|
1 // Copyright 2012 the V8 project authors. All rights reserved. |
|
2 // Redistribution and use in source and binary forms, with or without |
|
3 // modification, are permitted provided that the following conditions are |
|
4 // met: |
|
5 // |
|
6 // * Redistributions of source code must retain the above copyright |
|
7 // notice, this list of conditions and the following disclaimer. |
|
8 // * Redistributions in binary form must reproduce the above |
|
9 // copyright notice, this list of conditions and the following |
|
10 // disclaimer in the documentation and/or other materials provided |
|
11 // with the distribution. |
|
12 // * Neither the name of Google Inc. nor the names of its |
|
13 // contributors may be used to endorse or promote products derived |
|
14 // from this software without specific prior written permission. |
|
15 // |
|
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
27 |
|
28 #include "fast-dtoa.h" |
|
29 |
|
30 #include "cached-powers.h" |
|
31 #include "diy-fp.h" |
|
32 #include "ieee.h" |
|
33 |
|
34 namespace double_conversion { |
|
35 |
|
36 // The minimal and maximal target exponent define the range of w's binary |
|
37 // exponent, where 'w' is the result of multiplying the input by a cached power |
|
38 // of ten. |
|
39 // |
|
40 // A different range might be chosen on a different platform, to optimize digit |
|
41 // generation, but a smaller range requires more powers of ten to be cached. |
|
42 static const int kMinimalTargetExponent = -60; |
|
43 static const int kMaximalTargetExponent = -32; |
|
44 |
|
45 |
|
46 // Adjusts the last digit of the generated number, and screens out generated |
|
47 // solutions that may be inaccurate. A solution may be inaccurate if it is |
|
48 // outside the safe interval, or if we cannot prove that it is closer to the |
|
49 // input than a neighboring representation of the same length. |
|
50 // |
|
51 // Input: * buffer containing the digits of too_high / 10^kappa |
|
52 // * the buffer's length |
|
53 // * distance_too_high_w == (too_high - w).f() * unit |
|
54 // * unsafe_interval == (too_high - too_low).f() * unit |
|
55 // * rest = (too_high - buffer * 10^kappa).f() * unit |
|
56 // * ten_kappa = 10^kappa * unit |
|
57 // * unit = the common multiplier |
|
58 // Output: returns true if the buffer is guaranteed to contain the closest |
|
59 // representable number to the input. |
|
60 // Modifies the generated digits in the buffer to approach (round towards) w. |
|
61 static bool RoundWeed(Vector<char> buffer, |
|
62 int length, |
|
63 uint64_t distance_too_high_w, |
|
64 uint64_t unsafe_interval, |
|
65 uint64_t rest, |
|
66 uint64_t ten_kappa, |
|
67 uint64_t unit) { |
|
68 uint64_t small_distance = distance_too_high_w - unit; |
|
69 uint64_t big_distance = distance_too_high_w + unit; |
|
70 // Let w_low = too_high - big_distance, and |
|
71 // w_high = too_high - small_distance. |
|
72 // Note: w_low < w < w_high |
|
73 // |
|
74 // The real w (* unit) must lie somewhere inside the interval |
|
75 // ]w_low; w_high[ (often written as "(w_low; w_high)") |
|
76 |
|
77 // Basically the buffer currently contains a number in the unsafe interval |
|
78 // ]too_low; too_high[ with too_low < w < too_high |
|
79 // |
|
80 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|
81 // ^v 1 unit ^ ^ ^ ^ |
|
82 // boundary_high --------------------- . . . . |
|
83 // ^v 1 unit . . . . |
|
84 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . . |
|
85 // . . ^ . . |
|
86 // . big_distance . . . |
|
87 // . . . . rest |
|
88 // small_distance . . . . |
|
89 // v . . . . |
|
90 // w_high - - - - - - - - - - - - - - - - - - . . . . |
|
91 // ^v 1 unit . . . . |
|
92 // w ---------------------------------------- . . . . |
|
93 // ^v 1 unit v . . . |
|
94 // w_low - - - - - - - - - - - - - - - - - - - - - . . . |
|
95 // . . v |
|
