|
1 /* |
|
2 * Copyright (c) 2000-2007 Niels Provos <provos@citi.umich.edu> |
|
3 * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson |
|
4 * |
|
5 * Redistribution and use in source and binary forms, with or without |
|
6 * modification, are permitted provided that the following conditions |
|
7 * are met: |
|
8 * 1. Redistributions of source code must retain the above copyright |
|
9 * notice, this list of conditions and the following disclaimer. |
|
10 * 2. Redistributions in binary form must reproduce the above copyright |
|
11 * notice, this list of conditions and the following disclaimer in the |
|
12 * documentation and/or other materials provided with the distribution. |
|
13 * 3. The name of the author may not be used to endorse or promote products |
|
14 * derived from this software without specific prior written permission. |
|
15 * |
|
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
|
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
|
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
|
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
26 */ |
|
27 #include "event2/event-config.h" |
|
28 |
|
29 #ifdef WIN32 |
|
30 #include <winsock2.h> |
|
31 #define WIN32_LEAN_AND_MEAN |
|
32 #include <windows.h> |
|
33 #undef WIN32_LEAN_AND_MEAN |
|
34 #endif |
|
35 #include <sys/types.h> |
|
36 #if !defined(WIN32) && defined(_EVENT_HAVE_SYS_TIME_H) |
|
37 #include <sys/time.h> |
|
38 #endif |
|
39 #include <sys/queue.h> |
|
40 #ifdef _EVENT_HAVE_SYS_SOCKET_H |
|
41 #include <sys/socket.h> |
|
42 #endif |
|
43 #include <stdio.h> |
|
44 #include <stdlib.h> |
|
45 #ifdef _EVENT_HAVE_UNISTD_H |
|
46 #include <unistd.h> |
|
47 #endif |
|
48 #ifdef _EVENT_HAVE_SYS_EVENTFD_H |
|
49 #include <sys/eventfd.h> |
|
50 #endif |
|
51 #include <ctype.h> |
|
52 #include <errno.h> |
|
53 #include <signal.h> |
|
54 #include <string.h> |
|
55 #include <time.h> |
|
56 |
|
57 #include "event2/event.h" |
|
58 #include "event2/event_struct.h" |
|
59 #include "event2/event_compat.h" |
|
60 #include "event-internal.h" |
|
61 #include "defer-internal.h" |
|
62 #include "evthread-internal.h" |
|
63 #include "event2/thread.h" |
|
64 #include "event2/util.h" |
|
65 #include "log-internal.h" |
|
66 #include "evmap-internal.h" |
|
67 #include "iocp-internal.h" |
|
68 #include "changelist-internal.h" |
|
69 #include "ht-internal.h" |
|
70 #include "util-internal.h" |
|
71 |
|
72 #ifdef _EVENT_HAVE_EVENT_PORTS |
|
73 extern const struct eventop evportops; |
|
74 #endif |
|
75 #ifdef _EVENT_HAVE_SELECT |
|
76 extern const struct eventop selectops; |
|
77 #endif |
|
78 #ifdef _EVENT_HAVE_POLL |
|
79 extern const struct eventop pollops; |
|
80 #endif |
|
81 #ifdef _EVENT_HAVE_EPOLL |
|
82 extern const struct eventop epollops; |
|
83 #endif |
|
84 #ifdef _EVENT_HAVE_WORKING_KQUEUE |
|
85 extern const struct eventop kqops; |
|
86 #endif |
|
87 #ifdef _EVENT_HAVE_DEVPOLL |
|
88 extern const struct eventop devpollops; |
|
89 #endif |
|
90 #ifdef WIN32 |
|
91 extern const struct eventop win32ops; |
|
92 #endif |
|
93 |
|
94 /* Array of backends in order of preference. */ |
|
95 static const struct eventop *eventops[] = { |
|
96 #ifdef _EVENT_HAVE_EVENT_PORTS |
|
97 &evportops, |
|
98 #endif |
|
99 #ifdef _EVENT_HAVE_WORKING_KQUEUE |
|
100 &kqops, |
|
101 #endif |
|
102 #ifdef _EVENT_HAVE_EPOLL |
|
103 &epollops, |
|
104 #endif |
|
105 #ifdef _EVENT_HAVE_DEVPOLL |
|
106 &devpollops, |
|
107 #endif |
|
108 #ifdef _EVENT_HAVE_POLL |
|
109 &pollops, |
|
110 #endif |
|
111 #ifdef _EVENT_HAVE_SELECT |
|
112 &selectops, |
|
113 #endif |
|
114 #ifdef WIN32 |
|
115 &win32ops, |
|
116 #endif |
|
117 NULL |
|
118 }; |
|
119 |
|
120 /* Global state; deprecated */ |
|
121 struct event_base *event_global_current_base_ = NULL; |
|
122 #define current_base event_global_current_base_ |
|
123 |
|
124 /* Global state */ |
|
125 |
|
126 static int use_monotonic; |
|
127 |
|
128 /* Prototypes */ |
|
129 static inline int event_add_internal(struct event *ev, |
|
130 const struct timeval *tv, int tv_is_absolute); |
|
131 static inline int event_del_internal(struct event *ev); |
|
132 |
|
133 static void event_queue_insert(struct event_base *, struct event *, int); |
|
134 static void event_queue_remove(struct event_base *, struct event *, int); |
|
135 static int event_haveevents(struct event_base *); |
|
136 |
|
137 static int event_process_active(struct event_base *); |
|
138 |
|
139 static int timeout_next(struct event_base *, struct timeval **); |
|
140 static void timeout_process(struct event_base *); |
|
141 static void timeout_correct(struct event_base *, struct timeval *); |
|
142 |
|
143 static inline void event_signal_closure(struct event_base *, struct event *ev); |
|
144 static inline void event_persist_closure(struct event_base *, struct event *ev); |
|
145 |
|
146 static int evthread_notify_base(struct event_base *base); |
|
147 |
|
148 #ifndef _EVENT_DISABLE_DEBUG_MODE |
|
149 /* These functions implement a hashtable of which 'struct event *' structures |
|
150 * have been setup or added. We don't want to trust the content of the struct |
|
151 * event itself, since we're trying to work through cases where an event gets |
|
152 * clobbered or freed. Instead, we keep a hashtable indexed by the pointer. |
|
153 */ |
|
154 |
|
155 struct event_debug_entry { |
|
156 HT_ENTRY(event_debug_entry) node; |
|
157 const struct event *ptr; |
|
158 unsigned added : 1; |
|
159 }; |
|
160 |
|
161 static inline unsigned |
|
162 hash_debug_entry(const struct event_debug_entry *e) |
|
163 { |
|
164 /* We need to do this silliness to convince compilers that we |
|
165 * honestly mean to cast e->ptr to an integer, and discard any |
|
166 * part of it that doesn't fit in an unsigned. |
|
167 */ |
|
168 unsigned u = (unsigned) ((ev_uintptr_t) e->ptr); |
|
169 /* Our hashtable implementation is pretty sensitive to low bits, |
|
170 * and every struct event is over 64 bytes in size, so we can |
|
171 * just say >>6. */ |
|
172 return (u >> 6); |
|
173 } |
|
174 |
|
175 static inline int |
|
176 eq_debug_entry(const struct event_debug_entry *a, |
|
177 const struct event_debug_entry *b) |
|
178 { |
|
179 return a->ptr == b->ptr; |
|
180 } |
|
181 |
|
182 int _event_debug_mode_on = 0; |
|
183 /* Set if it's too late to enable event_debug_mode. */ |
|
184 static int event_debug_mode_too_late = 0; |
|
185 #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
|
186 static void *_event_debug_map_lock = NULL; |
|
187 #endif |
|
188 static HT_HEAD(event_debug_map, event_debug_entry) global_debug_map = |
|
189 HT_INITIALIZER(); |
|
190 |
|
191 HT_PROTOTYPE(event_debug_map, event_debug_entry, node, hash_debug_entry, |
|
192 eq_debug_entry) |
|
193 HT_GENERATE(event_debug_map, event_debug_entry, node, hash_debug_entry, |
|
194 eq_debug_entry, 0.5, mm_malloc, mm_realloc, mm_free) |
|
195 |
|
196 /* Macro: record that ev is now setup (that is, ready for an add) */ |
|
197 #define _event_debug_note_setup(ev) do { \ |
|
198 if (_event_debug_mode_on) { \ |
|
199 struct event_debug_entry *dent,find; \ |
|
200 find.ptr = (ev); \ |
|
201 EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
|
202 dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
|
203 if (dent) { \ |
|
204 dent->added = 0; \ |
|
205 } else { \ |
|
206 dent = mm_malloc(sizeof(*dent)); \ |
|
207 if (!dent) \ |
|
208 event_err(1, \ |
|
209 "Out of memory in debugging code"); \ |
|
210 dent->ptr = (ev); \ |
|
211 dent->added = 0; \ |
|
212 HT_INSERT(event_debug_map, &global_debug_map, dent); \ |
|
213 } \ |
|
214 EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
|
215 } \ |
|
216 event_debug_mode_too_late = 1; \ |
|
217 } while (0) |
|
218 /* Macro: record that ev is no longer setup */ |
|
219 #define _event_debug_note_teardown(ev) do { \ |
|
220 if (_event_debug_mode_on) { \ |
|
221 struct event_debug_entry *dent,find; \ |
|
222 find.ptr = (ev); \ |
|
223 EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
|
224 dent = HT_REMOVE(event_debug_map, &global_debug_map, &find); \ |
|
225 if (dent) \ |
|
226 mm_free(dent); \ |
|
227 EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
|
228 } \ |
|
229 event_debug_mode_too_late = 1; \ |
|
230 } while (0) |
|
231 /* Macro: record that ev is now added */ |
|
232 #define _event_debug_note_add(ev) do { \ |
|
233 if (_event_debug_mode_on) { \ |
|
234 struct event_debug_entry *dent,find; \ |
|
235 find.ptr = (ev); \ |
|
236 EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
|
237 dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
|
238 if (dent) { \ |
|
239 dent->added = 1; \ |
|
240 } else { \ |
|
241 event_errx(_EVENT_ERR_ABORT, \ |
|
242 "%s: noting an add on a non-setup event %p" \ |
|
243 " (events: 0x%x, fd: "EV_SOCK_FMT \ |
|
244 ", flags: 0x%x)", \ |
|
245 __func__, (ev), (ev)->ev_events, \ |
|
246 EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \ |
|
247 } \ |
|
248 EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
|
249 } \ |
|
250 event_debug_mode_too_late = 1; \ |
|
251 } while (0) |
|
252 /* Macro: record that ev is no longer added */ |
|
253 #define _event_debug_note_del(ev) do { \ |
|
254 if (_event_debug_mode_on) { \ |
|
255 struct event_debug_entry *dent,find; \ |
|
256 find.ptr = (ev); \ |
|
257 EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
|
258 dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
|
259 if (dent) { \ |
|
260 dent->added = 0; \ |
|
261 } else { \ |
|
262 event_errx(_EVENT_ERR_ABORT, \ |
|
263 "%s: noting a del on a non-setup event %p" \ |
|
264 " (events: 0x%x, fd: "EV_SOCK_FMT \ |
|
265 ", flags: 0x%x)", \ |
|
266 __func__, (ev), (ev)->ev_events, \ |
|
267 EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \ |
|
268 } \ |
|
269 EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
|
270 } \ |
|
271 event_debug_mode_too_late = 1; \ |
|
272 } while (0) |
|
273 /* Macro: assert that ev is setup (i.e., okay to add or inspect) */ |
|
274 #define _event_debug_assert_is_setup(ev) do { \ |
|
275 if (_event_debug_mode_on) { \ |
|
276 struct event_debug_entry *dent,find; \ |
|
277 find.ptr = (ev); \ |
|
278 EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
|
279 dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
|
280 if (!dent) { \ |
|
281 event_errx(_EVENT_ERR_ABORT, \ |
|
282 "%s called on a non-initialized event %p" \ |
|
283 " (events: 0x%x, fd: "EV_SOCK_FMT\ |
|
284 ", flags: 0x%x)", \ |
|
285 __func__, (ev), (ev)->ev_events, \ |
|
286 EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \ |
|
287 } \ |
|
288 EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
|
289 } \ |
|
290 } while (0) |
|
291 /* Macro: assert that ev is not added (i.e., okay to tear down or set |
|
292 * up again) */ |
|
293 #define _event_debug_assert_not_added(ev) do { \ |
|
294 if (_event_debug_mode_on) { \ |
|
295 struct event_debug_entry *dent,find; \ |
|
296 find.ptr = (ev); \ |
|
297 EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
|
298 dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
|
299 if (dent && dent->added) { \ |
|
300 event_errx(_EVENT_ERR_ABORT, \ |
|
301 "%s called on an already added event %p" \ |
|
302 " (events: 0x%x, fd: "EV_SOCK_FMT", " \ |
|
303 "flags: 0x%x)", \ |
|
304 __func__, (ev), (ev)->ev_events, \ |
|
305 EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \ |
|
306 } \ |
|
307 EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
|
308 } \ |
|
309 } while (0) |
|
310 #else |
|
311 #define _event_debug_note_setup(ev) \ |
|
312 ((void)0) |
|
313 #define _event_debug_note_teardown(ev) \ |
|
314 ((void)0) |
|
315 #define _event_debug_note_add(ev) \ |
|
316 ((void)0) |
|
317 #define _event_debug_note_del(ev) \ |
|
318 ((void)0) |
|
319 #define _event_debug_assert_is_setup(ev) \ |
|
320 ((void)0) |
|
321 #define _event_debug_assert_not_added(ev) \ |
|
322 ((void)0) |
|
323 #endif |
|
324 |
|
325 #define EVENT_BASE_ASSERT_LOCKED(base) \ |
|
326 EVLOCK_ASSERT_LOCKED((base)->th_base_lock) |
|
327 |
|
328 /* The first time this function is called, it sets use_monotonic to 1 |
