
|
340 if (NULL == fScaledCacheID) { |
|
341 if (!get_locked_pixels(fOrigBitmap, 0, &fScaledBitmap)) { |
|
342 return false; |
|
343 } |
|
344 |
|
345 // TODO: if fScaled comes back at a different width/height than fOrig, |
|
346 // we need to update the matrix we are using to sample from this guy. |
|
347 |
|
348 fScaledCacheID = SkScaledImageCache::AddAndLock(fOrigBitmap, |
|
349 SK_Scalar1, SK_Scalar1, |
|
350 fScaledBitmap); |
|
351 if (!fScaledCacheID) { |
|
352 fScaledBitmap.reset(); |
|
353 return false; |
|
354 } |
|
355 } |
|
356 } |
|
357 fBitmap = &fScaledBitmap; |
|
358 unlocker.release(); |
|
359 return true; |
|
360 } |
|
361 |
|
362 void SkBitmapProcState::endContext() { |
|
363 SkDELETE(fBitmapFilter); |
|
364 fBitmapFilter = NULL; |
|
365 fScaledBitmap.reset(); |
|
366 |
|
367 if (fScaledCacheID) { |
|
368 SkScaledImageCache::Unlock(fScaledCacheID); |
|
369 fScaledCacheID = NULL; |
|
370 } |
|
371 } |
|
372 |
|
373 SkBitmapProcState::~SkBitmapProcState() { |
|
374 if (fScaledCacheID) { |
|
375 SkScaledImageCache::Unlock(fScaledCacheID); |
|
376 } |
|
377 SkDELETE(fBitmapFilter); |
|
378 } |
|
379 |
|
380 bool SkBitmapProcState::chooseProcs(const SkMatrix& inv, const SkPaint& paint) { |
|
381 SkASSERT(fOrigBitmap.width() && fOrigBitmap.height()); |
|
382 |
|
383 fBitmap = NULL; |
|
384 fInvMatrix = inv; |
|
385 fFilterLevel = paint.getFilterLevel(); |
|
386 |
|
387 SkASSERT(NULL == fScaledCacheID); |
|
388 |
|
389 // possiblyScaleImage will look to see if it can rescale the image as a |
|
390 // preprocess; either by scaling up to the target size, or by selecting |
|
391 // a nearby mipmap level. If it does, it will adjust the working |
|
392 // matrix as well as the working bitmap. It may also adjust the filter |
|
393 // quality to avoid re-filtering an already perfectly scaled image. |
|
394 if (!this->possiblyScaleImage()) { |
|
395 if (!this->lockBaseBitmap()) { |
|
396 return false; |
|
397 } |
|
398 } |
|
399 // The above logic should have always assigned fBitmap, but in case it |
|
400 // didn't, we check for that now... |
|
401 if (NULL == fBitmap) { |
|
402 return false; |
|
403 } |
|
404 |
|
405 bool trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0; |
|
406 bool clampClamp = SkShader::kClamp_TileMode == fTileModeX && |
|
407 SkShader::kClamp_TileMode == fTileModeY; |
|
408 |
|
409 if (!(clampClamp || trivialMatrix)) { |
|
410 fInvMatrix.postIDiv(fOrigBitmap.width(), fOrigBitmap.height()); |
|
411 } |
|
412 |
|
413 // Now that all possible changes to the matrix have taken place, check |
|
414 // to see if we're really close to a no-scale matrix. If so, explicitly |
|
415 // set it to be so. Subsequent code may inspect this matrix to choose |
|
416 // a faster path in this case. |
|
417 |
|
418 // This code will only execute if the matrix has some scale component; |
|
419 // if it's already pure translate then we won't do this inversion. |
|
420 |
|
421 if (matrix_only_scale_translate(fInvMatrix)) { |