96 // buffer --------------------------------------------------+-------+-------- |
|
97 // . . |
|
98 // safe_interval . |
|
99 // v . |
|
100 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . |
|
101 // ^v 1 unit . |
|
102 // boundary_low ------------------------- unsafe_interval |
|
103 // ^v 1 unit v |
|
104 // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|
105 // |
|
106 // |
|
107 // Note that the value of buffer could lie anywhere inside the range too_low |
|
108 // to too_high. |
|
109 // |
|
110 // boundary_low, boundary_high and w are approximations of the real boundaries |
|
111 // and v (the input number). They are guaranteed to be precise up to one unit. |
|
112 // In fact the error is guaranteed to be strictly less than one unit. |
|
113 // |
|
114 // Anything that lies outside the unsafe interval is guaranteed not to round |
|
115 // to v when read again. |
|
116 // Anything that lies inside the safe interval is guaranteed to round to v |
|
117 // when read again. |
|
118 // If the number inside the buffer lies inside the unsafe interval but not |
|
119 // inside the safe interval then we simply do not know and bail out (returning |
|
120 // false). |
|
121 // |
|
122 // Similarly we have to take into account the imprecision of 'w' when finding |
|
123 // the closest representation of 'w'. If we have two potential |
|
124 // representations, and one is closer to both w_low and w_high, then we know |
|
125 // it is closer to the actual value v. |
|
126 // |
|
127 // By generating the digits of too_high we got the largest (closest to |
|
128 // too_high) buffer that is still in the unsafe interval. In the case where |
|
129 // w_high < buffer < too_high we try to decrement the buffer. |
|
130 // This way the buffer approaches (rounds towards) w. |
|
131 // There are 3 conditions that stop the decrementation process: |
|
132 // 1) the buffer is already below w_high |
|
133 // 2) decrementing the buffer would make it leave the unsafe interval |
|
134 // 3) decrementing the buffer would yield a number below w_high and farther |
|
135 // away than the current number. In other words: |
|
136 // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high |
|
137 // Instead of using the buffer directly we use its distance to too_high. |
|
138 // Conceptually rest ~= too_high - buffer |
|
139 // We need to do the following tests in this order to avoid over- and |
|
140 // underflows. |
|
141 ASSERT(rest <= unsafe_interval); |
|
142 while (rest < small_distance && // Negated condition 1 |
|
143 unsafe_interval - rest >= ten_kappa && // Negated condition 2 |
|
144 (rest + ten_kappa < small_distance || // buffer{-1} > w_high |
|
145 small_distance - rest >= rest + ten_kappa - small_distance)) { |
|
146 buffer[length - 1]--; |
|
147 rest += ten_kappa; |
|
148 } |
|
149 |
|
150 // We have approached w+ as much as possible. We now test if approaching w- |
|
151 // would require changing the buffer. If yes, then we have two possible |
|
152 // representations close to w, but we cannot decide which one is closer. |
|
153 if (rest < big_distance && |
|
154 unsafe_interval - rest >= ten_kappa && |
|
155 (rest + ten_kappa < big_distance || |
|
156 big_distance - rest > rest + ten_kappa - big_distance)) { |
|
157 return false; |
|
158 } |
|
159 |
|
160 // Weeding test. |
|
161 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] |
|
162 // Since too_low = too_high - unsafe_interval this is equivalent to |
|
163 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] |
|
164 // Conceptually we have: rest ~= too_high - buffer |
|
165 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); |
|
166 } |
|
167 |
|
168 |
|
169 // Rounds the buffer upwards if the result is closer to v by possibly adding |
|
170 // 1 to the buffer. If the precision of the calculation is not sufficient to |
|
171 // round correctly, return false. |
|