|
329 * if we have a clock function that supports monotonic time */ |
|
330 static void |
|
331 detect_monotonic(void) |
|
332 { |
|
333 #if defined(_EVENT_HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) |
|
334 struct timespec ts; |
|
335 static int use_monotonic_initialized = 0; |
|
336 |
|
337 if (use_monotonic_initialized) |
|
338 return; |
|
339 |
|
340 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) |
|
341 use_monotonic = 1; |
|
342 |
|
343 use_monotonic_initialized = 1; |
|
344 #endif |
|
345 } |
|
346 |
|
347 /* How often (in seconds) do we check for changes in wall clock time relative |
|
348 * to monotonic time? Set this to -1 for 'never.' */ |
|
349 #define CLOCK_SYNC_INTERVAL -1 |
|
350 |
|
351 /** Set 'tp' to the current time according to 'base'. We must hold the lock |
|
352 * on 'base'. If there is a cached time, return it. Otherwise, use |
|
353 * clock_gettime or gettimeofday as appropriate to find out the right time. |
|
354 * Return 0 on success, -1 on failure. |
|
355 */ |
|
356 static int |
|
357 gettime(struct event_base *base, struct timeval *tp) |
|
358 { |
|
359 EVENT_BASE_ASSERT_LOCKED(base); |
|
360 |
|
361 if (base->tv_cache.tv_sec) { |
|
362 *tp = base->tv_cache; |
|
363 return (0); |
|
364 } |
|
365 |
|
366 #if defined(_EVENT_HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) |
|
367 if (use_monotonic) { |
|
368 struct timespec ts; |
|
369 |
|
370 if (clock_gettime(CLOCK_MONOTONIC, &ts) == -1) |
|
371 return (-1); |
|
372 |
|
373 tp->tv_sec = ts.tv_sec; |
|
374 tp->tv_usec = ts.tv_nsec / 1000; |
|
375 if (base->last_updated_clock_diff + CLOCK_SYNC_INTERVAL |
|
376 < ts.tv_sec) { |
|
377 struct timeval tv; |
|
378 evutil_gettimeofday(&tv,NULL); |
|
379 evutil_timersub(&tv, tp, &base->tv_clock_diff); |
|
380 base->last_updated_clock_diff = ts.tv_sec; |
|
381 } |
|
382 |
|
383 return (0); |
|
384 } |
|
385 #endif |
|
386 |
|
387 return (evutil_gettimeofday(tp, NULL)); |
|
388 } |
|
389 |
|
390 int |
|
391 event_base_gettimeofday_cached(struct event_base *base, struct timeval *tv) |
|
392 { |
|
393 int r; |
|
394 if (!base) { |
|
395 base = current_base; |
|
396 if (!current_base) |
|
397 return evutil_gettimeofday(tv, NULL); |
|
398 } |
|
399 |
|
400 EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
|
401 if (base->tv_cache.tv_sec == 0) { |
|
402 r = evutil_gettimeofday(tv, NULL); |
|
403 } else { |
|
404 #if defined(_EVENT_HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) |
|
405 evutil_timeradd(&base->tv_cache, &base->tv_clock_diff, tv); |
|
406 #else |
|
407 *tv = base->tv_cache; |
|
408 #endif |
|
409 r = 0; |
|
410 } |
|
411 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
412 return r; |
|
413 } |
|
414 |
|
415 /** Make 'base' have no current cached time. */ |
|
416 static inline void |
|
417 clear_time_cache(struct event_base *base) |
|
418 { |
|
419 base->tv_cache.tv_sec = 0; |
|
420 } |
|
421 |
|
422 /** Replace the cached time in 'base' with the current time. */ |
|
423 static inline void |
|
424 update_time_cache(struct event_base *base) |
|
425 { |
|
426 base->tv_cache.tv_sec = 0; |
|
427 if (!(base->flags & EVENT_BASE_FLAG_NO_CACHE_TIME)) |
|
428 gettime(base, &base->tv_cache); |
|
429 } |
|
430 |
|
431 struct event_base * |
|
432 event_init(void) |
|
433 { |
|
434 struct event_base *base = event_base_new_with_config(NULL); |
|
435 |
|
436 if (base == NULL) { |
|
437 event_errx(1, "%s: Unable to construct event_base", __func__); |
|
438 return NULL; |
|
439 } |
|
440 |
|
441 current_base = base; |
|
442 |
|
443 return (base); |
|
444 } |
|
445 |
|
446 struct event_base * |
|
447 event_base_new(void) |
|
448 { |
|
449 struct event_base *base = NULL; |
|
450 struct event_config *cfg = event_config_new(); |
|
451 if (cfg) { |
|
452 base = event_base_new_with_config(cfg); |
|
453 event_config_free(cfg); |
|
454 } |
|
455 return base; |
|
456 } |
|
457 |
|
458 /** Return true iff 'method' is the name of a method that 'cfg' tells us to |
|
459 * avoid. */ |
|
460 static int |
|
461 event_config_is_avoided_method(const struct event_config *cfg, |
|
462 const char *method) |
|
463 { |
|
464 struct event_config_entry *entry; |
|
465 |
|
466 TAILQ_FOREACH(entry, &cfg->entries, next) { |
|
467 if (entry->avoid_method != NULL && |
|
468 strcmp(entry->avoid_method, method) == 0) |
|
469 return (1); |
|
470 } |
|
471 |
|
472 return (0); |
|
473 } |
|
474 |
|
475 /** Return true iff 'method' is disabled according to the environment. */ |
|
476 static int |
|
477 event_is_method_disabled(const char *name) |
|
478 { |
|
479 char environment[64]; |
|
480 int i; |
|
481 |
|
482 evutil_snprintf(environment, sizeof(environment), "EVENT_NO%s", name); |
|
483 for (i = 8; environment[i] != '\0'; ++i) |
|
484 environment[i] = EVUTIL_TOUPPER(environment[i]); |
|
485 /* Note that evutil_getenv() ignores the environment entirely if |
|
486 * we're setuid */ |
|
487 return (evutil_getenv(environment) != NULL); |
|
488 } |
|
489 |
|
490 int |
|
491 event_base_get_features(const struct event_base *base) |
|
492 { |
|
493 return base->evsel->features; |
|
494 } |
|
495 |
|
496 void |
|
497 event_deferred_cb_queue_init(struct deferred_cb_queue *cb) |
|
498 { |
|
499 memset(cb, 0, sizeof(struct deferred_cb_queue)); |
|
500 TAILQ_INIT(&cb->deferred_cb_list); |
|
501 } |
|
502 |
|
503 /** Helper for the deferred_cb queue: wake up the event base. */ |
|
504 static void |
|
505 notify_base_cbq_callback(struct deferred_cb_queue *cb, void *baseptr) |
|
506 { |
|
507 struct event_base *base = baseptr; |
|
508 if (EVBASE_NEED_NOTIFY(base)) |
|
509 evthread_notify_base(base); |
|
510 } |
|
511 |
|
512 struct deferred_cb_queue * |
|
513 event_base_get_deferred_cb_queue(struct event_base *base) |
|
514 { |
|
515 return base ? &base->defer_queue : NULL; |
|
516 } |
|
517 |
|
518 void |
|
519 event_enable_debug_mode(void) |
|
520 { |
|
521 #ifndef _EVENT_DISABLE_DEBUG_MODE |
|
522 if (_event_debug_mode_on) |
|
523 event_errx(1, "%s was called twice!", __func__); |
|
524 if (event_debug_mode_too_late) |
|
525 event_errx(1, "%s must be called *before* creating any events " |
|
526 "or event_bases",__func__); |
|
527 |
|
528 _event_debug_mode_on = 1; |
|
529 |
|
530 HT_INIT(event_debug_map, &global_debug_map); |
|
531 #endif |
|
532 } |
|
533 |
|
534 #if 0 |
|
535 void |
|
536 event_disable_debug_mode(void) |
|
537 { |
|
538 struct event_debug_entry **ent, *victim; |
|
539 |
|
540 EVLOCK_LOCK(_event_debug_map_lock, 0); |
|
541 for (ent = HT_START(event_debug_map, &global_debug_map); ent; ) { |
|
542 victim = *ent; |
|
543 ent = HT_NEXT_RMV(event_debug_map,&global_debug_map, ent); |
|
544 mm_free(victim); |
|
545 } |
|
546 HT_CLEAR(event_debug_map, &global_debug_map); |
|
547 EVLOCK_UNLOCK(_event_debug_map_lock , 0); |
|
548 } |
|
549 #endif |
|
550 |
|
551 struct event_base * |
|
552 event_base_new_with_config(const struct event_config *cfg) |
|
553 { |
|
554 int i; |
|
555 struct event_base *base; |
|
556 int should_check_environment; |
|
557 |
|
558 #ifndef _EVENT_DISABLE_DEBUG_MODE |
|
559 event_debug_mode_too_late = 1; |
|
560 #endif |
|
561 |
|
562 if ((base = mm_calloc(1, sizeof(struct event_base))) == NULL) { |
|
563 event_warn("%s: calloc", __func__); |
|
564 return NULL; |
|
565 } |
|
566 detect_monotonic(); |
|
567 gettime(base, &base->event_tv); |
|
568 |
|
569 min_heap_ctor(&base->timeheap); |
|
570 TAILQ_INIT(&base->eventqueue); |
|
571 base->sig.ev_signal_pair[0] = -1; |
|
572 base->sig.ev_signal_pair[1] = -1; |
|
573 base->th_notify_fd[0] = -1; |
|
574 base->th_notify_fd[1] = -1; |
|
575 |
|
576 event_deferred_cb_queue_init(&base->defer_queue); |
|
577 base->defer_queue.notify_fn = notify_base_cbq_callback; |
|
578 base->defer_queue.notify_arg = base; |
|
579 if (cfg) |
|
580 base->flags = cfg->flags; |
|
581 |
|
582 evmap_io_initmap(&base->io); |
|
583 evmap_signal_initmap(&base->sigmap); |
|
584 event_changelist_init(&base->changelist); |
|
585 |
|
586 base->evbase = NULL; |
|
587 |
|
588 should_check_environment = |
|
589 !(cfg && (cfg->flags & EVENT_BASE_FLAG_IGNORE_ENV)); |
|
590 |
|
591 for (i = 0; eventops[i] && !base->evbase; i++) { |
|
592 if (cfg != NULL) { |
|
593 /* determine if this backend should be avoided */ |
|
594 if (event_config_is_avoided_method(cfg, |
|
595 eventops[i]->name)) |
|
596 continue; |
|
597 if ((eventops[i]->features & cfg->require_features) |
|
598 != cfg->require_features) |
|
599 continue; |
|
600 } |
|
601 |
|
602 /* also obey the environment variables */ |
|
603 if (should_check_environment && |
|
604 event_is_method_disabled(eventops[i]->name)) |
|
605 continue; |
|
606 |
|
607 base->evsel = eventops[i]; |
|
608 |
|
609 base->evbase = base->evsel->init(base); |
|
610 } |
|
611 |
|
612 if (base->evbase == NULL) { |
|
613 event_warnx("%s: no event mechanism available", |
|
614 __func__); |
|
615 base->evsel = NULL; |
|
616 event_base_free(base); |
|
617 return NULL; |
|
618 } |
|
619 |
|
620 if (evutil_getenv("EVENT_SHOW_METHOD")) |
|
621 event_msgx("libevent using: %s", base->evsel->name); |
|
622 |
|
623 /* allocate a single active event queue */ |
|
624 if (event_base_priority_init(base, 1) < 0) { |
|
625 event_base_free(base); |
|
626 return NULL; |
|
627 } |
|
628 |
|
629 /* prepare for threading */ |
|
630 |
|
631 #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
|
632 if (EVTHREAD_LOCKING_ENABLED() && |
|
633 (!cfg || !(cfg->flags & EVENT_BASE_FLAG_NOLOCK))) { |
|
634 int r; |
|
635 EVTHREAD_ALLOC_LOCK(base->th_base_lock, |
|
636 EVTHREAD_LOCKTYPE_RECURSIVE); |
|
637 base->defer_queue.lock = base->th_base_lock; |
|
638 EVTHREAD_ALLOC_COND(base->current_event_cond); |
|
639 r = evthread_make_base_notifiable(base); |
|
640 if (r<0) { |
|
641 event_warnx("%s: Unable to make base notifiable.", __func__); |
|
642 event_base_free(base); |
|
643 return NULL; |
|
644 } |
|
645 } |
|
646 #endif |
|
647 |
|
648 #ifdef WIN32 |
|
649 if (cfg && (cfg->flags & EVENT_BASE_FLAG_STARTUP_IOCP)) |
|
650 event_base_start_iocp(base, cfg->n_cpus_hint); |
|
651 #endif |
|
652 |
|
653 return (base); |
|
654 } |
|
655 |
|
656 int |
|
657 event_base_start_iocp(struct event_base *base, int n_cpus) |
|
658 { |
|
659 #ifdef WIN32 |
|
660 if (base->iocp) |
|
661 return 0; |
|
662 base->iocp = event_iocp_port_launch(n_cpus); |
|
663 if (!base->iocp) { |
|
664 event_warnx("%s: Couldn't launch IOCP", __func__); |
|
665 return -1; |
|
666 } |
|
667 return 0; |
|
668 #else |
|
669 return -1; |
|
670 #endif |
|
671 } |
|
672 |
|
673 void |
|
674 event_base_stop_iocp(struct event_base *base) |
|
675 { |
|
676 #ifdef WIN32 |
|
677 int rv; |
|
678 |
|
679 if (!base->iocp) |
|
680 return; |
|
681 rv = event_iocp_shutdown(base->iocp, -1); |
|
682 EVUTIL_ASSERT(rv >= 0); |
|
683 base->iocp = NULL; |
|
684 #endif |
|
685 } |
|
686 |
|
687 void |
|
688 event_base_free(struct event_base *base) |
|
689 { |
|
690 int i, n_deleted=0; |
|
691 struct event *ev; |
|
692 /* XXXX grab the lock? If there is contention when one thread frees |
|
693 * the base, then the contending thread will be very sad soon. */ |
|
694 |
|
695 /* event_base_free(NULL) is how to free the current_base if we |
|
696 * made it with event_init and forgot to hold a reference to it. */ |
|
697 if (base == NULL && current_base) |
|
698 base = current_base; |
|
699 /* If we're freeing current_base, there won't be a current_base. */ |
|
700 if (base == current_base) |
|
701 current_base = NULL; |
|
702 /* Don't actually free NULL. */ |
|
703 if (base == NULL) { |
|
704 event_warnx("%s: no base to free", __func__); |
|
705 return; |
|
706 } |
|
707 /* XXX(niels) - check for internal events first */ |
|
708 |
|
709 #ifdef WIN32 |
|
710 event_base_stop_iocp(base); |
|
711 #endif |
|
712 |
|
713 /* threading fds if we have them */ |
|
714 if (base->th_notify_fd[0] != -1) { |
|
715 event_del(&base->th_notify); |
|
716 EVUTIL_CLOSESOCKET(base->th_notify_fd[0]); |
|
717 if (base->th_notify_fd[1] != -1) |
|
718 EVUTIL_CLOSESOCKET(base->th_notify_fd[1]); |