|
422 SkMatrix forward; |
|
423 if (fInvMatrix.invert(&forward)) { |
|
424 if (clampClamp ? just_trans_clamp(forward, *fBitmap) |
|
425 : just_trans_general(forward)) { |
|
426 SkScalar tx = -SkScalarRoundToScalar(forward.getTranslateX()); |
|
427 SkScalar ty = -SkScalarRoundToScalar(forward.getTranslateY()); |
|
428 fInvMatrix.setTranslate(tx, ty); |
|
429 } |
|
430 } |
|
431 } |
|
432 |
|
433 fInvProc = fInvMatrix.getMapXYProc(); |
|
434 fInvType = fInvMatrix.getType(); |
|
435 fInvSx = SkScalarToFixed(fInvMatrix.getScaleX()); |
|
436 fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX()); |
|
437 fInvKy = SkScalarToFixed(fInvMatrix.getSkewY()); |
|
438 fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY()); |
|
439 |
|
440 fAlphaScale = SkAlpha255To256(paint.getAlpha()); |
|
441 |
|
442 fShaderProc32 = NULL; |
|
443 fShaderProc16 = NULL; |
|
444 fSampleProc32 = NULL; |
|
445 fSampleProc16 = NULL; |
|
446 |
|
447 // recompute the triviality of the matrix here because we may have |
|
448 // changed it! |
|
449 |
|
450 trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0; |
|
451 |
|
452 if (SkPaint::kHigh_FilterLevel == fFilterLevel) { |
|
453 // If this is still set, that means we wanted HQ sampling |
|
454 // but couldn't do it as a preprocess. Let's try to install |
|
455 // the scanline version of the HQ sampler. If that process fails, |
|
456 // downgrade to bilerp. |
|
457 |
|
458 // NOTE: Might need to be careful here in the future when we want |
|
459 // to have the platform proc have a shot at this; it's possible that |
|
460 // the chooseBitmapFilterProc will fail to install a shader but a |
|
461 // platform-specific one might succeed, so it might be premature here |
|
462 // to fall back to bilerp. This needs thought. |
|
463 |
|
464 if (!this->setBitmapFilterProcs()) { |
|
465 fFilterLevel = SkPaint::kLow_FilterLevel; |
|
466 } |
|
467 } |
|
468 |
|
469 if (SkPaint::kLow_FilterLevel == fFilterLevel) { |
|
470 // Only try bilerp if the matrix is "interesting" and |
|
471 // the image has a suitable size. |
|
472 |
|
473 if (fInvType <= SkMatrix::kTranslate_Mask || |
|
474 !valid_for_filtering(fBitmap->width() | fBitmap->height())) { |
|
475 fFilterLevel = SkPaint::kNone_FilterLevel; |
|
476 } |
|
477 } |
|
478 |
|
479 // At this point, we know exactly what kind of sampling the per-scanline |
|
480 // shader will perform. |
|
481 |
|
482 fMatrixProc = this->chooseMatrixProc(trivialMatrix); |
|
483 if (NULL == fMatrixProc) { |
|
484 return false; |
|
485 } |
|
486 |
|
487 /////////////////////////////////////////////////////////////////////// |
|
488 |
|
489 // No need to do this if we're doing HQ sampling; if filter quality is |
|
490 // still set to HQ by the time we get here, then we must have installed |
|
491 // the shader procs above and can skip all this. |
|
492 |
|
493 if (fFilterLevel < SkPaint::kHigh_FilterLevel) { |
|
494 |
|
495 int index = 0; |
|