172 // The rounding might shift the whole buffer in which case the kappa is |
|
173 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4. |
|
174 // |
|
175 // If 2*rest > ten_kappa then the buffer needs to be round up. |
|
176 // rest can have an error of +/- 1 unit. This function accounts for the |
|
177 // imprecision and returns false, if the rounding direction cannot be |
|
178 // unambiguously determined. |
|
179 // |
|
180 // Precondition: rest < ten_kappa. |
|
181 static bool RoundWeedCounted(Vector<char> buffer, |
|
182 int length, |
|
183 uint64_t rest, |
|
184 uint64_t ten_kappa, |
|
185 uint64_t unit, |
|
186 int* kappa) { |
|
187 ASSERT(rest < ten_kappa); |
|
188 // The following tests are done in a specific order to avoid overflows. They |
|
189 // will work correctly with any uint64 values of rest < ten_kappa and unit. |
|
190 // |
|
191 // If the unit is too big, then we don't know which way to round. For example |
|
192 // a unit of 50 means that the real number lies within rest +/- 50. If |
|
193 // 10^kappa == 40 then there is no way to tell which way to round. |
|
194 if (unit >= ten_kappa) return false; |
|
195 // Even if unit is just half the size of 10^kappa we are already completely |
|
196 // lost. (And after the previous test we know that the expression will not |
|
197 // over/underflow.) |
|
198 if (ten_kappa - unit <= unit) return false; |
|
199 // If 2 * (rest + unit) <= 10^kappa we can safely round down. |
|
200 if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) { |
|
201 return true; |
|
202 } |
|
203 // If 2 * (rest - unit) >= 10^kappa, then we can safely round up. |
|
204 if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) { |
|
205 // Increment the last digit recursively until we find a non '9' digit. |
|
206 buffer[length - 1]++; |
|
207 for (int i = length - 1; i > 0; --i) { |
|
208 if (buffer[i] != '0' + 10) break; |
|
209 buffer[i] = '0'; |
|
210 buffer[i - 1]++; |
|
211 } |
|
212 // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the |
|
213 // exception of the first digit all digits are now '0'. Simply switch the |
|
214 // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and |
|
215 // the power (the kappa) is increased. |
|
216 if (buffer[0] == '0' + 10) { |
|
217 buffer[0] = '1'; |
|
218 (*kappa) += 1; |
|
219 } |
|
220 return true; |
|
221 } |
|
222 return false; |
|
223 } |
|
224 |
|
225 // Returns the biggest power of ten that is less than or equal to the given |
|
226 // number. We furthermore receive the maximum number of bits 'number' has. |
|
227 // |
|
228 // Returns power == 10^(exponent_plus_one-1) such that |
|
229 // power <= number < power * 10. |
|
230 // If number_bits == 0 then 0^(0-1) is returned. |
|
231 // The number of bits must be <= 32. |
|
232 // Precondition: number < (1 << (number_bits + 1)). |
|
233 |
|
234 // Inspired by the method for finding an integer log base 10 from here: |
|
235 // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 |
|
236 static unsigned int const kSmallPowersOfTen[] = |
|
237 {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, |
|
238 1000000000}; |
|
239 |
|
240 static void BiggestPowerTen(uint32_t number, |
|
241 int number_bits, |
|
242 uint32_t* power, |
|
243 int* exponent_plus_one) { |
|
244 ASSERT(number < (1u << (number_bits + 1))); |
|
245 // 1233/4096 is approximately 1/lg(10). |
|
246 int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12); |
|
247 // We increment to skip over the first entry in the kPowersOf10 table. |
|
248 // Note: kPowersOf10[i] == 10^(i-1). |
|
249 exponent_plus_one_guess++; |
|
250 // We don't have any guarantees that 2^number_bits <= number. |
|
251 // TODO(floitsch): can we change the 'while' into an 'if'? We definitely see |
|
252 // number < (2^number_bits - 1), but I haven't encountered |
|
253 // number < (2^number_bits - 2) yet. |
|
254 while (number < kSmallPowersOfTen[exponent_plus_one_guess]) { |