|
719 base->th_notify_fd[0] = -1; |
|
720 base->th_notify_fd[1] = -1; |
|
721 event_debug_unassign(&base->th_notify); |
|
722 } |
|
723 |
|
724 /* Delete all non-internal events. */ |
|
725 for (ev = TAILQ_FIRST(&base->eventqueue); ev; ) { |
|
726 struct event *next = TAILQ_NEXT(ev, ev_next); |
|
727 if (!(ev->ev_flags & EVLIST_INTERNAL)) { |
|
728 event_del(ev); |
|
729 ++n_deleted; |
|
730 } |
|
731 ev = next; |
|
732 } |
|
733 while ((ev = min_heap_top(&base->timeheap)) != NULL) { |
|
734 event_del(ev); |
|
735 ++n_deleted; |
|
736 } |
|
737 for (i = 0; i < base->n_common_timeouts; ++i) { |
|
738 struct common_timeout_list *ctl = |
|
739 base->common_timeout_queues[i]; |
|
740 event_del(&ctl->timeout_event); /* Internal; doesn't count */ |
|
741 event_debug_unassign(&ctl->timeout_event); |
|
742 for (ev = TAILQ_FIRST(&ctl->events); ev; ) { |
|
743 struct event *next = TAILQ_NEXT(ev, |
|
744 ev_timeout_pos.ev_next_with_common_timeout); |
|
745 if (!(ev->ev_flags & EVLIST_INTERNAL)) { |
|
746 event_del(ev); |
|
747 ++n_deleted; |
|
748 } |
|
749 ev = next; |
|
750 } |
|
751 mm_free(ctl); |
|
752 } |
|
753 if (base->common_timeout_queues) |
|
754 mm_free(base->common_timeout_queues); |
|
755 |
|
756 for (i = 0; i < base->nactivequeues; ++i) { |
|
757 for (ev = TAILQ_FIRST(&base->activequeues[i]); ev; ) { |
|
758 struct event *next = TAILQ_NEXT(ev, ev_active_next); |
|
759 if (!(ev->ev_flags & EVLIST_INTERNAL)) { |
|
760 event_del(ev); |
|
761 ++n_deleted; |
|
762 } |
|
763 ev = next; |
|
764 } |
|
765 } |
|
766 |
|
767 if (n_deleted) |
|
768 event_debug(("%s: %d events were still set in base", |
|
769 __func__, n_deleted)); |
|
770 |
|
771 if (base->evsel != NULL && base->evsel->dealloc != NULL) |
|
772 base->evsel->dealloc(base); |
|
773 |
|
774 for (i = 0; i < base->nactivequeues; ++i) |
|
775 EVUTIL_ASSERT(TAILQ_EMPTY(&base->activequeues[i])); |
|
776 |
|
777 EVUTIL_ASSERT(min_heap_empty(&base->timeheap)); |
|
778 min_heap_dtor(&base->timeheap); |
|
779 |
|
780 mm_free(base->activequeues); |
|
781 |
|
782 EVUTIL_ASSERT(TAILQ_EMPTY(&base->eventqueue)); |
|
783 |
|
784 evmap_io_clear(&base->io); |
|
785 evmap_signal_clear(&base->sigmap); |
|
786 event_changelist_freemem(&base->changelist); |
|
787 |
|
788 EVTHREAD_FREE_LOCK(base->th_base_lock, EVTHREAD_LOCKTYPE_RECURSIVE); |
|
789 EVTHREAD_FREE_COND(base->current_event_cond); |
|
790 |
|
791 mm_free(base); |
|
792 } |
|
793 |
|
794 /* reinitialize the event base after a fork */ |
|
795 int |
|
796 event_reinit(struct event_base *base) |
|
797 { |
|
798 const struct eventop *evsel; |
|
799 int res = 0; |
|
800 struct event *ev; |
|
801 int was_notifiable = 0; |
|
802 |
|
803 EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
|
804 |
|
805 evsel = base->evsel; |
|
806 |
|
807 #if 0 |
|
808 /* Right now, reinit always takes effect, since even if the |
|
809 backend doesn't require it, the signal socketpair code does. |
|
810 |
|
811 XXX |
|
812 */ |
|
813 /* check if this event mechanism requires reinit */ |
|
814 if (!evsel->need_reinit) |
|
815 goto done; |
|
816 #endif |
|
817 |
|
818 /* prevent internal delete */ |
|
819 if (base->sig.ev_signal_added) { |
|
820 /* we cannot call event_del here because the base has |
|
821 * not been reinitialized yet. */ |
|
822 event_queue_remove(base, &base->sig.ev_signal, |
|
823 EVLIST_INSERTED); |
|
824 if (base->sig.ev_signal.ev_flags & EVLIST_ACTIVE) |
|
825 event_queue_remove(base, &base->sig.ev_signal, |
|
826 EVLIST_ACTIVE); |
|
827 if (base->sig.ev_signal_pair[0] != -1) |
|
828 EVUTIL_CLOSESOCKET(base->sig.ev_signal_pair[0]); |
|
829 if (base->sig.ev_signal_pair[1] != -1) |
|
830 EVUTIL_CLOSESOCKET(base->sig.ev_signal_pair[1]); |
|
831 base->sig.ev_signal_added = 0; |
|
832 } |
|
833 if (base->th_notify_fd[0] != -1) { |
|
834 /* we cannot call event_del here because the base has |
|
835 * not been reinitialized yet. */ |
|
836 was_notifiable = 1; |
|
837 event_queue_remove(base, &base->th_notify, |
|
838 EVLIST_INSERTED); |
|
839 if (base->th_notify.ev_flags & EVLIST_ACTIVE) |
|
840 event_queue_remove(base, &base->th_notify, |
|
841 EVLIST_ACTIVE); |
|
842 base->sig.ev_signal_added = 0; |
|
843 EVUTIL_CLOSESOCKET(base->th_notify_fd[0]); |
|
844 if (base->th_notify_fd[1] != -1) |
|
845 EVUTIL_CLOSESOCKET(base->th_notify_fd[1]); |
|
846 base->th_notify_fd[0] = -1; |
|
847 base->th_notify_fd[1] = -1; |
|
848 event_debug_unassign(&base->th_notify); |
|
849 } |
|
850 |
|
851 if (base->evsel->dealloc != NULL) |
|
852 base->evsel->dealloc(base); |
|
853 base->evbase = evsel->init(base); |
|
854 if (base->evbase == NULL) { |
|
855 event_errx(1, "%s: could not reinitialize event mechanism", |
|
856 __func__); |
|
857 res = -1; |
|
858 goto done; |
|
859 } |
|
860 |
|
861 event_changelist_freemem(&base->changelist); /* XXX */ |
|
862 evmap_io_clear(&base->io); |
|
863 evmap_signal_clear(&base->sigmap); |
|
864 |
|
865 TAILQ_FOREACH(ev, &base->eventqueue, ev_next) { |
|
866 if (ev->ev_events & (EV_READ|EV_WRITE)) { |
|
867 if (ev == &base->sig.ev_signal) { |
|
868 /* If we run into the ev_signal event, it's only |
|
869 * in eventqueue because some signal event was |
|
870 * added, which made evsig_add re-add ev_signal. |
|
871 * So don't double-add it. */ |
|
872 continue; |
|
873 } |
|
874 if (evmap_io_add(base, ev->ev_fd, ev) == -1) |
|
875 res = -1; |
|
876 } else if (ev->ev_events & EV_SIGNAL) { |
|
877 if (evmap_signal_add(base, (int)ev->ev_fd, ev) == -1) |
|
878 res = -1; |
|
879 } |
|
880 } |
|
881 |
|
882 if (was_notifiable && res == 0) |
|
883 res = evthread_make_base_notifiable(base); |
|
884 |
|
885 done: |
|
886 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
887 return (res); |
|
888 } |
|
889 |
|
890 const char ** |
|
891 event_get_supported_methods(void) |
|
892 { |
|
893 static const char **methods = NULL; |
|
894 const struct eventop **method; |
|
895 const char **tmp; |
|
896 int i = 0, k; |
|
897 |
|
898 /* count all methods */ |
|
899 for (method = &eventops[0]; *method != NULL; ++method) { |
|
900 ++i; |
|
901 } |
|
902 |
|
903 /* allocate one more than we need for the NULL pointer */ |
|
904 tmp = mm_calloc((i + 1), sizeof(char *)); |
|
905 if (tmp == NULL) |
|
906 return (NULL); |
|
907 |
|
908 /* populate the array with the supported methods */ |
|
909 for (k = 0, i = 0; eventops[k] != NULL; ++k) { |
|
910 tmp[i++] = eventops[k]->name; |
|
911 } |
|
912 tmp[i] = NULL; |
|
913 |
|
914 if (methods != NULL) |
|
915 mm_free((char**)methods); |
|
916 |
|
917 methods = tmp; |
|
918 |
|
919 return (methods); |
|
920 } |
|
921 |
|
922 struct event_config * |
|
923 event_config_new(void) |
|
924 { |
|
925 struct event_config *cfg = mm_calloc(1, sizeof(*cfg)); |
|
926 |
|
927 if (cfg == NULL) |
|
928 return (NULL); |
|
929 |
|
930 TAILQ_INIT(&cfg->entries); |
|
931 |
|
932 return (cfg); |
|
933 } |
|
934 |
|
935 static void |
|
936 event_config_entry_free(struct event_config_entry *entry) |
|
937 { |
|
938 if (entry->avoid_method != NULL) |
|
939 mm_free((char *)entry->avoid_method); |
|
940 mm_free(entry); |
|
941 } |
|
942 |
|
943 void |
|
944 event_config_free(struct event_config *cfg) |
|
945 { |
|
946 struct event_config_entry *entry; |
|
947 |
|
948 while ((entry = TAILQ_FIRST(&cfg->entries)) != NULL) { |
|
949 TAILQ_REMOVE(&cfg->entries, entry, next); |
|
950 event_config_entry_free(entry); |
|
951 } |
|
952 mm_free(cfg); |
|
953 } |
|
954 |
|
955 int |
|
956 event_config_set_flag(struct event_config *cfg, int flag) |
|
957 { |
|
958 if (!cfg) |
|
959 return -1; |
|
960 cfg->flags |= flag; |
|
961 return 0; |
|
962 } |
|
963 |
|
964 int |
|
965 event_config_avoid_method(struct event_config *cfg, const char *method) |
|
966 { |
|
967 struct event_config_entry *entry = mm_malloc(sizeof(*entry)); |
|
968 if (entry == NULL) |
|
969 return (-1); |
|
970 |
|
971 if ((entry->avoid_method = mm_strdup(method)) == NULL) { |
|
972 mm_free(entry); |
|
973 return (-1); |
|
974 } |
|
975 |
|
976 TAILQ_INSERT_TAIL(&cfg->entries, entry, next); |
|
977 |
|
978 return (0); |
|
979 } |
|
980 |
|
981 int |
|
982 event_config_require_features(struct event_config *cfg, |
|
983 int features) |
|
984 { |
|
985 if (!cfg) |
|
986 return (-1); |
|
987 cfg->require_features = features; |
|
988 return (0); |
|
989 } |
|
990 |
|
991 int |
|
992 event_config_set_num_cpus_hint(struct event_config *cfg, int cpus) |
|
993 { |
|
994 if (!cfg) |
|
995 return (-1); |
|
996 cfg->n_cpus_hint = cpus; |
|
997 return (0); |
|
998 } |
|
999 |
|
1000 int |
|
1001 event_priority_init(int npriorities) |
|
1002 { |
|
1003 return event_base_priority_init(current_base, npriorities); |
|
1004 } |
|
1005 |
|
1006 int |
|
1007 event_base_priority_init(struct event_base *base, int npriorities) |
|
1008 { |
|
1009 int i; |
|
1010 |
|
1011 if (N_ACTIVE_CALLBACKS(base) || npriorities < 1 |
|
1012 || npriorities >= EVENT_MAX_PRIORITIES) |
|
1013 return (-1); |
|
1014 |
|
1015 if (npriorities == base->nactivequeues) |
|
1016 return (0); |
|
1017 |
|
1018 if (base->nactivequeues) { |
|
1019 mm_free(base->activequeues); |
|
1020 base->nactivequeues = 0; |
|
1021 } |
|
1022 |
|
1023 /* Allocate our priority queues */ |
|
1024 base->activequeues = (struct event_list *) |
|
1025 mm_calloc(npriorities, sizeof(struct event_list)); |
|
1026 if (base->activequeues == NULL) { |
|
1027 event_warn("%s: calloc", __func__); |
|
1028 return (-1); |
|
1029 } |
|
1030 base->nactivequeues = npriorities; |
|
1031 |
|
1032 for (i = 0; i < base->nactivequeues; ++i) { |
|
1033 TAILQ_INIT(&base->activequeues[i]); |
|
1034 } |
|
1035 |
|
1036 return (0); |
|
1037 } |
|
1038 |
|
1039 /* Returns true iff we're currently watching any events. */ |
|
1040 static int |
|
1041 event_haveevents(struct event_base *base) |
|
1042 { |
|
1043 /* Caller must hold th_base_lock */ |
|
1044 return (base->virtual_event_count > 0 || base->event_count > 0); |
|
1045 } |
|
1046 |
|
1047 /* "closure" function called when processing active signal events */ |
|
1048 static inline void |
|
1049 event_signal_closure(struct event_base *base, struct event *ev) |
|
1050 { |
|
1051 short ncalls; |
|
1052 int should_break; |
|
1053 |
|
1054 /* Allows deletes to work */ |
|
1055 ncalls = ev->ev_ncalls; |
|
1056 if (ncalls != 0) |
|
1057 ev->ev_pncalls = &ncalls; |
|
1058 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
1059 while (ncalls) { |
|
1060 ncalls--; |
|
1061 ev->ev_ncalls = ncalls; |
|
1062 if (ncalls == 0) |
|
1063 ev->ev_pncalls = NULL; |
|
1064 (*ev->ev_callback)(ev->ev_fd, ev->ev_res, ev->ev_arg); |
|
1065 |
|
1066 EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
|
1067 should_break = base->event_break; |
|
1068 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
1069 |
|
1070 if (should_break) { |
|
1071 if (ncalls != 0) |
|
1072 ev->ev_pncalls = NULL; |
|
1073 return; |
|
1074 } |
|
1075 } |
|
1076 } |
|
1077 |
|
1078 /* Common timeouts are special timeouts that are handled as queues rather than |
|
1079 * in the minheap. This is more efficient than the minheap if we happen to |
|
1080 * know that we're going to get several thousands of timeout events all with |
|
1081 * the same timeout value. |
|
1082 * |
|
1083 * Since all our timeout handling code assumes timevals can be copied, |
|
1084 * assigned, etc, we can't use "magic pointer" to encode these common |
|
1085 * timeouts. Searching through a list to see if every timeout is common could |
|
1086 * also get inefficient. Instead, we take advantage of the fact that tv_usec |
|
1087 * is 32 bits long, but only uses 20 of those bits (since it can never be over |
|
1088 * 999999.) We use the top bits to encode 4 bites of magic number, and 8 bits |
|
1089 * of index into the event_base's aray of common timeouts. |
|
1090 */ |
|
1091 |
|
1092 #define MICROSECONDS_MASK COMMON_TIMEOUT_MICROSECONDS_MASK |
|
1093 #define COMMON_TIMEOUT_IDX_MASK 0x0ff00000 |
|
1094 #define COMMON_TIMEOUT_IDX_SHIFT 20 |
|
1095 #define COMMON_TIMEOUT_MASK 0xf0000000 |
|
1096 #define COMMON_TIMEOUT_MAGIC 0x50000000 |