496 if (fAlphaScale < 256) { // note: this distinction is not used for D16 |
|
497 index |= 1; |
|
498 } |
|
499 if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { |
|
500 index |= 2; |
|
501 } |
|
502 if (fFilterLevel > SkPaint::kNone_FilterLevel) { |
|
503 index |= 4; |
|
504 } |
|
505 // bits 3,4,5 encoding the source bitmap format |
|
506 switch (fBitmap->config()) { |
|
507 case SkBitmap::kARGB_8888_Config: |
|
508 index |= 0; |
|
509 break; |
|
510 case SkBitmap::kRGB_565_Config: |
|
511 index |= 8; |
|
512 break; |
|
513 case SkBitmap::kIndex8_Config: |
|
514 index |= 16; |
|
515 break; |
|
516 case SkBitmap::kARGB_4444_Config: |
|
517 index |= 24; |
|
518 break; |
|
519 case SkBitmap::kA8_Config: |
|
520 index |= 32; |
|
521 fPaintPMColor = SkPreMultiplyColor(paint.getColor()); |
|
522 break; |
|
523 default: |
|
524 return false; |
|
525 } |
|
526 |
|
527 #if !SK_ARM_NEON_IS_ALWAYS |
|
528 static const SampleProc32 gSkBitmapProcStateSample32[] = { |
|
529 S32_opaque_D32_nofilter_DXDY, |
|
530 S32_alpha_D32_nofilter_DXDY, |
|
531 S32_opaque_D32_nofilter_DX, |
|
532 S32_alpha_D32_nofilter_DX, |
|
533 S32_opaque_D32_filter_DXDY, |
|
534 S32_alpha_D32_filter_DXDY, |
|
535 S32_opaque_D32_filter_DX, |
|
536 S32_alpha_D32_filter_DX, |
|
537 |
|
538 S16_opaque_D32_nofilter_DXDY, |
|
539 S16_alpha_D32_nofilter_DXDY, |
|
540 S16_opaque_D32_nofilter_DX, |
|
541 S16_alpha_D32_nofilter_DX, |
|
542 S16_opaque_D32_filter_DXDY, |
|
543 S16_alpha_D32_filter_DXDY, |
|
544 S16_opaque_D32_filter_DX, |
|
545 S16_alpha_D32_filter_DX, |
|
546 |
|
547 SI8_opaque_D32_nofilter_DXDY, |
|
548 SI8_alpha_D32_nofilter_DXDY, |
|
549 SI8_opaque_D32_nofilter_DX, |
|
550 SI8_alpha_D32_nofilter_DX, |
|
551 SI8_opaque_D32_filter_DXDY, |
|
552 SI8_alpha_D32_filter_DXDY, |
|
553 SI8_opaque_D32_filter_DX, |
|
554 SI8_alpha_D32_filter_DX, |
|
555 |
|
556 S4444_opaque_D32_nofilter_DXDY, |
|
557 S4444_alpha_D32_nofilter_DXDY, |
|
558 S4444_opaque_D32_nofilter_DX, |
|
559 S4444_alpha_D32_nofilter_DX, |
|
560 S4444_opaque_D32_filter_DXDY, |
|
561 S4444_alpha_D32_filter_DXDY, |
|
562 S4444_opaque_D32_filter_DX, |
|
563 S4444_alpha_D32_filter_DX, |
|
564 |
|
565 // A8 treats alpha/opaque the same (equally efficient) |
|
566 SA8_alpha_D32_nofilter_DXDY, |
|
567 SA8_alpha_D32_nofilter_DXDY, |
|
568 SA8_alpha_D32_nofilter_DX, |
|
569 SA8_alpha_D32_nofilter_DX, |
|
570 SA8_alpha_D32_filter_DXDY, |
|
571 SA8_alpha_D32_filter_DXDY, |
|
572 SA8_alpha_D32_filter_DX, |
|
573 SA8_alpha_D32_filter_DX |
|
574 }; |
|
575 |
|
576 static const SampleProc16 gSkBitmapProcStateSample16[] = { |
|
577 S32_D16_nofilter_DXDY, |
|
578 S32_D16_nofilter_DX, |
|
579 S32_D16_filter_DXDY, |
|
580 S32_D16_filter_DX, |
|
581 |
|
582 S16_D16_nofilter_DXDY, |
|
583 S16_D16_nofilter_DX, |
|
584 S16_D16_filter_DXDY, |
|
585 S16_D16_filter_DX, |
|
586 |
|
587 SI8_D16_nofilter_DXDY, |
|
588 SI8_D16_nofilter_DX, |
|
589 SI8_D16_filter_DXDY, |
|
590 SI8_D16_filter_DX, |
|
591 |
|