|
255 exponent_plus_one_guess--; |
|
256 } |
|
257 *power = kSmallPowersOfTen[exponent_plus_one_guess]; |
|
258 *exponent_plus_one = exponent_plus_one_guess; |
|
259 } |
|
260 |
|
261 // Generates the digits of input number w. |
|
262 // w is a floating-point number (DiyFp), consisting of a significand and an |
|
263 // exponent. Its exponent is bounded by kMinimalTargetExponent and |
|
264 // kMaximalTargetExponent. |
|
265 // Hence -60 <= w.e() <= -32. |
|
266 // |
|
267 // Returns false if it fails, in which case the generated digits in the buffer |
|
268 // should not be used. |
|
269 // Preconditions: |
|
270 // * low, w and high are correct up to 1 ulp (unit in the last place). That |
|
271 // is, their error must be less than a unit of their last digits. |
|
272 // * low.e() == w.e() == high.e() |
|
273 // * low < w < high, and taking into account their error: low~ <= high~ |
|
274 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent |
|
275 // Postconditions: returns false if procedure fails. |
|
276 // otherwise: |
|
277 // * buffer is not null-terminated, but len contains the number of digits. |
|
278 // * buffer contains the shortest possible decimal digit-sequence |
|
279 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the |
|
280 // correct values of low and high (without their error). |
|
281 // * if more than one decimal representation gives the minimal number of |
|
282 // decimal digits then the one closest to W (where W is the correct value |
|
283 // of w) is chosen. |
|
284 // Remark: this procedure takes into account the imprecision of its input |
|
285 // numbers. If the precision is not enough to guarantee all the postconditions |
|
286 // then false is returned. This usually happens rarely (~0.5%). |
|
287 // |
|
288 // Say, for the sake of example, that |
|
289 // w.e() == -48, and w.f() == 0x1234567890abcdef |
|
290 // w's value can be computed by w.f() * 2^w.e() |
|
291 // We can obtain w's integral digits by simply shifting w.f() by -w.e(). |
|
292 // -> w's integral part is 0x1234 |
|
293 // w's fractional part is therefore 0x567890abcdef. |
|
294 // Printing w's integral part is easy (simply print 0x1234 in decimal). |
|
295 // In order to print its fraction we repeatedly multiply the fraction by 10 and |
|
296 // get each digit. Example the first digit after the point would be computed by |
|
297 // (0x567890abcdef * 10) >> 48. -> 3 |
|
298 // The whole thing becomes slightly more complicated because we want to stop |
|
299 // once we have enough digits. That is, once the digits inside the buffer |
|
300 // represent 'w' we can stop. Everything inside the interval low - high |
|
301 // represents w. However we have to pay attention to low, high and w's |
|
302 // imprecision. |
|
303 static bool DigitGen(DiyFp low, |
|
304 DiyFp w, |
|
305 DiyFp high, |
|
306 Vector<char> buffer, |
|
307 int* length, |
|
308 int* kappa) { |
|
309 ASSERT(low.e() == w.e() && w.e() == high.e()); |
|
310 ASSERT(low.f() + 1 <= high.f() - 1); |
|
311 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); |
|
312 // low, w and high are imprecise, but by less than one ulp (unit in the last |
|
313 // place). |
|
314 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that |
|
315 // the new numbers are outside of the interval we want the final |
|
316 // representation to lie in. |
|
317 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield |
|
318 // numbers that are certain to lie in the interval. We will use this fact |
|
319 // later on. |
|
320 // We will now start by generating the digits within the uncertain |
|
321 // interval. Later we will weed out representations that lie outside the safe |
|
322 // interval and thus _might_ lie outside the correct interval. |
|
323 uint64_t unit = 1; |
|
324 DiyFp too_low = DiyFp(low.f() - unit, low.e()); |
|