|
1097 |
|
1098 #define COMMON_TIMEOUT_IDX(tv) \ |
|
1099 (((tv)->tv_usec & COMMON_TIMEOUT_IDX_MASK)>>COMMON_TIMEOUT_IDX_SHIFT) |
|
1100 |
|
1101 /** Return true iff if 'tv' is a common timeout in 'base' */ |
|
1102 static inline int |
|
1103 is_common_timeout(const struct timeval *tv, |
|
1104 const struct event_base *base) |
|
1105 { |
|
1106 int idx; |
|
1107 if ((tv->tv_usec & COMMON_TIMEOUT_MASK) != COMMON_TIMEOUT_MAGIC) |
|
1108 return 0; |
|
1109 idx = COMMON_TIMEOUT_IDX(tv); |
|
1110 return idx < base->n_common_timeouts; |
|
1111 } |
|
1112 |
|
1113 /* True iff tv1 and tv2 have the same common-timeout index, or if neither |
|
1114 * one is a common timeout. */ |
|
1115 static inline int |
|
1116 is_same_common_timeout(const struct timeval *tv1, const struct timeval *tv2) |
|
1117 { |
|
1118 return (tv1->tv_usec & ~MICROSECONDS_MASK) == |
|
1119 (tv2->tv_usec & ~MICROSECONDS_MASK); |
|
1120 } |
|
1121 |
|
1122 /** Requires that 'tv' is a common timeout. Return the corresponding |
|
1123 * common_timeout_list. */ |
|
1124 static inline struct common_timeout_list * |
|
1125 get_common_timeout_list(struct event_base *base, const struct timeval *tv) |
|
1126 { |
|
1127 return base->common_timeout_queues[COMMON_TIMEOUT_IDX(tv)]; |
|
1128 } |
|
1129 |
|
1130 #if 0 |
|
1131 static inline int |
|
1132 common_timeout_ok(const struct timeval *tv, |
|
1133 struct event_base *base) |
|
1134 { |
|
1135 const struct timeval *expect = |
|
1136 &get_common_timeout_list(base, tv)->duration; |
|
1137 return tv->tv_sec == expect->tv_sec && |
|
1138 tv->tv_usec == expect->tv_usec; |
|
1139 } |
|
1140 #endif |
|
1141 |
|
1142 /* Add the timeout for the first event in given common timeout list to the |
|
1143 * event_base's minheap. */ |
|
1144 static void |
|
1145 common_timeout_schedule(struct common_timeout_list *ctl, |
|
1146 const struct timeval *now, struct event *head) |
|
1147 { |
|
1148 struct timeval timeout = head->ev_timeout; |
|
1149 timeout.tv_usec &= MICROSECONDS_MASK; |
|
1150 event_add_internal(&ctl->timeout_event, &timeout, 1); |
|
1151 } |
|
1152 |
|
1153 /* Callback: invoked when the timeout for a common timeout queue triggers. |
|
1154 * This means that (at least) the first event in that queue should be run, |
|
1155 * and the timeout should be rescheduled if there are more events. */ |
|
1156 static void |
|
1157 common_timeout_callback(evutil_socket_t fd, short what, void *arg) |
|
1158 { |
|
1159 struct timeval now; |
|
1160 struct common_timeout_list *ctl = arg; |
|
1161 struct event_base *base = ctl->base; |
|
1162 struct event *ev = NULL; |
|
1163 EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
|
1164 gettime(base, &now); |
|
1165 while (1) { |
|
1166 ev = TAILQ_FIRST(&ctl->events); |
|
1167 if (!ev || ev->ev_timeout.tv_sec > now.tv_sec || |
|
1168 (ev->ev_timeout.tv_sec == now.tv_sec && |
|
1169 (ev->ev_timeout.tv_usec&MICROSECONDS_MASK) > now.tv_usec)) |
|
1170 break; |
|
1171 event_del_internal(ev); |
|
1172 event_active_nolock(ev, EV_TIMEOUT, 1); |
|
1173 } |
|
1174 if (ev) |
|
1175 common_timeout_schedule(ctl, &now, ev); |
|
1176 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
1177 } |
|
1178 |
|
1179 #define MAX_COMMON_TIMEOUTS 256 |
|
1180 |
|
1181 const struct timeval * |
|
1182 event_base_init_common_timeout(struct event_base *base, |
|
1183 const struct timeval *duration) |
|
1184 { |
|
1185 int i; |
|
1186 struct timeval tv; |
|
1187 const struct timeval *result=NULL; |
|
1188 struct common_timeout_list *new_ctl; |
|
1189 |
|
1190 EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
|
1191 if (duration->tv_usec > 1000000) { |
|
1192 memcpy(&tv, duration, sizeof(struct timeval)); |
|
1193 if (is_common_timeout(duration, base)) |
|
1194 tv.tv_usec &= MICROSECONDS_MASK; |
|
1195 tv.tv_sec += tv.tv_usec / 1000000; |
|
1196 tv.tv_usec %= 1000000; |
|
1197 duration = &tv; |
|
1198 } |
|
1199 for (i = 0; i < base->n_common_timeouts; ++i) { |
|
1200 const struct common_timeout_list *ctl = |
|
1201 base->common_timeout_queues[i]; |
|
1202 if (duration->tv_sec == ctl->duration.tv_sec && |
|
1203 duration->tv_usec == |
|
1204 (ctl->duration.tv_usec & MICROSECONDS_MASK)) { |
|
1205 EVUTIL_ASSERT(is_common_timeout(&ctl->duration, base)); |
|
1206 result = &ctl->duration; |
|
1207 goto done; |
|
1208 } |
|
1209 } |
|
1210 if (base->n_common_timeouts == MAX_COMMON_TIMEOUTS) { |
|
1211 event_warnx("%s: Too many common timeouts already in use; " |
|
1212 "we only support %d per event_base", __func__, |
|
1213 MAX_COMMON_TIMEOUTS); |
|
1214 goto done; |
|
1215 } |
|
1216 if (base->n_common_timeouts_allocated == base->n_common_timeouts) { |
|
1217 int n = base->n_common_timeouts < 16 ? 16 : |
|
1218 base->n_common_timeouts*2; |
|
1219 struct common_timeout_list **newqueues = |
|
1220 mm_realloc(base->common_timeout_queues, |
|
1221 n*sizeof(struct common_timeout_queue *)); |
|
1222 if (!newqueues) { |
|
1223 event_warn("%s: realloc",__func__); |
|
1224 goto done; |
|
1225 } |
|
1226 base->n_common_timeouts_allocated = n; |
|
1227 base->common_timeout_queues = newqueues; |
|
1228 } |
|
1229 new_ctl = mm_calloc(1, sizeof(struct common_timeout_list)); |
|
1230 if (!new_ctl) { |
|
1231 event_warn("%s: calloc",__func__); |
|
1232 goto done; |
|
1233 } |
|
1234 TAILQ_INIT(&new_ctl->events); |
|
1235 new_ctl->duration.tv_sec = duration->tv_sec; |
|
1236 new_ctl->duration.tv_usec = |
|
1237 duration->tv_usec | COMMON_TIMEOUT_MAGIC | |
|
1238 (base->n_common_timeouts << COMMON_TIMEOUT_IDX_SHIFT); |
|
1239 evtimer_assign(&new_ctl->timeout_event, base, |
|
1240 common_timeout_callback, new_ctl); |
|
1241 new_ctl->timeout_event.ev_flags |= EVLIST_INTERNAL; |
|
1242 event_priority_set(&new_ctl->timeout_event, 0); |
|
1243 new_ctl->base = base; |
|
1244 base->common_timeout_queues[base->n_common_timeouts++] = new_ctl; |
|
1245 result = &new_ctl->duration; |
|
1246 |
|
1247 done: |
|
1248 if (result) |
|
1249 EVUTIL_ASSERT(is_common_timeout(result, base)); |
|
1250 |
|
1251 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
1252 return result; |
|
1253 } |
|
1254 |
|
1255 /* Closure function invoked when we're activating a persistent event. */ |
|
1256 static inline void |
|
1257 event_persist_closure(struct event_base *base, struct event *ev) |
|
1258 { |
|
1259 /* reschedule the persistent event if we have a timeout. */ |
|
1260 if (ev->ev_io_timeout.tv_sec || ev->ev_io_timeout.tv_usec) { |
|
1261 /* If there was a timeout, we want it to run at an interval of |
|
1262 * ev_io_timeout after the last time it was _scheduled_ for, |
|
1263 * not ev_io_timeout after _now_. If it fired for another |
|
1264 * reason, though, the timeout ought to start ticking _now_. */ |
|
1265 struct timeval run_at, relative_to, delay, now; |
|
1266 ev_uint32_t usec_mask = 0; |
|
1267 EVUTIL_ASSERT(is_same_common_timeout(&ev->ev_timeout, |
|
1268 &ev->ev_io_timeout)); |
|
1269 gettime(base, &now); |
|
1270 if (is_common_timeout(&ev->ev_timeout, base)) { |
|
1271 delay = ev->ev_io_timeout; |
|
1272 usec_mask = delay.tv_usec & ~MICROSECONDS_MASK; |
|
1273 delay.tv_usec &= MICROSECONDS_MASK; |
|
1274 if (ev->ev_res & EV_TIMEOUT) { |
|
1275 relative_to = ev->ev_timeout; |
|
1276 relative_to.tv_usec &= MICROSECONDS_MASK; |
|
1277 } else { |
|
1278 relative_to = now; |
|
1279 } |
|
1280 } else { |
|
1281 delay = ev->ev_io_timeout; |
|
1282 if (ev->ev_res & EV_TIMEOUT) { |
|
1283 relative_to = ev->ev_timeout; |
|
1284 } else { |
|
1285 relative_to = now; |
|
1286 } |
|
1287 } |
|
1288 evutil_timeradd(&relative_to, &delay, &run_at); |
|
1289 if (evutil_timercmp(&run_at, &now, <)) { |
|
1290 /* Looks like we missed at least one invocation due to |
|
1291 * a clock jump, not running the event loop for a |
|
1292 * while, really slow callbacks, or |
|
1293 * something. Reschedule relative to now. |
|
1294 */ |
|
1295 evutil_timeradd(&now, &delay, &run_at); |
|
1296 } |
|
1297 run_at.tv_usec |= usec_mask; |
|
1298 event_add_internal(ev, &run_at, 1); |
|
1299 } |
|
1300 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
1301 (*ev->ev_callback)(ev->ev_fd, ev->ev_res, ev->ev_arg); |
|
1302 } |
|
1303 |
|
1304 /* |
|
1305 Helper for event_process_active to process all the events in a single queue, |
|
1306 releasing the lock as we go. This function requires that the lock be held |
|
1307 when it's invoked. Returns -1 if we get a signal or an event_break that |
|
1308 means we should stop processing any active events now. Otherwise returns |
|
1309 the number of non-internal events that we processed. |
|
1310 */ |
|
1311 static int |
|
1312 event_process_active_single_queue(struct event_base *base, |
|
1313 struct event_list *activeq) |
|
1314 { |
|
1315 struct event *ev; |
|
1316 int count = 0; |
|
1317 |
|
1318 EVUTIL_ASSERT(activeq != NULL); |
|
1319 |
|
1320 for (ev = TAILQ_FIRST(activeq); ev; ev = TAILQ_FIRST(activeq)) { |
|
1321 if (ev->ev_events & EV_PERSIST) |
|
1322 event_queue_remove(base, ev, EVLIST_ACTIVE); |
|
1323 else |
|
1324 event_del_internal(ev); |
|
1325 if (!(ev->ev_flags & EVLIST_INTERNAL)) |
|
1326 ++count; |
|
1327 |
|
1328 event_debug(( |
|
1329 "event_process_active: event: %p, %s%scall %p", |
|
1330 ev, |
|
1331 ev->ev_res & EV_READ ? "EV_READ " : " ", |
|
1332 ev->ev_res & EV_WRITE ? "EV_WRITE " : " ", |
|
1333 ev->ev_callback)); |
|
1334 |
|
1335 #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
|
1336 base->current_event = ev; |
|
1337 base->current_event_waiters = 0; |
|
1338 #endif |
|
1339 |
|
1340 switch (ev->ev_closure) { |
|
1341 case EV_CLOSURE_SIGNAL: |
|
1342 event_signal_closure(base, ev); |
|
1343 break; |
|
1344 case EV_CLOSURE_PERSIST: |
|
1345 event_persist_closure(base, ev); |
|
1346 break; |
|
1347 default: |
|
1348 case EV_CLOSURE_NONE: |
|
1349 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
1350 (*ev->ev_callback)( |
|
1351 ev->ev_fd, ev->ev_res, ev->ev_arg); |
|
1352 break; |
|
1353 } |
|
1354 |
|
1355 EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
|
1356 #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
|
1357 base->current_event = NULL; |
|
1358 if (base->current_event_waiters) { |
|
1359 base->current_event_waiters = 0; |
|
1360 EVTHREAD_COND_BROADCAST(base->current_event_cond); |
|
1361 } |
|
1362 #endif |
|
1363 |
|
1364 if (base->event_break) |
|
1365 return -1; |
|
1366 if (base->event_continue) |
|
1367 break; |
|
1368 } |
|
1369 return count; |
|
1370 } |
|
1371 |
|
1372 /* |
|
1373 Process up to MAX_DEFERRED of the defered_cb entries in 'queue'. If |
|
1374 *breakptr becomes set to 1, stop. Requires that we start out holding |
|
1375 the lock on 'queue'; releases the lock around 'queue' for each deferred_cb |
|
1376 we process. |
|
1377 */ |
|
1378 static int |
|
1379 event_process_deferred_callbacks(struct deferred_cb_queue *queue, int *breakptr) |
|
1380 { |
|
1381 int count = 0; |
|
1382 struct deferred_cb *cb; |
|
1383 |
|
1384 #define MAX_DEFERRED 16 |
|
1385 while ((cb = TAILQ_FIRST(&queue->deferred_cb_list))) { |
|
1386 cb->queued = 0; |
|
1387 TAILQ_REMOVE(&queue->deferred_cb_list, cb, cb_next); |
|
1388 --queue->active_count; |
|
1389 UNLOCK_DEFERRED_QUEUE(queue); |
|
1390 |
|
1391 cb->cb(cb, cb->arg); |
|
1392 |
|
1393 LOCK_DEFERRED_QUEUE(queue); |
|
1394 if (*breakptr) |
|
1395 return -1; |
|
1396 if (++count == MAX_DEFERRED) |
|
1397 break; |
|
1398 } |
|
1399 #undef MAX_DEFERRED |
|
1400 return count; |
|
1401 } |
|
1402 |
|
1403 /* |
|
1404 * Active events are stored in priority queues. Lower priorities are always |
|
1405 * process before higher priorities. Low priority events can starve high |
|
1406 * priority ones. |
|
1407 */ |
|
1408 |
|
1409 static int |
|
1410 event_process_active(struct event_base *base) |
|
1411 { |
|
1412 /* Caller must hold th_base_lock */ |
|
1413 struct event_list *activeq = NULL; |
|
1414 int i, c = 0; |
|
1415 |
|
1416 for (i = 0; i < base->nactivequeues; ++i) { |
|
1417 if (TAILQ_FIRST(&base->activequeues[i]) != NULL) { |
|
1418 base->event_running_priority = i; |
|