592 // Don't support 4444 -> 565 |
|
593 NULL, NULL, NULL, NULL, |
|
594 // Don't support A8 -> 565 |
|
595 NULL, NULL, NULL, NULL |
|
596 }; |
|
597 #endif |
|
598 |
|
599 fSampleProc32 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample32)[index]; |
|
600 index >>= 1; // shift away any opaque/alpha distinction |
|
601 fSampleProc16 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample16)[index]; |
|
602 |
|
603 // our special-case shaderprocs |
|
604 if (SK_ARM_NEON_WRAP(S16_D16_filter_DX) == fSampleProc16) { |
|
605 if (clampClamp) { |
|
606 fShaderProc16 = SK_ARM_NEON_WRAP(Clamp_S16_D16_filter_DX_shaderproc); |
|
607 } else if (SkShader::kRepeat_TileMode == fTileModeX && |
|
608 SkShader::kRepeat_TileMode == fTileModeY) { |
|
609 fShaderProc16 = SK_ARM_NEON_WRAP(Repeat_S16_D16_filter_DX_shaderproc); |
|
610 } |
|
611 } else if (SK_ARM_NEON_WRAP(SI8_opaque_D32_filter_DX) == fSampleProc32 && clampClamp) { |
|
612 fShaderProc32 = SK_ARM_NEON_WRAP(Clamp_SI8_opaque_D32_filter_DX_shaderproc); |
|
613 } |
|
614 |
|
615 if (NULL == fShaderProc32) { |
|
616 fShaderProc32 = this->chooseShaderProc32(); |
|
617 } |
|
618 } |
|
619 |
|
620 // see if our platform has any accelerated overrides |
|
621 this->platformProcs(); |
|
622 |
|
623 return true; |
|
624 } |
|
625 |
|
626 static void Clamp_S32_D32_nofilter_trans_shaderproc(const SkBitmapProcState& s, |
|
627 int x, int y, |
|
628 SkPMColor* SK_RESTRICT colors, |
|
629 int count) { |
|
630 SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0); |
|
631 SkASSERT(s.fInvKy == 0); |
|
632 SkASSERT(count > 0 && colors != NULL); |
|
633 SkASSERT(SkPaint::kNone_FilterLevel == s.fFilterLevel); |
|
634 |
|
635 const int maxX = s.fBitmap->width() - 1; |
|
636 const int maxY = s.fBitmap->height() - 1; |
|
637 int ix = s.fFilterOneX + x; |
|
638 int iy = SkClampMax(s.fFilterOneY + y, maxY); |
|
639 #ifdef SK_DEBUG |
|
640 { |
|
641 SkPoint pt; |
|
642 s.fInvProc(s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf, |
|
643 SkIntToScalar(y) + SK_ScalarHalf, &pt); |
|
644 int iy2 = SkClampMax(SkScalarFloorToInt(pt.fY), maxY); |
|
645 int ix2 = SkScalarFloorToInt(pt.fX); |
|
646 |
|
647 SkASSERT(iy == iy2); |
|
648 SkASSERT(ix == ix2); |
|
649 } |
|
650 #endif |
|
651 const SkPMColor* row = s.fBitmap->getAddr32(0, iy); |
|
652 |
|
653 // clamp to the left |
|
654 if (ix < 0) { |
|
655 int n = SkMin32(-ix, count); |
|
656 sk_memset32(colors, row[0], n); |
|
657 count -= n; |
|
658 if (0 == count) { |
|
659 return; |
|
660 } |
|
661 colors += n; |
|
662 SkASSERT(-ix == n); |
|
663 ix = 0; |
|
664 } |
|
665 // copy the middle |
|
666 if (ix <= maxX) { |
|
667 int n = SkMin32(maxX - ix + 1, count); |
|
668 memcpy(colors, row + ix, n * sizeof(SkPMColor)); |
|
669 count -= n; |
|
670 if (0 == count) { |
|
671 return; |
|
672 } |
|
673 colors += n; |
|
674 } |
|
675 SkASSERT(count > 0); |
|
676 // clamp to the right |
|
677 sk_memset32(colors, row[maxX], count); |
|
678 } |