325 DiyFp too_high = DiyFp(high.f() + unit, high.e()); |
|
326 // too_low and too_high are guaranteed to lie outside the interval we want the |
|
327 // generated number in. |
|
328 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); |
|
329 // We now cut the input number into two parts: the integral digits and the |
|
330 // fractionals. We will not write any decimal separator though, but adapt |
|
331 // kappa instead. |
|
332 // Reminder: we are currently computing the digits (stored inside the buffer) |
|
333 // such that: too_low < buffer * 10^kappa < too_high |
|
334 // We use too_high for the digit_generation and stop as soon as possible. |
|
335 // If we stop early we effectively round down. |
|
336 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); |
|
337 // Division by one is a shift. |
|
338 uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e()); |
|
339 // Modulo by one is an and. |
|
340 uint64_t fractionals = too_high.f() & (one.f() - 1); |
|
341 uint32_t divisor; |
|
342 int divisor_exponent_plus_one; |
|
343 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), |
|
344 &divisor, &divisor_exponent_plus_one); |
|
345 *kappa = divisor_exponent_plus_one; |
|
346 *length = 0; |
|
347 // Loop invariant: buffer = too_high / 10^kappa (integer division) |
|
348 // The invariant holds for the first iteration: kappa has been initialized |
|
349 // with the divisor exponent + 1. And the divisor is the biggest power of ten |
|
350 // that is smaller than integrals. |
|
351 while (*kappa > 0) { |
|
352 int digit = integrals / divisor; |
|
353 buffer[*length] = '0' + digit; |
|
354 (*length)++; |
|
355 integrals %= divisor; |
|
356 (*kappa)--; |
|
357 // Note that kappa now equals the exponent of the divisor and that the |
|
358 // invariant thus holds again. |
|
359 uint64_t rest = |
|
360 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; |
|
361 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) |
|
362 // Reminder: unsafe_interval.e() == one.e() |
|
363 if (rest < unsafe_interval.f()) { |
|
364 // Rounding down (by not emitting the remaining digits) yields a number |
|
365 // that lies within the unsafe interval. |
|
366 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), |
|
367 unsafe_interval.f(), rest, |
|
368 static_cast<uint64_t>(divisor) << -one.e(), unit); |
|
369 } |
|
370 divisor /= 10; |
|
371 } |
|
372 |
|
373 // The integrals have been generated. We are at the point of the decimal |
|
374 // separator. In the following loop we simply multiply the remaining digits by |
|
375 // 10 and divide by one. We just need to pay attention to multiply associated |
|
376 // data (like the interval or 'unit'), too. |
|
377 // Note that the multiplication by 10 does not overflow, because w.e >= -60 |
|
378 // and thus one.e >= -60. |
|
379 ASSERT(one.e() >= -60); |
|
380 ASSERT(fractionals < one.f()); |
|
381 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); |
|
382 while (true) { |
|
383 fractionals *= 10; |
|
384 unit *= 10; |
|
385 unsafe_interval.set_f(unsafe_interval.f() * 10); |
|
386 // Integer division by one. |
|
387 int digit = static_cast<int>(fractionals >> -one.e()); |
|
388 buffer[*length] = '0' + digit; |
|
389 (*length)++; |
|
390 fractionals &= one.f() - 1; // Modulo by one. |
|
391 (*kappa)--; |
|
392 if (fractionals < unsafe_interval.f()) { |
|
393 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit, |
|
394 unsafe_interval.f(), fractionals, one.f(), unit); |
|
395 } |
|
396 } |
|
397 } |
|
398 |
|
399 |
|
400 |
|
401 // Generates (at most) requested_digits digits of input number w. |
|
402 // w is a floating-point number (DiyFp), consisting of a significand and an |
|
403 // exponent. Its exponent is bounded by kMinimalTargetExponent and |
|
404 // kMaximalTargetExponent. |
|
405 // Hence -60 <= w.e() <= -32. |
|
406 // |
|
407 // Returns false if it fails, in which case the generated digits in the buffer |