1419 activeq = &base->activequeues[i]; |
|
1420 c = event_process_active_single_queue(base, activeq); |
|
1421 if (c < 0) { |
|
1422 base->event_running_priority = -1; |
|
1423 return -1; |
|
1424 } else if (c > 0) |
|
1425 break; /* Processed a real event; do not |
|
1426 * consider lower-priority events */ |
|
1427 /* If we get here, all of the events we processed |
|
1428 * were internal. Continue. */ |
|
1429 } |
|
1430 } |
|
1431 |
|
1432 event_process_deferred_callbacks(&base->defer_queue,&base->event_break); |
|
1433 base->event_running_priority = -1; |
|
1434 return c; |
|
1435 } |
|
1436 |
|
1437 /* |
|
1438 * Wait continuously for events. We exit only if no events are left. |
|
1439 */ |
|
1440 |
|
1441 int |
|
1442 event_dispatch(void) |
|
1443 { |
|
1444 return (event_loop(0)); |
|
1445 } |
|
1446 |
|
1447 int |
|
1448 event_base_dispatch(struct event_base *event_base) |
|
1449 { |
|
1450 return (event_base_loop(event_base, 0)); |
|
1451 } |
|
1452 |
|
1453 const char * |
|
1454 event_base_get_method(const struct event_base *base) |
|
1455 { |
|
1456 EVUTIL_ASSERT(base); |
|
1457 return (base->evsel->name); |
|
1458 } |
|
1459 |
|
1460 /** Callback: used to implement event_base_loopexit by telling the event_base |
|
1461 * that it's time to exit its loop. */ |
|
1462 static void |
|
1463 event_loopexit_cb(evutil_socket_t fd, short what, void *arg) |
|
1464 { |
|
1465 struct event_base *base = arg; |
|
1466 base->event_gotterm = 1; |
|
1467 } |
|
1468 |
|
1469 int |
|
1470 event_loopexit(const struct timeval *tv) |
|
1471 { |
|
1472 return (event_once(-1, EV_TIMEOUT, event_loopexit_cb, |
|
1473 current_base, tv)); |
|
1474 } |
|
1475 |
|
1476 int |
|
1477 event_base_loopexit(struct event_base *event_base, const struct timeval *tv) |
|
1478 { |
|
1479 return (event_base_once(event_base, -1, EV_TIMEOUT, event_loopexit_cb, |
|
1480 event_base, tv)); |
|
1481 } |
|
1482 |
|
1483 int |
|
1484 event_loopbreak(void) |
|
1485 { |
|
1486 return (event_base_loopbreak(current_base)); |
|
1487 } |
|
1488 |
|
1489 int |
|
1490 event_base_loopbreak(struct event_base *event_base) |
|
1491 { |
|
1492 int r = 0; |
|
1493 if (event_base == NULL) |
|
1494 return (-1); |
|
1495 |
|
1496 EVBASE_ACQUIRE_LOCK(event_base, th_base_lock); |
|
1497 event_base->event_break = 1; |
|
1498 |
|
1499 if (EVBASE_NEED_NOTIFY(event_base)) { |
|
1500 r = evthread_notify_base(event_base); |
|
1501 } else { |
|
1502 r = (0); |
|
1503 } |
|
1504 EVBASE_RELEASE_LOCK(event_base, th_base_lock); |
|
1505 return r; |
|
1506 } |
|
1507 |
|
1508 int |
|
1509 event_base_got_break(struct event_base *event_base) |
|
1510 { |
|
1511 int res; |
|
1512 EVBASE_ACQUIRE_LOCK(event_base, th_base_lock); |
|
1513 res = event_base->event_break; |
|
1514 EVBASE_RELEASE_LOCK(event_base, th_base_lock); |
|
1515 return res; |
|
1516 } |
|
1517 |
|
1518 int |
|
1519 event_base_got_exit(struct event_base *event_base) |
|
1520 { |
|
1521 int res; |
|
1522 EVBASE_ACQUIRE_LOCK(event_base, th_base_lock); |
|
1523 res = event_base->event_gotterm; |
|
1524 EVBASE_RELEASE_LOCK(event_base, th_base_lock); |
|
1525 return res; |
|
1526 } |
|
1527 |
|
1528 /* not thread safe */ |
|
1529 |
|
1530 int |
|
1531 event_loop(int flags) |
|
1532 { |
|
1533 return event_base_loop(current_base, flags); |
|
1534 } |
|
1535 |
|
1536 int |
|
1537 event_base_loop(struct event_base *base, int flags) |
|
1538 { |
|
1539 const struct eventop *evsel = base->evsel; |
|
1540 struct timeval tv; |
|
1541 struct timeval *tv_p; |
|
1542 int res, done, retval = 0; |
|
1543 |
|
1544 /* Grab the lock. We will release it inside evsel.dispatch, and again |
|
1545 * as we invoke user callbacks. */ |
|
1546 EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
|
1547 |
|
1548 if (base->running_loop) { |
|
1549 event_warnx("%s: reentrant invocation. Only one event_base_loop" |
|
1550 " can run on each event_base at once.", __func__); |
|
1551 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
1552 return -1; |
|
1553 } |
|
1554 |
|
1555 base->running_loop = 1; |
|
1556 |
|
1557 clear_time_cache(base); |
|
1558 |
|
1559 if (base->sig.ev_signal_added && base->sig.ev_n_signals_added) |
|
1560 evsig_set_base(base); |
|
1561 |
|
1562 done = 0; |
|
1563 |
|
1564 #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
|
1565 base->th_owner_id = EVTHREAD_GET_ID(); |
|
1566 #endif |
|
1567 |
|
1568 base->event_gotterm = base->event_break = 0; |
|
1569 |
|
1570 while (!done) { |
|
1571 base->event_continue = 0; |
|
1572 |
|
1573 /* Terminate the loop if we have been asked to */ |
|
1574 if (base->event_gotterm) { |
|
1575 break; |
|
1576 } |
|
1577 |
|
1578 if (base->event_break) { |
|
1579 break; |
|
1580 } |
|
1581 |
|
1582 timeout_correct(base, &tv); |
|
1583 |
|
1584 tv_p = &tv; |
|
1585 if (!N_ACTIVE_CALLBACKS(base) && !(flags & EVLOOP_NONBLOCK)) { |
|
1586 timeout_next(base, &tv_p); |
|
1587 } else { |
|
1588 /* |
|
1589 * if we have active events, we just poll new events |
|
1590 * without waiting. |
|
1591 */ |
|
1592 evutil_timerclear(&tv); |
|
1593 } |
|
1594 |
|
1595 /* If we have no events, we just exit */ |
|
1596 if (!event_haveevents(base) && !N_ACTIVE_CALLBACKS(base)) { |
|
1597 event_debug(("%s: no events registered.", __func__)); |
|
1598 retval = 1; |
|
1599 goto done; |
|
1600 } |
|
1601 |
|
1602 /* update last old time */ |
|
1603 gettime(base, &base->event_tv); |
|
1604 |
|
1605 clear_time_cache(base); |
|
1606 |
|
1607 res = evsel->dispatch(base, tv_p); |
|
1608 |
|
1609 if (res == -1) { |
|
1610 event_debug(("%s: dispatch returned unsuccessfully.", |
|
1611 __func__)); |
|
1612 retval = -1; |
|
1613 goto done; |
|
1614 } |
|
1615 |
|
1616 update_time_cache(base); |
|
1617 |
|
1618 timeout_process(base); |
|
1619 |
|
1620 if (N_ACTIVE_CALLBACKS(base)) { |
|
1621 int n = event_process_active(base); |
|
1622 if ((flags & EVLOOP_ONCE) |
|
1623 && N_ACTIVE_CALLBACKS(base) == 0 |
|
1624 && n != 0) |
|
1625 done = 1; |
|
1626 } else if (flags & EVLOOP_NONBLOCK) |
|
1627 done = 1; |
|
1628 } |
|
1629 event_debug(("%s: asked to terminate loop.", __func__)); |
|
1630 |
|
1631 done: |
|
1632 clear_time_cache(base); |
|
1633 base->running_loop = 0; |
|
1634 |
|
1635 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
1636 |
|
1637 return (retval); |
|
1638 } |
|
1639 |
|
1640 /* Sets up an event for processing once */ |
|
1641 struct event_once { |
|
1642 struct event ev; |
|
1643 |
|
1644 void (*cb)(evutil_socket_t, short, void *); |
|
1645 void *arg; |
|
1646 }; |
|
1647 |
|
1648 /* One-time callback to implement event_base_once: invokes the user callback, |
|
1649 * then deletes the allocated storage */ |
|
1650 static void |
|
1651 event_once_cb(evutil_socket_t fd, short events, void *arg) |
|
1652 { |
|
1653 struct event_once *eonce = arg; |
|
1654 |
|
1655 (*eonce->cb)(fd, events, eonce->arg); |
|
1656 event_debug_unassign(&eonce->ev); |
|
1657 mm_free(eonce); |
|
1658 } |
|
1659 |
|
1660 /* not threadsafe, event scheduled once. */ |
|
1661 int |
|
1662 event_once(evutil_socket_t fd, short events, |
|
1663 void (*callback)(evutil_socket_t, short, void *), |
|
1664 void *arg, const struct timeval *tv) |
|
1665 { |
|
1666 return event_base_once(current_base, fd, events, callback, arg, tv); |
|
1667 } |
|
1668 |
|
1669 /* Schedules an event once */ |
|
1670 int |
|
1671 event_base_once(struct event_base *base, evutil_socket_t fd, short events, |
|
1672 void (*callback)(evutil_socket_t, short, void *), |
|
1673 void *arg, const struct timeval *tv) |
|
1674 { |
|
1675 struct event_once *eonce; |
|
1676 struct timeval etv; |
|
1677 int res = 0; |
|
1678 |
|
1679 /* We cannot support signals that just fire once, or persistent |
|
1680 * events. */ |
|
1681 if (events & (EV_SIGNAL|EV_PERSIST)) |
|
1682 return (-1); |
|
1683 |
|
1684 if ((eonce = mm_calloc(1, sizeof(struct event_once))) == NULL) |
|
1685 return (-1); |
|
1686 |
|
1687 eonce->cb = callback; |
|
1688 eonce->arg = arg; |
|
1689 |
|
1690 if (events == EV_TIMEOUT) { |
|
1691 if (tv == NULL) { |
|
1692 evutil_timerclear(&etv); |
|
1693 tv = &etv; |
|
1694 } |
|
1695 |
|
1696 evtimer_assign(&eonce->ev, base, event_once_cb, eonce); |
|
1697 } else if (events & (EV_READ|EV_WRITE)) { |
|
1698 events &= EV_READ|EV_WRITE; |
|
1699 |
|
1700 event_assign(&eonce->ev, base, fd, events, event_once_cb, eonce); |
|
1701 } else { |
|
1702 /* Bad event combination */ |
|
1703 mm_free(eonce); |
|
1704 return (-1); |
|
1705 } |
|
1706 |
|
1707 if (res == 0) |
|
1708 res = event_add(&eonce->ev, tv); |
|
1709 if (res != 0) { |
|
1710 mm_free(eonce); |
|
1711 return (res); |
|
1712 } |
|
1713 |
|
1714 return (0); |
|
1715 } |
|
1716 |
|
1717 int |
|
1718 event_assign(struct event *ev, struct event_base *base, evutil_socket_t fd, short events, void (*callback)(evutil_socket_t, short, void *), void *arg) |
|
1719 { |
|
1720 if (!base) |
|
1721 base = current_base; |
|
1722 |
|
1723 _event_debug_assert_not_added(ev); |
|
1724 |
|
1725 ev->ev_base = base; |
|
1726 |
|
1727 ev->ev_callback = callback; |
|
1728 ev->ev_arg = arg; |
|
1729 ev->ev_fd = fd; |
|
1730 ev->ev_events = events; |
|
1731 ev->ev_res = 0; |
|
1732 ev->ev_flags = EVLIST_INIT; |
|
1733 ev->ev_ncalls = 0; |
|
1734 ev->ev_pncalls = NULL; |
|
1735 |
|
1736 if (events & EV_SIGNAL) { |
|
1737 if ((events & (EV_READ|EV_WRITE)) != 0) { |
|
1738 event_warnx("%s: EV_SIGNAL is not compatible with " |
|
1739 "EV_READ or EV_WRITE", __func__); |
|
1740 return -1; |
|
1741 } |
|
1742 ev->ev_closure = EV_CLOSURE_SIGNAL; |
|
1743 } else { |
|
1744 if (events & EV_PERSIST) { |
|
1745 evutil_timerclear(&ev->ev_io_timeout); |
|
1746 ev->ev_closure = EV_CLOSURE_PERSIST; |
|
1747 } else { |
|
1748 ev->ev_closure = EV_CLOSURE_NONE; |
|
1749 } |
|
1750 } |
|
1751 |
|
1752 min_heap_elem_init(ev); |
|
1753 |
|
1754 if (base != NULL) { |
|
1755 /* by default, we put new events into the middle priority */ |
|
1756 ev->ev_pri = base->nactivequeues / 2; |
|
1757 } |
|
1758 |
|
1759 _event_debug_note_setup(ev); |
|
1760 |
|
1761 return 0; |
|
1762 } |
|
1763 |
|
1764 int |
|
1765 event_base_set(struct event_base *base, struct event *ev) |
|
1766 { |
|
1767 /* Only innocent events may be assigned to a different base */ |
|
1768 if (ev->ev_flags != EVLIST_INIT) |
|
1769 return (-1); |
|
1770 |
|
1771 _event_debug_assert_is_setup(ev); |
|
1772 |
|
1773 ev->ev_base = base; |
|
1774 ev->ev_pri = base->nactivequeues/2; |
|
1775 |
|
1776 return (0); |
|
1777 } |
|
1778 |
|
1779 void |
|
1780 event_set(struct event *ev, evutil_socket_t fd, short events, |
|
1781 void (*callback)(evutil_socket_t, short, void *), void *arg) |
|
1782 { |
|
1783 int r; |
|
1784 r = event_assign(ev, current_base, fd, events, callback, arg); |
|
1785 EVUTIL_ASSERT(r == 0); |
|
1786 } |
|
1787 |
|
1788 struct event * |
|
1789 event_new(struct event_base *base, evutil_socket_t fd, short events, void (*cb)(evutil_socket_t, short, void *), void *arg) |
|
1790 { |
|
1791 struct event *ev; |
|
1792 ev = mm_malloc(sizeof(struct event)); |
|
1793 if (ev == NULL) |
|
1794 return (NULL); |
|
1795 if (event_assign(ev, base, fd, events, cb, arg) < 0) { |
|
1796 mm_free(ev); |
|
1797 return (NULL); |
|
1798 } |
|
1799 |
|
1800 return (ev); |
|
1801 } |
|
1802 |
|
1803 void |
|
1804 event_free(struct event *ev) |
|
1805 { |
|
1806 _event_debug_assert_is_setup(ev); |
|
1807 |
|
1808 /* make sure that this event won't be coming back to haunt us. */ |
|
1809 event_del(ev); |
|
1810 _event_debug_note_teardown(ev); |
|
1811 mm_free(ev); |
|
1812 |
|
1813 } |
|
1814 |
|
1815 void |
|
1816 event_debug_unassign(struct event *ev) |
|
1817 { |
|
1818 _event_debug_assert_not_added(ev); |
|
1819 _event_debug_note_teardown(ev); |
|
1820 |
|
1821 ev->ev_flags &= ~EVLIST_INIT; |
|
1822 } |
|
1823 |
|
1824 /* |
|
1825 * Set's the priority of an event - if an event is already scheduled |
|
1826 * changing the priority is going to fail. |
|
1827 */ |
|
1828 |
|
1829 int |
|
1830 event_priority_set(struct event *ev, int pri) |
|
1831 { |
|
1832 _event_debug_assert_is_setup(ev); |