|
679 |
|
680 static inline int sk_int_mod(int x, int n) { |
|
681 SkASSERT(n > 0); |
|
682 if ((unsigned)x >= (unsigned)n) { |
|
683 if (x < 0) { |
|
684 x = n + ~(~x % n); |
|
685 } else { |
|
686 x = x % n; |
|
687 } |
|
688 } |
|
689 return x; |
|
690 } |
|
691 |
|
692 static inline int sk_int_mirror(int x, int n) { |
|
693 x = sk_int_mod(x, 2 * n); |
|
694 if (x >= n) { |
|
695 x = n + ~(x - n); |
|
696 } |
|
697 return x; |
|
698 } |
|
699 |
|
700 static void Repeat_S32_D32_nofilter_trans_shaderproc(const SkBitmapProcState& s, |
|
701 int x, int y, |
|
702 SkPMColor* SK_RESTRICT colors, |
|
703 int count) { |
|
704 SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0); |
|
705 SkASSERT(s.fInvKy == 0); |
|
706 SkASSERT(count > 0 && colors != NULL); |
|
707 SkASSERT(SkPaint::kNone_FilterLevel == s.fFilterLevel); |
|
708 |
|
709 const int stopX = s.fBitmap->width(); |
|
710 const int stopY = s.fBitmap->height(); |
|
711 int ix = s.fFilterOneX + x; |
|
712 int iy = sk_int_mod(s.fFilterOneY + y, stopY); |
|
713 #ifdef SK_DEBUG |
|
714 { |
|
715 SkPoint pt; |
|
716 s.fInvProc(s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf, |
|
717 SkIntToScalar(y) + SK_ScalarHalf, &pt); |
|
718 int iy2 = sk_int_mod(SkScalarFloorToInt(pt.fY), stopY); |
|
719 int ix2 = SkScalarFloorToInt(pt.fX); |
|
720 |
|
721 SkASSERT(iy == iy2); |
|
722 SkASSERT(ix == ix2); |
|
723 } |
|
724 #endif |
|
725 const SkPMColor* row = s.fBitmap->getAddr32(0, iy); |
|
726 |
|
727 ix = sk_int_mod(ix, stopX); |
|
728 for (;;) { |
|
729 int n = SkMin32(stopX - ix, count); |
|
730 memcpy(colors, row + ix, n * sizeof(SkPMColor)); |
|
731 count -= n; |
|
732 if (0 == count) { |
|
733 return; |
|
734 } |
|
735 colors += n; |
|
736 ix = 0; |
|
737 } |
|
738 } |
|
739 |
|
740 static void S32_D32_constX_shaderproc(const SkBitmapProcState& s, |
|
741 int x, int y, |
|
742 SkPMColor* SK_RESTRICT colors, |
|
743 int count) { |
|
744 SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0); |
|
745 SkASSERT(s.fInvKy == 0); |
|
746 SkASSERT(count > 0 && colors != NULL); |
|
747 SkASSERT(1 == s.fBitmap->width()); |
|
748 |
|
749 int iY0; |
|
750 int iY1 SK_INIT_TO_AVOID_WARNING; |
|
751 int iSubY SK_INIT_TO_AVOID_WARNING; |
|
752 |
|
753 if (SkPaint::kNone_FilterLevel != s.fFilterLevel) { |
|
754 SkBitmapProcState::MatrixProc mproc = s.getMatrixProc(); |
|
755 uint32_t xy[2]; |
|
756 |
|
757 mproc(s, xy, 1, x, y); |
|
758 |
|
759 iY0 = xy[0] >> 18; |
|
760 iY1 = xy[0] & 0x3FFF; |
|
761 iSubY = (xy[0] >> 14) & 0xF; |
|
762 } else { |
|
763 int yTemp; |
|
764 |
|
765 if (s.fInvType > SkMatrix::kTranslate_Mask) { |
|
766 SkPoint pt; |
|
767 s.fInvProc(s.fInvMatrix, |
|
768 SkIntToScalar(x) + SK_ScalarHalf, |
|
769 SkIntToScalar(y) + SK_ScalarHalf, |
|
770 &pt); |
|
771 // When the matrix has a scale component the setup code in |
|
772 // chooseProcs multiples the inverse matrix by the inverse of the |
|
773 // bitmap's width and height. Since this method is going to do |