|
408 // should not be used. |
|
409 // Preconditions: |
|
410 // * w is correct up to 1 ulp (unit in the last place). That |
|
411 // is, its error must be strictly less than a unit of its last digit. |
|
412 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent |
|
413 // |
|
414 // Postconditions: returns false if procedure fails. |
|
415 // otherwise: |
|
416 // * buffer is not null-terminated, but length contains the number of |
|
417 // digits. |
|
418 // * the representation in buffer is the most precise representation of |
|
419 // requested_digits digits. |
|
420 // * buffer contains at most requested_digits digits of w. If there are less |
|
421 // than requested_digits digits then some trailing '0's have been removed. |
|
422 // * kappa is such that |
|
423 // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2. |
|
424 // |
|
425 // Remark: This procedure takes into account the imprecision of its input |
|
426 // numbers. If the precision is not enough to guarantee all the postconditions |
|
427 // then false is returned. This usually happens rarely, but the failure-rate |
|
428 // increases with higher requested_digits. |
|
429 static bool DigitGenCounted(DiyFp w, |
|
430 int requested_digits, |
|
431 Vector<char> buffer, |
|
432 int* length, |
|
433 int* kappa) { |
|
434 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); |
|
435 ASSERT(kMinimalTargetExponent >= -60); |
|
436 ASSERT(kMaximalTargetExponent <= -32); |
|
437 // w is assumed to have an error less than 1 unit. Whenever w is scaled we |
|
438 // also scale its error. |
|
439 uint64_t w_error = 1; |
|
440 // We cut the input number into two parts: the integral digits and the |
|
441 // fractional digits. We don't emit any decimal separator, but adapt kappa |
|
442 // instead. Example: instead of writing "1.2" we put "12" into the buffer and |
|
443 // increase kappa by 1. |
|
444 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); |
|
445 // Division by one is a shift. |
|
446 uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e()); |
|
447 // Modulo by one is an and. |
|
448 uint64_t fractionals = w.f() & (one.f() - 1); |
|
449 uint32_t divisor; |
|
450 int divisor_exponent_plus_one; |
|
451 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), |
|
452 &divisor, &divisor_exponent_plus_one); |
|
453 *kappa = divisor_exponent_plus_one; |
|
454 *length = 0; |
|
455 |
|
456 // Loop invariant: buffer = w / 10^kappa (integer division) |
|
457 // The invariant holds for the first iteration: kappa has been initialized |
|
458 // with the divisor exponent + 1. And the divisor is the biggest power of ten |
|
459 // that is smaller than 'integrals'. |
|
460 while (*kappa > 0) { |
|
461 int digit = integrals / divisor; |
|
462 buffer[*length] = '0' + digit; |
|
463 (*length)++; |
|
464 requested_digits--; |
|
465 integrals %= divisor; |
|
466 (*kappa)--; |
|
467 // Note that kappa now equals the exponent of the divisor and that the |
|
468 // invariant thus holds again. |
|
469 if (requested_digits == 0) break; |
|
470 divisor /= 10; |
|
471 } |
|
472 |
|
473 if (requested_digits == 0) { |
|
474 uint64_t rest = |
|
475 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; |
|
476 return RoundWeedCounted(buffer, *length, rest, |
|
477 static_cast<uint64_t>(divisor) << -one.e(), w_error, |
|
478 kappa); |
|
479 } |
|
480 |
|
481 // The integrals have been generated. We are at the point of the decimal |
|
482 // separator. In the following loop we simply multiply the remaining digits by |
|
483 // 10 and divide by one. We just need to pay attention to multiply associated |
|
484 // data (the 'unit'), too. |
|
485 // Note that the multiplication by 10 does not overflow, because w.e >= -60 |
|
486 // and thus one.e >= -60. |
|
487 ASSERT(one.e() >= -60); |
|
488 ASSERT(fractionals < one.f()); |
|