|
1833 |
|
1834 if (ev->ev_flags & EVLIST_ACTIVE) |
|
1835 return (-1); |
|
1836 if (pri < 0 || pri >= ev->ev_base->nactivequeues) |
|
1837 return (-1); |
|
1838 |
|
1839 ev->ev_pri = pri; |
|
1840 |
|
1841 return (0); |
|
1842 } |
|
1843 |
|
1844 /* |
|
1845 * Checks if a specific event is pending or scheduled. |
|
1846 */ |
|
1847 |
|
1848 int |
|
1849 event_pending(const struct event *ev, short event, struct timeval *tv) |
|
1850 { |
|
1851 int flags = 0; |
|
1852 |
|
1853 if (EVUTIL_FAILURE_CHECK(ev->ev_base == NULL)) { |
|
1854 event_warnx("%s: event has no event_base set.", __func__); |
|
1855 return 0; |
|
1856 } |
|
1857 |
|
1858 EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); |
|
1859 _event_debug_assert_is_setup(ev); |
|
1860 |
|
1861 if (ev->ev_flags & EVLIST_INSERTED) |
|
1862 flags |= (ev->ev_events & (EV_READ|EV_WRITE|EV_SIGNAL)); |
|
1863 if (ev->ev_flags & EVLIST_ACTIVE) |
|
1864 flags |= ev->ev_res; |
|
1865 if (ev->ev_flags & EVLIST_TIMEOUT) |
|
1866 flags |= EV_TIMEOUT; |
|
1867 |
|
1868 event &= (EV_TIMEOUT|EV_READ|EV_WRITE|EV_SIGNAL); |
|
1869 |
|
1870 /* See if there is a timeout that we should report */ |
|
1871 if (tv != NULL && (flags & event & EV_TIMEOUT)) { |
|
1872 struct timeval tmp = ev->ev_timeout; |
|
1873 tmp.tv_usec &= MICROSECONDS_MASK; |
|
1874 #if defined(_EVENT_HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) |
|
1875 /* correctly remamp to real time */ |
|
1876 evutil_timeradd(&ev->ev_base->tv_clock_diff, &tmp, tv); |
|
1877 #else |
|
1878 *tv = tmp; |
|
1879 #endif |
|
1880 } |
|
1881 |
|
1882 EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); |
|
1883 |
|
1884 return (flags & event); |
|
1885 } |
|
1886 |
|
1887 int |
|
1888 event_initialized(const struct event *ev) |
|
1889 { |
|
1890 if (!(ev->ev_flags & EVLIST_INIT)) |
|
1891 return 0; |
|
1892 |
|
1893 return 1; |
|
1894 } |
|
1895 |
|
1896 void |
|
1897 event_get_assignment(const struct event *event, struct event_base **base_out, evutil_socket_t *fd_out, short *events_out, event_callback_fn *callback_out, void **arg_out) |
|
1898 { |
|
1899 _event_debug_assert_is_setup(event); |
|
1900 |
|
1901 if (base_out) |
|
1902 *base_out = event->ev_base; |
|
1903 if (fd_out) |
|
1904 *fd_out = event->ev_fd; |
|
1905 if (events_out) |
|
1906 *events_out = event->ev_events; |
|
1907 if (callback_out) |
|
1908 *callback_out = event->ev_callback; |
|
1909 if (arg_out) |
|
1910 *arg_out = event->ev_arg; |
|
1911 } |
|
1912 |
|
1913 size_t |
|
1914 event_get_struct_event_size(void) |
|
1915 { |
|
1916 return sizeof(struct event); |
|
1917 } |
|
1918 |
|
1919 evutil_socket_t |
|
1920 event_get_fd(const struct event *ev) |
|
1921 { |
|
1922 _event_debug_assert_is_setup(ev); |
|
1923 return ev->ev_fd; |
|
1924 } |
|
1925 |
|
1926 struct event_base * |
|
1927 event_get_base(const struct event *ev) |
|
1928 { |
|
1929 _event_debug_assert_is_setup(ev); |
|
1930 return ev->ev_base; |
|
1931 } |
|
1932 |
|
1933 short |
|
1934 event_get_events(const struct event *ev) |
|
1935 { |
|
1936 _event_debug_assert_is_setup(ev); |
|
1937 return ev->ev_events; |
|
1938 } |
|
1939 |
|
1940 event_callback_fn |
|
1941 event_get_callback(const struct event *ev) |
|
1942 { |
|
1943 _event_debug_assert_is_setup(ev); |
|
1944 return ev->ev_callback; |
|
1945 } |
|
1946 |
|
1947 void * |
|
1948 event_get_callback_arg(const struct event *ev) |
|
1949 { |
|
1950 _event_debug_assert_is_setup(ev); |
|
1951 return ev->ev_arg; |
|
1952 } |
|
1953 |
|
1954 int |
|
1955 event_add(struct event *ev, const struct timeval *tv) |
|
1956 { |
|
1957 int res; |
|
1958 |
|
1959 if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) { |
|
1960 event_warnx("%s: event has no event_base set.", __func__); |
|
1961 return -1; |
|
1962 } |
|
1963 |
|
1964 EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); |
|
1965 |
|
1966 res = event_add_internal(ev, tv, 0); |
|
1967 |
|
1968 EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); |
|
1969 |
|
1970 return (res); |
|
1971 } |
|
1972 |
|
1973 /* Helper callback: wake an event_base from another thread. This version |
|
1974 * works by writing a byte to one end of a socketpair, so that the event_base |
|
1975 * listening on the other end will wake up as the corresponding event |
|
1976 * triggers */ |
|
1977 static int |
|
1978 evthread_notify_base_default(struct event_base *base) |
|
1979 { |
|
1980 char buf[1]; |
|
1981 int r; |
|
1982 buf[0] = (char) 0; |
|
1983 #ifdef WIN32 |
|
1984 r = send(base->th_notify_fd[1], buf, 1, 0); |
|
1985 #else |
|
1986 r = write(base->th_notify_fd[1], buf, 1); |
|
1987 #endif |
|
1988 return (r < 0 && errno != EAGAIN) ? -1 : 0; |
|
1989 } |
|
1990 |
|
1991 #if defined(_EVENT_HAVE_EVENTFD) && defined(_EVENT_HAVE_SYS_EVENTFD_H) |
|
1992 /* Helper callback: wake an event_base from another thread. This version |
|
1993 * assumes that you have a working eventfd() implementation. */ |
|
1994 static int |
|
1995 evthread_notify_base_eventfd(struct event_base *base) |
|
1996 { |
|
1997 ev_uint64_t msg = 1; |
|
1998 int r; |
|
1999 do { |
|
2000 r = write(base->th_notify_fd[0], (void*) &msg, sizeof(msg)); |
|
2001 } while (r < 0 && errno == EAGAIN); |
|
2002 |
|
2003 return (r < 0) ? -1 : 0; |
|
2004 } |
|
2005 #endif |
|
2006 |
|
2007 /** Tell the thread currently running the event_loop for base (if any) that it |
|
2008 * needs to stop waiting in its dispatch function (if it is) and process all |
|
2009 * active events and deferred callbacks (if there are any). */ |
|
2010 static int |
|
2011 evthread_notify_base(struct event_base *base) |
|
2012 { |
|
2013 EVENT_BASE_ASSERT_LOCKED(base); |
|
2014 if (!base->th_notify_fn) |
|
2015 return -1; |
|
2016 if (base->is_notify_pending) |
|
2017 return 0; |
|
2018 base->is_notify_pending = 1; |
|
2019 return base->th_notify_fn(base); |
|
2020 } |
|
2021 |
|
2022 /* Implementation function to add an event. Works just like event_add, |
|
2023 * except: 1) it requires that we have the lock. 2) if tv_is_absolute is set, |
|
2024 * we treat tv as an absolute time, not as an interval to add to the current |
|
2025 * time */ |
|
2026 static inline int |
|
2027 event_add_internal(struct event *ev, const struct timeval *tv, |
|
2028 int tv_is_absolute) |
|
2029 { |
|
2030 struct event_base *base = ev->ev_base; |
|
2031 int res = 0; |
|
2032 int notify = 0; |
|
2033 |
|
2034 EVENT_BASE_ASSERT_LOCKED(base); |
|
2035 _event_debug_assert_is_setup(ev); |
|
2036 |
|
2037 event_debug(( |
|
2038 "event_add: event: %p (fd "EV_SOCK_FMT"), %s%s%scall %p", |
|
2039 ev, |
|
2040 EV_SOCK_ARG(ev->ev_fd), |
|
2041 ev->ev_events & EV_READ ? "EV_READ " : " ", |
|
2042 ev->ev_events & EV_WRITE ? "EV_WRITE " : " ", |
|
2043 tv ? "EV_TIMEOUT " : " ", |
|
2044 ev->ev_callback)); |
|
2045 |
|
2046 EVUTIL_ASSERT(!(ev->ev_flags & ~EVLIST_ALL)); |
|
2047 |
|
2048 /* |
|
2049 * prepare for timeout insertion further below, if we get a |
|
2050 * failure on any step, we should not change any state. |
|
2051 */ |
|
2052 if (tv != NULL && !(ev->ev_flags & EVLIST_TIMEOUT)) { |
|
2053 if (min_heap_reserve(&base->timeheap, |
|
2054 1 + min_heap_size(&base->timeheap)) == -1) |
|
2055 return (-1); /* ENOMEM == errno */ |
|
2056 } |
|
2057 |
|
2058 /* If the main thread is currently executing a signal event's |
|
2059 * callback, and we are not the main thread, then we want to wait |
|
2060 * until the callback is done before we mess with the event, or else |
|
2061 * we can race on ev_ncalls and ev_pncalls below. */ |
|
2062 #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
|
2063 if (base->current_event == ev && (ev->ev_events & EV_SIGNAL) |
|
2064 && !EVBASE_IN_THREAD(base)) { |
|
2065 ++base->current_event_waiters; |
|
2066 EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock); |
|
2067 } |
|
2068 #endif |
|
2069 |
|
2070 if ((ev->ev_events & (EV_READ|EV_WRITE|EV_SIGNAL)) && |
|
2071 !(ev->ev_flags & (EVLIST_INSERTED|EVLIST_ACTIVE))) { |
|
2072 if (ev->ev_events & (EV_READ|EV_WRITE)) |
|
2073 res = evmap_io_add(base, ev->ev_fd, ev); |
|
2074 else if (ev->ev_events & EV_SIGNAL) |
|
2075 res = evmap_signal_add(base, (int)ev->ev_fd, ev); |
|
2076 if (res != -1) |
|
2077 event_queue_insert(base, ev, EVLIST_INSERTED); |
|
2078 if (res == 1) { |
|
2079 /* evmap says we need to notify the main thread. */ |
|
2080 notify = 1; |
|
2081 res = 0; |
|
2082 } |
|
2083 } |
|
2084 |
|
2085 /* |
|
2086 * we should change the timeout state only if the previous event |
|
2087 * addition succeeded. |
|
2088 */ |
|
2089 if (res != -1 && tv != NULL) { |
|
2090 struct timeval now; |
|
2091 int common_timeout; |
|
2092 |
|
2093 /* |
|
2094 * for persistent timeout events, we remember the |
|
2095 * timeout value and re-add the event. |
|
2096 * |
|
2097 * If tv_is_absolute, this was already set. |
|
2098 */ |
|
2099 if (ev->ev_closure == EV_CLOSURE_PERSIST && !tv_is_absolute) |
|
2100 ev->ev_io_timeout = *tv; |
|
2101 |
|
2102 /* |
|
2103 * we already reserved memory above for the case where we |
|
2104 * are not replacing an existing timeout. |
|
2105 */ |
|
2106 if (ev->ev_flags & EVLIST_TIMEOUT) { |
|
2107 /* XXX I believe this is needless. */ |
|
2108 if (min_heap_elt_is_top(ev)) |
|
2109 notify = 1; |
|
2110 event_queue_remove(base, ev, EVLIST_TIMEOUT); |
|
2111 } |
|
2112 |
|
2113 /* Check if it is active due to a timeout. Rescheduling |
|
2114 * this timeout before the callback can be executed |
|
2115 * removes it from the active list. */ |
|
2116 if ((ev->ev_flags & EVLIST_ACTIVE) && |
|
2117 (ev->ev_res & EV_TIMEOUT)) { |
|
2118 if (ev->ev_events & EV_SIGNAL) { |
|
2119 /* See if we are just active executing |
|
2120 * this event in a loop |
|
2121 */ |
|
2122 if (ev->ev_ncalls && ev->ev_pncalls) { |
|
2123 /* Abort loop */ |
|
2124 *ev->ev_pncalls = 0; |
|
2125 } |
|
2126 } |
|
2127 |
|
2128 event_queue_remove(base, ev, EVLIST_ACTIVE); |
|
2129 } |
|
2130 |
|
2131 gettime(base, &now); |
|
2132 |
|
2133 common_timeout = is_common_timeout(tv, base); |
|
2134 if (tv_is_absolute) { |
|
2135 ev->ev_timeout = *tv; |
|
2136 } else if (common_timeout) { |
|
2137 struct timeval tmp = *tv; |
|
2138 tmp.tv_usec &= MICROSECONDS_MASK; |
|
2139 evutil_timeradd(&now, &tmp, &ev->ev_timeout); |
|
2140 ev->ev_timeout.tv_usec |= |
|
2141 (tv->tv_usec & ~MICROSECONDS_MASK); |
|
2142 } else { |
|
2143 evutil_timeradd(&now, tv, &ev->ev_timeout); |
|
2144 } |
|
2145 |
|
2146 event_debug(( |
|
2147 "event_add: timeout in %d seconds, call %p", |
|
2148 (int)tv->tv_sec, ev->ev_callback)); |
|
2149 |
|
2150 event_queue_insert(base, ev, EVLIST_TIMEOUT); |
|
2151 if (common_timeout) { |
|
2152 struct common_timeout_list *ctl = |
|
2153 get_common_timeout_list(base, &ev->ev_timeout); |
|
2154 if (ev == TAILQ_FIRST(&ctl->events)) { |
|
2155 common_timeout_schedule(ctl, &now, ev); |
|
2156 } |
|
2157 } else { |
|
2158 /* See if the earliest timeout is now earlier than it |
|
2159 * was before: if so, we will need to tell the main |
|
2160 * thread to wake up earlier than it would |
|
2161 * otherwise. */ |
|
2162 if (min_heap_elt_is_top(ev)) |
|
2163 notify = 1; |
|
2164 } |
|
2165 } |
|
2166 |
|
2167 /* if we are not in the right thread, we need to wake up the loop */ |
|
2168 if (res != -1 && notify && EVBASE_NEED_NOTIFY(base)) |
|
2169 evthread_notify_base(base); |
|
2170 |
|
2171 _event_debug_note_add(ev); |
|
2172 |
|
2173 return (res); |
|
2174 } |
|
2175 |
|
2176 int |
|
2177 event_del(struct event *ev) |
|
2178 { |
|
2179 int res; |
|
2180 |
|
2181 if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) { |
|
2182 event_warnx("%s: event has no event_base set.", __func__); |
|
2183 return -1; |
|
2184 } |
|
2185 |
|
2186 EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); |
|
2187 |
|
2188 res = event_del_internal(ev); |
|
2189 |
|
2190 EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); |
|
2191 |
|
2192 return (res); |
|
2193 } |
|
2194 |
|
2195 /* Helper for event_del: always called with th_base_lock held. */ |
|
2196 static inline int |
|