|
774 // its own tiling and sampling we need to undo that here. |
|
775 if (SkShader::kClamp_TileMode != s.fTileModeX || |
|
776 SkShader::kClamp_TileMode != s.fTileModeY) { |
|
777 yTemp = SkScalarFloorToInt(pt.fY * s.fBitmap->height()); |
|
778 } else { |
|
779 yTemp = SkScalarFloorToInt(pt.fY); |
|
780 } |
|
781 } else { |
|
782 yTemp = s.fFilterOneY + y; |
|
783 } |
|
784 |
|
785 const int stopY = s.fBitmap->height(); |
|
786 switch (s.fTileModeY) { |
|
787 case SkShader::kClamp_TileMode: |
|
788 iY0 = SkClampMax(yTemp, stopY-1); |
|
789 break; |
|
790 case SkShader::kRepeat_TileMode: |
|
791 iY0 = sk_int_mod(yTemp, stopY); |
|
792 break; |
|
793 case SkShader::kMirror_TileMode: |
|
794 default: |
|
795 iY0 = sk_int_mirror(yTemp, stopY); |
|
796 break; |
|
797 } |
|
798 |
|
799 #ifdef SK_DEBUG |
|
800 { |
|
801 SkPoint pt; |
|
802 s.fInvProc(s.fInvMatrix, |
|
803 SkIntToScalar(x) + SK_ScalarHalf, |
|
804 SkIntToScalar(y) + SK_ScalarHalf, |
|
805 &pt); |
|
806 if (s.fInvType > SkMatrix::kTranslate_Mask && |
|
807 (SkShader::kClamp_TileMode != s.fTileModeX || |
|
808 SkShader::kClamp_TileMode != s.fTileModeY)) { |
|
809 pt.fY *= s.fBitmap->height(); |
|
810 } |
|
811 int iY2; |
|
812 |
|
813 switch (s.fTileModeY) { |
|
814 case SkShader::kClamp_TileMode: |
|
815 iY2 = SkClampMax(SkScalarFloorToInt(pt.fY), stopY-1); |
|
816 break; |
|
817 case SkShader::kRepeat_TileMode: |
|
818 iY2 = sk_int_mod(SkScalarFloorToInt(pt.fY), stopY); |
|
819 break; |
|
820 case SkShader::kMirror_TileMode: |
|
821 default: |
|
822 iY2 = sk_int_mirror(SkScalarFloorToInt(pt.fY), stopY); |
|
823 break; |
|
824 } |
|
825 |
|
826 SkASSERT(iY0 == iY2); |
|
827 } |
|
828 #endif |
|
829 } |
|
830 |
|
831 const SkPMColor* row0 = s.fBitmap->getAddr32(0, iY0); |
|
832 SkPMColor color; |
|
833 |
|
834 if (SkPaint::kNone_FilterLevel != s.fFilterLevel) { |
|
835 const SkPMColor* row1 = s.fBitmap->getAddr32(0, iY1); |
|
836 |
|
837 if (s.fAlphaScale < 256) { |
|
838 Filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale); |
|
839 } else { |
|
840 Filter_32_opaque(iSubY, *row0, *row1, &color); |
|
841 } |
|
842 } else { |
|
843 if (s.fAlphaScale < 256) { |
|
844 color = SkAlphaMulQ(*row0, s.fAlphaScale); |
|
845 } else { |
|
846 color = *row0; |
|
847 } |
|
848 } |
|
849 |
|
850 sk_memset32(colors, color, count); |
|
851 } |
|
852 |
|
853 static void DoNothing_shaderproc(const SkBitmapProcState&, int x, int y, |
|
854 SkPMColor* SK_RESTRICT colors, int count) { |
|
855 // if we get called, the matrix is too tricky, so we just draw nothing |
|
856 sk_memset32(colors, 0, count); |
|
857 } |
|
858 |
|
859 bool SkBitmapProcState::setupForTranslate() { |
|
860 SkPoint pt; |
|
861 fInvProc(fInvMatrix, SK_ScalarHalf, SK_ScalarHalf, &pt); |
|
862 |
|
863 /* |
|
864 * if the translate is larger than our ints, we can get random results, or |
|
865 * worse, we might get 0x80000000, which wreaks havoc on us, since we can't |
|