489 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); |
|
490 while (requested_digits > 0 && fractionals > w_error) { |
|
491 fractionals *= 10; |
|
492 w_error *= 10; |
|
493 // Integer division by one. |
|
494 int digit = static_cast<int>(fractionals >> -one.e()); |
|
495 buffer[*length] = '0' + digit; |
|
496 (*length)++; |
|
497 requested_digits--; |
|
498 fractionals &= one.f() - 1; // Modulo by one. |
|
499 (*kappa)--; |
|
500 } |
|
501 if (requested_digits != 0) return false; |
|
502 return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error, |
|
503 kappa); |
|
504 } |
|
505 |
|
506 |
|
507 // Provides a decimal representation of v. |
|
508 // Returns true if it succeeds, otherwise the result cannot be trusted. |
|
509 // There will be *length digits inside the buffer (not null-terminated). |
|
510 // If the function returns true then |
|
511 // v == (double) (buffer * 10^decimal_exponent). |
|
512 // The digits in the buffer are the shortest representation possible: no |
|
513 // 0.09999999999999999 instead of 0.1. The shorter representation will even be |
|
514 // chosen even if the longer one would be closer to v. |
|
515 // The last digit will be closest to the actual v. That is, even if several |
|
516 // digits might correctly yield 'v' when read again, the closest will be |
|
517 // computed. |
|
518 static bool Grisu3(double v, |
|
519 FastDtoaMode mode, |
|
520 Vector<char> buffer, |
|
521 int* length, |
|
522 int* decimal_exponent) { |
|
523 DiyFp w = Double(v).AsNormalizedDiyFp(); |
|
524 // boundary_minus and boundary_plus are the boundaries between v and its |
|
525 // closest floating-point neighbors. Any number strictly between |
|
526 // boundary_minus and boundary_plus will round to v when convert to a double. |
|
527 // Grisu3 will never output representations that lie exactly on a boundary. |
|
528 DiyFp boundary_minus, boundary_plus; |
|
529 if (mode == FAST_DTOA_SHORTEST) { |
|
530 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
|
531 } else { |
|
532 ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE); |
|
533 float single_v = static_cast<float>(v); |
|
534 Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
|
535 } |
|
536 ASSERT(boundary_plus.e() == w.e()); |
|
537 DiyFp ten_mk; // Cached power of ten: 10^-k |
|
538 int mk; // -k |
|
539 int ten_mk_minimal_binary_exponent = |
|
540 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
|
541 int ten_mk_maximal_binary_exponent = |
|
542 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
|
543 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( |
|
544 ten_mk_minimal_binary_exponent, |
|
545 ten_mk_maximal_binary_exponent, |
|
546 &ten_mk, &mk); |
|
547 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + |
|
548 DiyFp::kSignificandSize) && |
|
549 (kMaximalTargetExponent >= w.e() + ten_mk.e() + |
|
550 DiyFp::kSignificandSize)); |
|
551 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a |
|
552 // 64 bit significand and ten_mk is thus only precise up to 64 bits. |
|
553 |
|
554 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated |
|
555 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now |
|
556 // off by a small amount. |
|
557 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. |
|
558 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then |
|
559 // (f-1) * 2^e < w*10^k < (f+1) * 2^e |
|
560 DiyFp scaled_w = DiyFp::Times(w, ten_mk); |
|
561 ASSERT(scaled_w.e() == |
|
562 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); |
|
563 // In theory it would be possible to avoid some recomputations by computing |
|
564 // the difference between w and boundary_minus/plus (a power of 2) and to |
|
565 // compute scaled_boundary_minus/plus by subtracting/adding from |
|
566 // scaled_w. However the code becomes much less readable and the speed |
|
567 // enhancements are not terriffic. |
|