2197 event_del_internal(struct event *ev) |
|
2198 { |
|
2199 struct event_base *base; |
|
2200 int res = 0, notify = 0; |
|
2201 |
|
2202 event_debug(("event_del: %p (fd "EV_SOCK_FMT"), callback %p", |
|
2203 ev, EV_SOCK_ARG(ev->ev_fd), ev->ev_callback)); |
|
2204 |
|
2205 /* An event without a base has not been added */ |
|
2206 if (ev->ev_base == NULL) |
|
2207 return (-1); |
|
2208 |
|
2209 EVENT_BASE_ASSERT_LOCKED(ev->ev_base); |
|
2210 |
|
2211 /* If the main thread is currently executing this event's callback, |
|
2212 * and we are not the main thread, then we want to wait until the |
|
2213 * callback is done before we start removing the event. That way, |
|
2214 * when this function returns, it will be safe to free the |
|
2215 * user-supplied argument. */ |
|
2216 base = ev->ev_base; |
|
2217 #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
|
2218 if (base->current_event == ev && !EVBASE_IN_THREAD(base)) { |
|
2219 ++base->current_event_waiters; |
|
2220 EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock); |
|
2221 } |
|
2222 #endif |
|
2223 |
|
2224 EVUTIL_ASSERT(!(ev->ev_flags & ~EVLIST_ALL)); |
|
2225 |
|
2226 /* See if we are just active executing this event in a loop */ |
|
2227 if (ev->ev_events & EV_SIGNAL) { |
|
2228 if (ev->ev_ncalls && ev->ev_pncalls) { |
|
2229 /* Abort loop */ |
|
2230 *ev->ev_pncalls = 0; |
|
2231 } |
|
2232 } |
|
2233 |
|
2234 if (ev->ev_flags & EVLIST_TIMEOUT) { |
|
2235 /* NOTE: We never need to notify the main thread because of a |
|
2236 * deleted timeout event: all that could happen if we don't is |
|
2237 * that the dispatch loop might wake up too early. But the |
|
2238 * point of notifying the main thread _is_ to wake up the |
|
2239 * dispatch loop early anyway, so we wouldn't gain anything by |
|
2240 * doing it. |
|
2241 */ |
|
2242 event_queue_remove(base, ev, EVLIST_TIMEOUT); |
|
2243 } |
|
2244 |
|
2245 if (ev->ev_flags & EVLIST_ACTIVE) |
|
2246 event_queue_remove(base, ev, EVLIST_ACTIVE); |
|
2247 |
|
2248 if (ev->ev_flags & EVLIST_INSERTED) { |
|
2249 event_queue_remove(base, ev, EVLIST_INSERTED); |
|
2250 if (ev->ev_events & (EV_READ|EV_WRITE)) |
|
2251 res = evmap_io_del(base, ev->ev_fd, ev); |
|
2252 else |
|
2253 res = evmap_signal_del(base, (int)ev->ev_fd, ev); |
|
2254 if (res == 1) { |
|
2255 /* evmap says we need to notify the main thread. */ |
|
2256 notify = 1; |
|
2257 res = 0; |
|
2258 } |
|
2259 } |
|
2260 |
|
2261 /* if we are not in the right thread, we need to wake up the loop */ |
|
2262 if (res != -1 && notify && EVBASE_NEED_NOTIFY(base)) |
|
2263 evthread_notify_base(base); |
|
2264 |
|
2265 _event_debug_note_del(ev); |
|
2266 |
|
2267 return (res); |
|
2268 } |
|
2269 |
|
2270 void |
|
2271 event_active(struct event *ev, int res, short ncalls) |
|
2272 { |
|
2273 if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) { |
|
2274 event_warnx("%s: event has no event_base set.", __func__); |
|
2275 return; |
|
2276 } |
|
2277 |
|
2278 EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); |
|
2279 |
|
2280 _event_debug_assert_is_setup(ev); |
|
2281 |
|
2282 event_active_nolock(ev, res, ncalls); |
|
2283 |
|
2284 EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); |
|
2285 } |
|
2286 |
|
2287 |
|
2288 void |
|
2289 event_active_nolock(struct event *ev, int res, short ncalls) |
|
2290 { |
|
2291 struct event_base *base; |
|
2292 |
|
2293 event_debug(("event_active: %p (fd "EV_SOCK_FMT"), res %d, callback %p", |
|
2294 ev, EV_SOCK_ARG(ev->ev_fd), (int)res, ev->ev_callback)); |
|
2295 |
|
2296 |
|
2297 /* We get different kinds of events, add them together */ |
|
2298 if (ev->ev_flags & EVLIST_ACTIVE) { |
|
2299 ev->ev_res |= res; |
|
2300 return; |
|
2301 } |
|
2302 |
|
2303 base = ev->ev_base; |
|
2304 |
|
2305 EVENT_BASE_ASSERT_LOCKED(base); |
|
2306 |
|
2307 ev->ev_res = res; |
|
2308 |
|
2309 if (ev->ev_pri < base->event_running_priority) |
|
2310 base->event_continue = 1; |
|
2311 |
|
2312 if (ev->ev_events & EV_SIGNAL) { |
|
2313 #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
|
2314 if (base->current_event == ev && !EVBASE_IN_THREAD(base)) { |
|
2315 ++base->current_event_waiters; |
|
2316 EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock); |
|
2317 } |
|
2318 #endif |
|
2319 ev->ev_ncalls = ncalls; |
|
2320 ev->ev_pncalls = NULL; |
|
2321 } |
|
2322 |
|
2323 event_queue_insert(base, ev, EVLIST_ACTIVE); |
|
2324 |
|
2325 if (EVBASE_NEED_NOTIFY(base)) |
|
2326 evthread_notify_base(base); |
|
2327 } |
|
2328 |
|
2329 void |
|
2330 event_deferred_cb_init(struct deferred_cb *cb, deferred_cb_fn fn, void *arg) |
|
2331 { |
|
2332 memset(cb, 0, sizeof(struct deferred_cb)); |
|
2333 cb->cb = fn; |
|
2334 cb->arg = arg; |
|
2335 } |
|
2336 |
|
2337 void |
|
2338 event_deferred_cb_cancel(struct deferred_cb_queue *queue, |
|
2339 struct deferred_cb *cb) |
|
2340 { |
|
2341 if (!queue) { |
|
2342 if (current_base) |
|
2343 queue = ¤t_base->defer_queue; |
|
2344 else |
|
2345 return; |
|
2346 } |
|
2347 |
|
2348 LOCK_DEFERRED_QUEUE(queue); |
|
2349 if (cb->queued) { |
|
2350 TAILQ_REMOVE(&queue->deferred_cb_list, cb, cb_next); |
|
2351 --queue->active_count; |
|
2352 cb->queued = 0; |
|
2353 } |
|
2354 UNLOCK_DEFERRED_QUEUE(queue); |
|
2355 } |
|
2356 |
|
2357 void |
|
2358 event_deferred_cb_schedule(struct deferred_cb_queue *queue, |
|
2359 struct deferred_cb *cb) |
|
2360 { |
|
2361 if (!queue) { |
|
2362 if (current_base) |
|
2363 queue = ¤t_base->defer_queue; |
|
2364 else |
|
2365 return; |
|
2366 } |
|
2367 |
|
2368 LOCK_DEFERRED_QUEUE(queue); |
|
2369 if (!cb->queued) { |
|
2370 cb->queued = 1; |
|
2371 TAILQ_INSERT_TAIL(&queue->deferred_cb_list, cb, cb_next); |
|
2372 ++queue->active_count; |
|
2373 if (queue->notify_fn) |
|
2374 queue->notify_fn(queue, queue->notify_arg); |
|
2375 } |
|
2376 UNLOCK_DEFERRED_QUEUE(queue); |
|
2377 } |
|
2378 |
|
2379 static int |
|
2380 timeout_next(struct event_base *base, struct timeval **tv_p) |
|
2381 { |
|
2382 /* Caller must hold th_base_lock */ |
|
2383 struct timeval now; |
|
2384 struct event *ev; |
|
2385 struct timeval *tv = *tv_p; |
|
2386 int res = 0; |
|
2387 |
|
2388 ev = min_heap_top(&base->timeheap); |
|
2389 |
|
2390 if (ev == NULL) { |
|
2391 /* if no time-based events are active wait for I/O */ |
|
2392 *tv_p = NULL; |
|
2393 goto out; |
|
2394 } |
|
2395 |
|
2396 if (gettime(base, &now) == -1) { |
|
2397 res = -1; |
|
2398 goto out; |
|
2399 } |
|
2400 |
|
2401 if (evutil_timercmp(&ev->ev_timeout, &now, <=)) { |
|
2402 evutil_timerclear(tv); |
|
2403 goto out; |
|
2404 } |
|
2405 |
|
2406 evutil_timersub(&ev->ev_timeout, &now, tv); |
|
2407 |
|
2408 EVUTIL_ASSERT(tv->tv_sec >= 0); |
|
2409 EVUTIL_ASSERT(tv->tv_usec >= 0); |
|
2410 event_debug(("timeout_next: in %d seconds", (int)tv->tv_sec)); |
|
2411 |
|
2412 out: |
|
2413 return (res); |
|
2414 } |
|
2415 |
|
2416 /* |
|
2417 * Determines if the time is running backwards by comparing the current time |
|
2418 * against the last time we checked. Not needed when using clock monotonic. |
|
2419 * If time is running backwards, we adjust the firing time of every event by |
|
2420 * the amount that time seems to have jumped. |
|
2421 */ |
|
2422 static void |
|
2423 timeout_correct(struct event_base *base, struct timeval *tv) |
|
2424 { |
|
2425 /* Caller must hold th_base_lock. */ |
|
2426 struct event **pev; |
|
2427 unsigned int size; |
|
2428 struct timeval off; |
|
2429 int i; |
|
2430 |
|
2431 if (use_monotonic) |
|
2432 return; |
|
2433 |
|
2434 /* Check if time is running backwards */ |
|
2435 gettime(base, tv); |
|
2436 |
|
2437 if (evutil_timercmp(tv, &base->event_tv, >=)) { |
|
2438 base->event_tv = *tv; |
|
2439 return; |
|
2440 } |
|
2441 |
|
2442 event_debug(("%s: time is running backwards, corrected", |
|
2443 __func__)); |
|
2444 evutil_timersub(&base->event_tv, tv, &off); |
|
2445 |
|
2446 /* |
|
2447 * We can modify the key element of the node without destroying |
|
2448 * the minheap property, because we change every element. |
|
2449 */ |
|
2450 pev = base->timeheap.p; |
|
2451 size = base->timeheap.n; |
|
2452 for (; size-- > 0; ++pev) { |
|
2453 struct timeval *ev_tv = &(**pev).ev_timeout; |
|
2454 evutil_timersub(ev_tv, &off, ev_tv); |
|
2455 } |
|
2456 for (i=0; i<base->n_common_timeouts; ++i) { |
|
2457 struct event *ev; |
|
2458 struct common_timeout_list *ctl = |
|
2459 base->common_timeout_queues[i]; |
|
2460 TAILQ_FOREACH(ev, &ctl->events, |
|
2461 ev_timeout_pos.ev_next_with_common_timeout) { |
|
2462 struct timeval *ev_tv = &ev->ev_timeout; |
|
2463 ev_tv->tv_usec &= MICROSECONDS_MASK; |
|
2464 evutil_timersub(ev_tv, &off, ev_tv); |
|
2465 ev_tv->tv_usec |= COMMON_TIMEOUT_MAGIC | |
|
2466 (i<<COMMON_TIMEOUT_IDX_SHIFT); |
|
2467 } |
|
2468 } |
|
2469 |
|
2470 /* Now remember what the new time turned out to be. */ |
|
2471 base->event_tv = *tv; |
|
2472 } |
|
2473 |
|
2474 /* Activate every event whose timeout has elapsed. */ |
|
2475 static void |
|
2476 timeout_process(struct event_base *base) |
|
2477 { |
|
2478 /* Caller must hold lock. */ |
|
2479 struct timeval now; |
|
2480 struct event *ev; |
|
2481 |
|
2482 if (min_heap_empty(&base->timeheap)) { |
|
2483 return; |
|
2484 } |
|
2485 |
|
2486 gettime(base, &now); |
|
2487 |
|
2488 while ((ev = min_heap_top(&base->timeheap))) { |
|
2489 if (evutil_timercmp(&ev->ev_timeout, &now, >)) |
|
2490 break; |
|
2491 |
|
2492 /* delete this event from the I/O queues */ |
|
2493 event_del_internal(ev); |
|
2494 |
|
2495 event_debug(("timeout_process: call %p", |
|
2496 ev->ev_callback)); |
|
2497 event_active_nolock(ev, EV_TIMEOUT, 1); |
|
2498 } |
|
2499 } |
|
2500 |
|
2501 /* Remove 'ev' from 'queue' (EVLIST_...) in base. */ |
|
2502 static void |
|
2503 event_queue_remove(struct event_base *base, struct event *ev, int queue) |
|
2504 { |
|
2505 EVENT_BASE_ASSERT_LOCKED(base); |
|
2506 |
|
2507 if (!(ev->ev_flags & queue)) { |
|
2508 event_errx(1, "%s: %p(fd "EV_SOCK_FMT") not on queue %x", __func__, |
|
2509 ev, EV_SOCK_ARG(ev->ev_fd), queue); |
|
2510 return; |
|
2511 } |
|
2512 |
|
2513 if (~ev->ev_flags & EVLIST_INTERNAL) |
|
2514 base->event_count--; |
|
2515 |
|
2516 ev->ev_flags &= ~queue; |
|
2517 switch (queue) { |
|
2518 case EVLIST_INSERTED: |
|
2519 TAILQ_REMOVE(&base->eventqueue, ev, ev_next); |
|
2520 break; |
|
2521 case EVLIST_ACTIVE: |
|
2522 base->event_count_active--; |
|
2523 TAILQ_REMOVE(&base->activequeues[ev->ev_pri], |
|
2524 ev, ev_active_next); |
|
2525 break; |
|
2526 case EVLIST_TIMEOUT: |
|
2527 if (is_common_timeout(&ev->ev_timeout, base)) { |
|
2528 struct common_timeout_list *ctl = |
|
2529 get_common_timeout_list(base, &ev->ev_timeout); |
|
2530 TAILQ_REMOVE(&ctl->events, ev, |
|
2531 ev_timeout_pos.ev_next_with_common_timeout); |
|
2532 } else { |
|
2533 min_heap_erase(&base->timeheap, ev); |
|
2534 } |
|
2535 break; |
|
2536 default: |
|
2537 event_errx(1, "%s: unknown queue %x", __func__, queue); |
|
2538 } |
|
2539 } |
|
2540 |
|
2541 /* Add 'ev' to the common timeout list in 'ev'. */ |
|
2542 static void |
|
2543 insert_common_timeout_inorder(struct common_timeout_list *ctl, |
|
2544 struct event *ev) |
|
2545 { |
|
2546 struct event *e; |
|
2547 /* By all logic, we should just be able to append 'ev' to the end of |
|
2548 * ctl->events, since the timeout on each 'ev' is set to {the common |
|
2549 * timeout} + {the time when we add the event}, and so the events |
|
2550 * should arrive in order of their timeeouts. But just in case |
|
2551 * there's some wacky threading issue going on, we do a search from |
|
2552 * the end of 'ev' to find the right insertion point. |
|
2553 */ |
|
2554 TAILQ_FOREACH_REVERSE(e, &ctl->events, |
|
2555 event_list, ev_timeout_pos.ev_next_with_common_timeout) { |
|
2556 /* This timercmp is a little sneaky, since both ev and e have |
|
2557 * magic values in tv_usec. Fortunately, they ought to have |
|
2558 * the _same_ magic values in tv_usec. Let's assert for that. |
|
2559 */ |
|
2560 EVUTIL_ASSERT( |
|