866 * negate it. |
|
867 */ |
|
868 const SkScalar too_big = SkIntToScalar(1 << 30); |
|
869 if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) { |
|
870 return false; |
|
871 } |
|
872 |
|
873 // Since we know we're not filtered, we re-purpose these fields allow |
|
874 // us to go from device -> src coordinates w/ just an integer add, |
|
875 // rather than running through the inverse-matrix |
|
876 fFilterOneX = SkScalarFloorToInt(pt.fX); |
|
877 fFilterOneY = SkScalarFloorToInt(pt.fY); |
|
878 return true; |
|
879 } |
|
880 |
|
881 SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() { |
|
882 |
|
883 if (SkBitmap::kARGB_8888_Config != fBitmap->config()) { |
|
884 return NULL; |
|
885 } |
|
886 |
|
887 static const unsigned kMask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask; |
|
888 |
|
889 if (1 == fBitmap->width() && 0 == (fInvType & ~kMask)) { |
|
890 if (SkPaint::kNone_FilterLevel == fFilterLevel && |
|
891 fInvType <= SkMatrix::kTranslate_Mask && |
|
892 !this->setupForTranslate()) { |
|
893 return DoNothing_shaderproc; |
|
894 } |
|
895 return S32_D32_constX_shaderproc; |
|
896 } |
|
897 |
|
898 if (fAlphaScale < 256) { |
|
899 return NULL; |
|
900 } |
|
901 if (fInvType > SkMatrix::kTranslate_Mask) { |
|
902 return NULL; |
|
903 } |
|
904 if (SkPaint::kNone_FilterLevel != fFilterLevel) { |
|
905 return NULL; |
|
906 } |
|
907 |
|
908 SkShader::TileMode tx = (SkShader::TileMode)fTileModeX; |
|
909 SkShader::TileMode ty = (SkShader::TileMode)fTileModeY; |
|
910 |
|
911 if (SkShader::kClamp_TileMode == tx && SkShader::kClamp_TileMode == ty) { |
|
912 if (this->setupForTranslate()) { |
|
913 return Clamp_S32_D32_nofilter_trans_shaderproc; |
|
914 } |
|
915 return DoNothing_shaderproc; |
|
916 } |
|
917 if (SkShader::kRepeat_TileMode == tx && SkShader::kRepeat_TileMode == ty) { |
|
918 if (this->setupForTranslate()) { |
|
919 return Repeat_S32_D32_nofilter_trans_shaderproc; |
|
920 } |
|
921 return DoNothing_shaderproc; |
|
922 } |
|
923 return NULL; |
|
924 } |
|
925 |
|
926 /////////////////////////////////////////////////////////////////////////////// |
|
927 |
|
928 #ifdef SK_DEBUG |
|
929 |
|
930 static void check_scale_nofilter(uint32_t bitmapXY[], int count, |
|
931 unsigned mx, unsigned my) { |
|
932 unsigned y = *bitmapXY++; |
|
933 SkASSERT(y < my); |
|
934 |
|
935 const uint16_t* xptr = reinterpret_cast<const uint16_t*>(bitmapXY); |
|
936 for (int i = 0; i < count; ++i) { |
|
937 SkASSERT(xptr[i] < mx); |
|
938 } |
|
939 } |
|
940 |
|
941 static void check_scale_filter(uint32_t bitmapXY[], int count, |
|
942 unsigned mx, unsigned my) { |
|
943 uint32_t YY = *bitmapXY++; |
|
944 unsigned y0 = YY >> 18; |
|
945 unsigned y1 = YY & 0x3FFF; |
|
946 SkASSERT(y0 < my); |
|
947 SkASSERT(y1 < my); |
|
948 |
|
949 for (int i = 0; i < count; ++i) { |
|
950 uint32_t XX = bitmapXY[i]; |
|
951 unsigned x0 = XX >> 18; |
|
952 unsigned x1 = XX & 0x3FFF; |
|
953 SkASSERT(x0 < mx); |
|