568 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); |
|
569 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); |
|
570 |
|
571 // DigitGen will generate the digits of scaled_w. Therefore we have |
|
572 // v == (double) (scaled_w * 10^-mk). |
|
573 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an |
|
574 // integer than it will be updated. For instance if scaled_w == 1.23 then |
|
575 // the buffer will be filled with "123" und the decimal_exponent will be |
|
576 // decreased by 2. |
|
577 int kappa; |
|
578 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, |
|
579 buffer, length, &kappa); |
|
580 *decimal_exponent = -mk + kappa; |
|
581 return result; |
|
582 } |
|
583 |
|
584 |
|
585 // The "counted" version of grisu3 (see above) only generates requested_digits |
|
586 // number of digits. This version does not generate the shortest representation, |
|
587 // and with enough requested digits 0.1 will at some point print as 0.9999999... |
|
588 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and |
|
589 // therefore the rounding strategy for halfway cases is irrelevant. |
|
590 static bool Grisu3Counted(double v, |
|
591 int requested_digits, |
|
592 Vector<char> buffer, |
|
593 int* length, |
|
594 int* decimal_exponent) { |
|
595 DiyFp w = Double(v).AsNormalizedDiyFp(); |
|
596 DiyFp ten_mk; // Cached power of ten: 10^-k |
|
597 int mk; // -k |
|
598 int ten_mk_minimal_binary_exponent = |
|
599 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
|
600 int ten_mk_maximal_binary_exponent = |
|
601 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
|
602 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( |
|
603 ten_mk_minimal_binary_exponent, |
|
604 ten_mk_maximal_binary_exponent, |
|
605 &ten_mk, &mk); |
|
606 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + |
|
607 DiyFp::kSignificandSize) && |
|
608 (kMaximalTargetExponent >= w.e() + ten_mk.e() + |
|
609 DiyFp::kSignificandSize)); |
|
610 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a |
|
611 // 64 bit significand and ten_mk is thus only precise up to 64 bits. |
|
612 |
|
613 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated |
|
614 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now |
|
615 // off by a small amount. |
|
616 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. |
|
617 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then |
|
618 // (f-1) * 2^e < w*10^k < (f+1) * 2^e |
|
619 DiyFp scaled_w = DiyFp::Times(w, ten_mk); |
|
620 |
|
621 // We now have (double) (scaled_w * 10^-mk). |
|
622 // DigitGen will generate the first requested_digits digits of scaled_w and |
|
623 // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It |
|
624 // will not always be exactly the same since DigitGenCounted only produces a |
|
625 // limited number of digits.) |
|
626 int kappa; |
|
627 bool result = DigitGenCounted(scaled_w, requested_digits, |
|
628 buffer, length, &kappa); |
|
629 *decimal_exponent = -mk + kappa; |
|
630 return result; |
|
631 } |
|
632 |
|
633 |
|
634 bool FastDtoa(double v, |
|
635 FastDtoaMode mode, |
|
636 int requested_digits, |
|
637 Vector<char> buffer, |
|
638 int* length, |
|
639 int* decimal_point) { |
|
640 ASSERT(v > 0); |
|
641 ASSERT(!Double(v).IsSpecial()); |
|
642 |
|
643 bool result = false; |
|
644 int decimal_exponent = 0; |
|
645 switch (mode) { |
|
646 case FAST_DTOA_SHORTEST: |
|
647 case FAST_DTOA_SHORTEST_SINGLE: |
|
648 result = Grisu3(v, mode, buffer, length, &decimal_exponent); |
|
649 break; |
|
650 case FAST_DTOA_PRECISION: |
|
651 result = Grisu3Counted(v, requested_digits, |
|
652 buffer, length, &decimal_exponent); |
|
653 break; |
|
654 default: |
|
655 UNREACHABLE(); |
|
656 } |
|
657 if (result) { |
|
658 *decimal_point = *length + decimal_exponent; |
|
659 buffer[*length] = '\0'; |
|
660 } |
|
661 return result; |
|
662 } |
|
663 |
|
664 } // namespace double_conversion |