2561 is_same_common_timeout(&e->ev_timeout, &ev->ev_timeout)); |
|
2562 if (evutil_timercmp(&ev->ev_timeout, &e->ev_timeout, >=)) { |
|
2563 TAILQ_INSERT_AFTER(&ctl->events, e, ev, |
|
2564 ev_timeout_pos.ev_next_with_common_timeout); |
|
2565 return; |
|
2566 } |
|
2567 } |
|
2568 TAILQ_INSERT_HEAD(&ctl->events, ev, |
|
2569 ev_timeout_pos.ev_next_with_common_timeout); |
|
2570 } |
|
2571 |
|
2572 static void |
|
2573 event_queue_insert(struct event_base *base, struct event *ev, int queue) |
|
2574 { |
|
2575 EVENT_BASE_ASSERT_LOCKED(base); |
|
2576 |
|
2577 if (ev->ev_flags & queue) { |
|
2578 /* Double insertion is possible for active events */ |
|
2579 if (queue & EVLIST_ACTIVE) |
|
2580 return; |
|
2581 |
|
2582 event_errx(1, "%s: %p(fd "EV_SOCK_FMT") already on queue %x", __func__, |
|
2583 ev, EV_SOCK_ARG(ev->ev_fd), queue); |
|
2584 return; |
|
2585 } |
|
2586 |
|
2587 if (~ev->ev_flags & EVLIST_INTERNAL) |
|
2588 base->event_count++; |
|
2589 |
|
2590 ev->ev_flags |= queue; |
|
2591 switch (queue) { |
|
2592 case EVLIST_INSERTED: |
|
2593 TAILQ_INSERT_TAIL(&base->eventqueue, ev, ev_next); |
|
2594 break; |
|
2595 case EVLIST_ACTIVE: |
|
2596 base->event_count_active++; |
|
2597 TAILQ_INSERT_TAIL(&base->activequeues[ev->ev_pri], |
|
2598 ev,ev_active_next); |
|
2599 break; |
|
2600 case EVLIST_TIMEOUT: { |
|
2601 if (is_common_timeout(&ev->ev_timeout, base)) { |
|
2602 struct common_timeout_list *ctl = |
|
2603 get_common_timeout_list(base, &ev->ev_timeout); |
|
2604 insert_common_timeout_inorder(ctl, ev); |
|
2605 } else |
|
2606 min_heap_push(&base->timeheap, ev); |
|
2607 break; |
|
2608 } |
|
2609 default: |
|
2610 event_errx(1, "%s: unknown queue %x", __func__, queue); |
|
2611 } |
|
2612 } |
|
2613 |
|
2614 /* Functions for debugging */ |
|
2615 |
|
2616 const char * |
|
2617 event_get_version(void) |
|
2618 { |
|
2619 return (_EVENT_VERSION); |
|
2620 } |
|
2621 |
|
2622 ev_uint32_t |
|
2623 event_get_version_number(void) |
|
2624 { |
|
2625 return (_EVENT_NUMERIC_VERSION); |
|
2626 } |
|
2627 |
|
2628 /* |
|
2629 * No thread-safe interface needed - the information should be the same |
|
2630 * for all threads. |
|
2631 */ |
|
2632 |
|
2633 const char * |
|
2634 event_get_method(void) |
|
2635 { |
|
2636 return (current_base->evsel->name); |
|
2637 } |
|
2638 |
|
2639 #ifndef _EVENT_DISABLE_MM_REPLACEMENT |
|
2640 static void *(*_mm_malloc_fn)(size_t sz) = NULL; |
|
2641 static void *(*_mm_realloc_fn)(void *p, size_t sz) = NULL; |
|
2642 static void (*_mm_free_fn)(void *p) = NULL; |
|
2643 |
|
2644 void * |
|
2645 event_mm_malloc_(size_t sz) |
|
2646 { |
|
2647 if (_mm_malloc_fn) |
|
2648 return _mm_malloc_fn(sz); |
|
2649 else |
|
2650 return malloc(sz); |
|
2651 } |
|
2652 |
|
2653 void * |
|
2654 event_mm_calloc_(size_t count, size_t size) |
|
2655 { |
|
2656 if (_mm_malloc_fn) { |
|
2657 size_t sz = count * size; |
|
2658 void *p = _mm_malloc_fn(sz); |
|
2659 if (p) |
|
2660 memset(p, 0, sz); |
|
2661 return p; |
|
2662 } else |
|
2663 return calloc(count, size); |
|
2664 } |
|
2665 |
|
2666 char * |
|
2667 event_mm_strdup_(const char *str) |
|
2668 { |
|
2669 if (_mm_malloc_fn) { |
|
2670 size_t ln = strlen(str); |
|
2671 void *p = _mm_malloc_fn(ln+1); |
|
2672 if (p) |
|
2673 memcpy(p, str, ln+1); |
|
2674 return p; |
|
2675 } else |
|
2676 #ifdef WIN32 |
|
2677 return _strdup(str); |
|
2678 #else |
|
2679 return strdup(str); |
|
2680 #endif |
|
2681 } |
|
2682 |
|
2683 void * |
|
2684 event_mm_realloc_(void *ptr, size_t sz) |
|
2685 { |
|
2686 if (_mm_realloc_fn) |
|
2687 return _mm_realloc_fn(ptr, sz); |
|
2688 else |
|
2689 return realloc(ptr, sz); |
|
2690 } |
|
2691 |
|
2692 void |
|
2693 event_mm_free_(void *ptr) |
|
2694 { |
|
2695 if (_mm_free_fn) |
|
2696 _mm_free_fn(ptr); |
|
2697 else |
|
2698 free(ptr); |
|
2699 } |
|
2700 |
|
2701 void |
|
2702 event_set_mem_functions(void *(*malloc_fn)(size_t sz), |
|
2703 void *(*realloc_fn)(void *ptr, size_t sz), |
|
2704 void (*free_fn)(void *ptr)) |
|
2705 { |
|
2706 _mm_malloc_fn = malloc_fn; |
|
2707 _mm_realloc_fn = realloc_fn; |
|
2708 _mm_free_fn = free_fn; |
|
2709 } |
|
2710 #endif |
|
2711 |
|
2712 #if defined(_EVENT_HAVE_EVENTFD) && defined(_EVENT_HAVE_SYS_EVENTFD_H) |
|
2713 static void |
|
2714 evthread_notify_drain_eventfd(evutil_socket_t fd, short what, void *arg) |
|
2715 { |
|
2716 ev_uint64_t msg; |
|
2717 ev_ssize_t r; |
|
2718 struct event_base *base = arg; |
|
2719 |
|
2720 r = read(fd, (void*) &msg, sizeof(msg)); |
|
2721 if (r<0 && errno != EAGAIN) { |
|
2722 event_sock_warn(fd, "Error reading from eventfd"); |
|
2723 } |
|
2724 EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
|
2725 base->is_notify_pending = 0; |
|
2726 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
2727 } |
|
2728 #endif |
|
2729 |
|
2730 static void |
|
2731 evthread_notify_drain_default(evutil_socket_t fd, short what, void *arg) |
|
2732 { |
|
2733 unsigned char buf[1024]; |
|
2734 struct event_base *base = arg; |
|
2735 #ifdef WIN32 |
|
2736 while (recv(fd, (char*)buf, sizeof(buf), 0) > 0) |
|
2737 ; |
|
2738 #else |
|
2739 while (read(fd, (char*)buf, sizeof(buf)) > 0) |
|
2740 ; |
|
2741 #endif |
|
2742 |
|
2743 EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
|
2744 base->is_notify_pending = 0; |
|
2745 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
2746 } |
|
2747 |
|
2748 int |
|
2749 evthread_make_base_notifiable(struct event_base *base) |
|
2750 { |
|
2751 void (*cb)(evutil_socket_t, short, void *) = evthread_notify_drain_default; |
|
2752 int (*notify)(struct event_base *) = evthread_notify_base_default; |
|
2753 |
|
2754 /* XXXX grab the lock here? */ |
|
2755 if (!base) |
|
2756 return -1; |
|
2757 |
|
2758 if (base->th_notify_fd[0] >= 0) |
|
2759 return 0; |
|
2760 |
|
2761 #if defined(_EVENT_HAVE_EVENTFD) && defined(_EVENT_HAVE_SYS_EVENTFD_H) |
|
2762 #ifndef EFD_CLOEXEC |
|
2763 #define EFD_CLOEXEC 0 |
|
2764 #endif |
|
2765 base->th_notify_fd[0] = eventfd(0, EFD_CLOEXEC); |
|
2766 if (base->th_notify_fd[0] >= 0) { |
|
2767 evutil_make_socket_closeonexec(base->th_notify_fd[0]); |
|
2768 notify = evthread_notify_base_eventfd; |
|
2769 cb = evthread_notify_drain_eventfd; |
|
2770 } |
|
2771 #endif |
|
2772 #if defined(_EVENT_HAVE_PIPE) |
|
2773 if (base->th_notify_fd[0] < 0) { |
|
2774 if ((base->evsel->features & EV_FEATURE_FDS)) { |
|
2775 if (pipe(base->th_notify_fd) < 0) { |
|
2776 event_warn("%s: pipe", __func__); |
|
2777 } else { |
|
2778 evutil_make_socket_closeonexec(base->th_notify_fd[0]); |
|
2779 evutil_make_socket_closeonexec(base->th_notify_fd[1]); |
|
2780 } |
|
2781 } |
|
2782 } |
|
2783 #endif |
|
2784 |
|
2785 #ifdef WIN32 |
|
2786 #define LOCAL_SOCKETPAIR_AF AF_INET |
|
2787 #else |
|
2788 #define LOCAL_SOCKETPAIR_AF AF_UNIX |
|
2789 #endif |
|
2790 if (base->th_notify_fd[0] < 0) { |
|
2791 if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, |
|
2792 base->th_notify_fd) == -1) { |
|
2793 event_sock_warn(-1, "%s: socketpair", __func__); |
|
2794 return (-1); |
|
2795 } else { |
|
2796 evutil_make_socket_closeonexec(base->th_notify_fd[0]); |
|
2797 evutil_make_socket_closeonexec(base->th_notify_fd[1]); |
|
2798 } |
|
2799 } |
|
2800 |
|
2801 evutil_make_socket_nonblocking(base->th_notify_fd[0]); |
|
2802 |
|
2803 base->th_notify_fn = notify; |
|
2804 |
|
2805 /* |
|
2806 Making the second socket nonblocking is a bit subtle, given that we |
|
2807 ignore any EAGAIN returns when writing to it, and you don't usally |
|
2808 do that for a nonblocking socket. But if the kernel gives us EAGAIN, |
|
2809 then there's no need to add any more data to the buffer, since |
|
2810 the main thread is already either about to wake up and drain it, |
|
2811 or woken up and in the process of draining it. |
|
2812 */ |
|
2813 if (base->th_notify_fd[1] > 0) |
|
2814 evutil_make_socket_nonblocking(base->th_notify_fd[1]); |
|
2815 |
|
2816 /* prepare an event that we can use for wakeup */ |
|
2817 event_assign(&base->th_notify, base, base->th_notify_fd[0], |
|
2818 EV_READ|EV_PERSIST, cb, base); |
|
2819 |
|
2820 /* we need to mark this as internal event */ |
|
2821 base->th_notify.ev_flags |= EVLIST_INTERNAL; |
|
2822 event_priority_set(&base->th_notify, 0); |
|
2823 |
|
2824 return event_add(&base->th_notify, NULL); |
|
2825 } |
|
2826 |
|
2827 void |
|
2828 event_base_dump_events(struct event_base *base, FILE *output) |
|
2829 { |
|
2830 struct event *e; |
|
2831 int i; |
|
2832 fprintf(output, "Inserted events:\n"); |
|
2833 TAILQ_FOREACH(e, &base->eventqueue, ev_next) { |
|
2834 fprintf(output, " %p [fd "EV_SOCK_FMT"]%s%s%s%s%s\n", |
|
2835 (void*)e, EV_SOCK_ARG(e->ev_fd), |
|
2836 (e->ev_events&EV_READ)?" Read":"", |
|
2837 (e->ev_events&EV_WRITE)?" Write":"", |
|
2838 (e->ev_events&EV_SIGNAL)?" Signal":"", |
|
2839 (e->ev_events&EV_TIMEOUT)?" Timeout":"", |
|
2840 (e->ev_events&EV_PERSIST)?" Persist":""); |
|
2841 |
|
2842 } |
|
2843 for (i = 0; i < base->nactivequeues; ++i) { |
|
2844 if (TAILQ_EMPTY(&base->activequeues[i])) |
|
2845 continue; |
|
2846 fprintf(output, "Active events [priority %d]:\n", i); |
|
2847 TAILQ_FOREACH(e, &base->eventqueue, ev_next) { |
|
2848 fprintf(output, " %p [fd "EV_SOCK_FMT"]%s%s%s%s\n", |
|
2849 (void*)e, EV_SOCK_ARG(e->ev_fd), |
|
2850 (e->ev_res&EV_READ)?" Read active":"", |
|
2851 (e->ev_res&EV_WRITE)?" Write active":"", |
|
2852 (e->ev_res&EV_SIGNAL)?" Signal active":"", |
|
2853 (e->ev_res&EV_TIMEOUT)?" Timeout active":""); |
|
2854 } |
|
2855 } |
|
2856 } |
|
2857 |
|
2858 void |
|
2859 event_base_add_virtual(struct event_base *base) |
|
2860 { |
|
2861 EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
|
2862 base->virtual_event_count++; |
|
2863 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
2864 } |
|
2865 |
|
2866 void |
|
2867 event_base_del_virtual(struct event_base *base) |
|
2868 { |
|
2869 EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
|
2870 EVUTIL_ASSERT(base->virtual_event_count > 0); |
|
2871 base->virtual_event_count--; |
|
2872 if (base->virtual_event_count == 0 && EVBASE_NEED_NOTIFY(base)) |
|
2873 evthread_notify_base(base); |
|
2874 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
2875 } |
|
2876 |
|
2877 #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
|
2878 int |
|
2879 event_global_setup_locks_(const int enable_locks) |
|
2880 { |
|
2881 #ifndef _EVENT_DISABLE_DEBUG_MODE |
|
2882 EVTHREAD_SETUP_GLOBAL_LOCK(_event_debug_map_lock, 0); |
|
2883 #endif |
|
2884 if (evsig_global_setup_locks_(enable_locks) < 0) |
|
2885 return -1; |
|
2886 if (evutil_secure_rng_global_setup_locks_(enable_locks) < 0) |
|
2887 return -1; |
|
2888 return 0; |
|
2889 } |
|
2890 #endif |
|
2891 |
|
2892 void |
|
2893 event_base_assert_ok(struct event_base *base) |
|
2894 { |
|
2895 int i; |
|
2896 EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
|
2897 evmap_check_integrity(base); |
|
2898 |
|
2899 /* Check the heap property */ |
|
2900 for (i = 1; i < (int)base->timeheap.n; ++i) { |
|
2901 int parent = (i - 1) / 2; |
|
2902 struct event *ev, *p_ev; |
|
2903 ev = base->timeheap.p[i]; |
|
2904 p_ev = base->timeheap.p[parent]; |
|
2905 EVUTIL_ASSERT(ev->ev_flags & EV_TIMEOUT); |
|
2906 EVUTIL_ASSERT(evutil_timercmp(&p_ev->ev_timeout, &ev->ev_timeout, <=)); |
|
2907 EVUTIL_ASSERT(ev->ev_timeout_pos.min_heap_idx == i); |
|
2908 } |
|
2909 |
|
2910 /* Check that the common timeouts are fine */ |
|
2911 for (i = 0; i < base->n_common_timeouts; ++i) { |
|
2912 struct common_timeout_list *ctl = base->common_timeout_queues[i]; |
|
2913 struct event *last=NULL, *ev; |
|
2914 TAILQ_FOREACH(ev, &ctl->events, ev_timeout_pos.ev_next_with_common_timeout) { |
|
2915 if (last) |
|
2916 EVUTIL_ASSERT(evutil_timercmp(&last->ev_timeout, &ev->ev_timeout, <=)); |
|
2917 EVUTIL_ASSERT(ev->ev_flags & EV_TIMEOUT); |
|
2918 EVUTIL_ASSERT(is_common_timeout(&ev->ev_timeout,base)); |
|
2919 EVUTIL_ASSERT(COMMON_TIMEOUT_IDX(&ev->ev_timeout) == i); |
|
2920 last = ev; |
|
2921 } |
|
2922 } |
|
2923 |
|
2924 EVBASE_RELEASE_LOCK(base, th_base_lock); |
|
2925 } |