954 SkASSERT(x1 < mx); |
|
955 } |
|
956 } |
|
957 |
|
958 static void check_affine_nofilter(uint32_t bitmapXY[], int count, |
|
959 unsigned mx, unsigned my) { |
|
960 for (int i = 0; i < count; ++i) { |
|
961 uint32_t XY = bitmapXY[i]; |
|
962 unsigned x = XY & 0xFFFF; |
|
963 unsigned y = XY >> 16; |
|
964 SkASSERT(x < mx); |
|
965 SkASSERT(y < my); |
|
966 } |
|
967 } |
|
968 |
|
969 static void check_affine_filter(uint32_t bitmapXY[], int count, |
|
970 unsigned mx, unsigned my) { |
|
971 for (int i = 0; i < count; ++i) { |
|
972 uint32_t YY = *bitmapXY++; |
|
973 unsigned y0 = YY >> 18; |
|
974 unsigned y1 = YY & 0x3FFF; |
|
975 SkASSERT(y0 < my); |
|
976 SkASSERT(y1 < my); |
|
977 |
|
978 uint32_t XX = *bitmapXY++; |
|
979 unsigned x0 = XX >> 18; |
|
980 unsigned x1 = XX & 0x3FFF; |
|
981 SkASSERT(x0 < mx); |
|
982 SkASSERT(x1 < mx); |
|
983 } |
|
984 } |
|
985 |
|
986 void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state, |
|
987 uint32_t bitmapXY[], int count, |
|
988 int x, int y) { |
|
989 SkASSERT(bitmapXY); |
|
990 SkASSERT(count > 0); |
|
991 |
|
992 state.fMatrixProc(state, bitmapXY, count, x, y); |
|
993 |
|
994 void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my); |
|
995 |
|
996 // There are four formats possible: |
|
997 // scale -vs- affine |
|
998 // filter -vs- nofilter |
|
999 if (state.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { |
|
1000 proc = state.fFilterLevel != SkPaint::kNone_FilterLevel ? check_scale_filter : check_scale_nofilter; |
|
1001 } else { |
|
1002 proc = state.fFilterLevel != SkPaint::kNone_FilterLevel ? check_affine_filter : check_affine_nofilter; |
|
1003 } |
|
1004 proc(bitmapXY, count, state.fBitmap->width(), state.fBitmap->height()); |
|
1005 } |
|
1006 |
|
1007 SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const { |
|
1008 return DebugMatrixProc; |
|
1009 } |
|
1010 |
|
1011 #endif |
|
1012 |
|
1013 /////////////////////////////////////////////////////////////////////////////// |
|
1014 /* |
|
1015 The storage requirements for the different matrix procs are as follows, |
|
1016 where each X or Y is 2 bytes, and N is the number of pixels/elements: |
|
1017 |
|
1018 scale/translate nofilter Y(4bytes) + N * X |
|
1019 affine/perspective nofilter N * (X Y) |
|
1020 scale/translate filter Y Y + N * (X X) |
|
1021 affine/perspective filter N * (Y Y X X) |
|
1022 */ |
|
1023 int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const { |
|
1024 int32_t size = static_cast<int32_t>(bufferSize); |
|
1025 |
|
1026 size &= ~3; // only care about 4-byte aligned chunks |
|
1027 if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { |
|
1028 size -= 4; // the shared Y (or YY) coordinate |
|
1029 if (size < 0) { |
|
1030 size = 0; |
|
1031 } |
|
1032 size >>= 1; |
|
1033 } else { |
|
1034 size >>= 2; |
|
1035 } |
|
1036 |
|
1037 if (fFilterLevel != SkPaint::kNone_FilterLevel) { |
|
1038 size >>= 1; |
|
1039 } |
|
1040 |
|
1041 return size; |
|
1042 } |