|
1 |
|
2 /* |
|
3 * Copyright 2011 The Android Open Source Project |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 |
|
9 |
|
10 #include "SkScan.h" |
|
11 #include "SkBlitter.h" |
|
12 #include "SkColorPriv.h" |
|
13 #include "SkLineClipper.h" |
|
14 #include "SkRasterClip.h" |
|
15 #include "SkFDot6.h" |
|
16 |
|
17 /* Our attempt to compute the worst case "bounds" for the horizontal and |
|
18 vertical cases has some numerical bug in it, and we sometimes undervalue |
|
19 our extends. The bug is that when this happens, we will set the clip to |
|
20 NULL (for speed), and thus draw outside of the clip by a pixel, which might |
|
21 only look bad, but it might also access memory outside of the valid range |
|
22 allcoated for the device bitmap. |
|
23 |
|
24 This define enables our fix to outset our "bounds" by 1, thus avoiding the |
|
25 chance of the bug, but at the cost of sometimes taking the rectblitter |
|
26 case (i.e. not setting the clip to NULL) when we might not actually need |
|
27 to. If we can improve/fix the actual calculations, then we can remove this |
|
28 step. |
|
29 */ |
|
30 #define OUTSET_BEFORE_CLIP_TEST true |
|
31 |
|
32 #define HLINE_STACK_BUFFER 100 |
|
33 |
|
34 static inline int SmallDot6Scale(int value, int dot6) { |
|
35 SkASSERT((int16_t)value == value); |
|
36 SkASSERT((unsigned)dot6 <= 64); |
|
37 return SkMulS16(value, dot6) >> 6; |
|
38 } |
|
39 |
|
40 //#define TEST_GAMMA |
|
41 |
|
42 #ifdef TEST_GAMMA |
|
43 static uint8_t gGammaTable[256]; |
|
44 #define ApplyGamma(table, alpha) (table)[alpha] |
|
45 |
|
46 static void build_gamma_table() { |
|
47 static bool gInit = false; |
|
48 |
|
49 if (gInit == false) { |
|
50 for (int i = 0; i < 256; i++) { |
|
51 SkFixed n = i * 257; |
|
52 n += n >> 15; |
|
53 SkASSERT(n >= 0 && n <= SK_Fixed1); |
|
54 n = SkFixedSqrt(n); |
|
55 n = n * 255 >> 16; |
|
56 // SkDebugf("morph %d -> %d\n", i, n); |
|
57 gGammaTable[i] = SkToU8(n); |
|
58 } |
|
59 gInit = true; |
|
60 } |
|
61 } |
|
62 #else |
|
63 #define ApplyGamma(table, alpha) SkToU8(alpha) |
|
64 #endif |
|
65 |
|
66 /////////////////////////////////////////////////////////////////////////////// |
|
67 |
|
68 static void call_hline_blitter(SkBlitter* blitter, int x, int y, int count, |
|
69 U8CPU alpha) { |
|
70 SkASSERT(count > 0); |
|
71 |
|
72 int16_t runs[HLINE_STACK_BUFFER + 1]; |
|
73 uint8_t aa[HLINE_STACK_BUFFER]; |
|
74 |
|
75 aa[0] = ApplyGamma(gGammaTable, alpha); |
|
76 do { |
|
77 int n = count; |
|
78 if (n > HLINE_STACK_BUFFER) { |
|
79 n = HLINE_STACK_BUFFER; |
|
80 } |
|
81 runs[0] = SkToS16(n); |
|
82 runs[n] = 0; |
|
83 blitter->blitAntiH(x, y, aa, runs); |
|
84 x += n; |
|
85 count -= n; |
|
86 } while (count > 0); |
|
87 } |
|
88 |
|
89 class SkAntiHairBlitter { |
|
90 public: |
|
91 SkAntiHairBlitter() : fBlitter(NULL) {} |
|
92 virtual ~SkAntiHairBlitter() {} |
|
93 |
|
94 SkBlitter* getBlitter() const { return fBlitter; } |
|
95 |
|
96 void setup(SkBlitter* blitter) { |
|
97 fBlitter = blitter; |
|
98 } |
|
99 |
|
100 virtual SkFixed drawCap(int x, SkFixed fy, SkFixed slope, int mod64) = 0; |
|
101 virtual SkFixed drawLine(int x, int stopx, SkFixed fy, SkFixed slope) = 0; |
|
102 |
|
103 private: |
|
104 SkBlitter* fBlitter; |
|
105 }; |
|
106 |
|
107 class HLine_SkAntiHairBlitter : public SkAntiHairBlitter { |
|
108 public: |
|
109 virtual SkFixed drawCap(int x, SkFixed fy, SkFixed slope, int mod64) SK_OVERRIDE { |
|
110 fy += SK_Fixed1/2; |
|
111 |
|
112 int y = fy >> 16; |
|
113 uint8_t a = (uint8_t)(fy >> 8); |
|
114 |
|
115 // lower line |
|
116 unsigned ma = SmallDot6Scale(a, mod64); |
|
117 if (ma) { |
|
118 call_hline_blitter(this->getBlitter(), x, y, 1, ma); |
|
119 } |
|
120 |
|
121 // upper line |
|
122 ma = SmallDot6Scale(255 - a, mod64); |
|
123 if (ma) { |
|
124 call_hline_blitter(this->getBlitter(), x, y - 1, 1, ma); |
|
125 } |
|
126 |
|
127 return fy - SK_Fixed1/2; |
|
128 } |
|
129 |
|
130 virtual SkFixed drawLine(int x, int stopx, SkFixed fy, |
|
131 SkFixed slope) SK_OVERRIDE { |
|
132 SkASSERT(x < stopx); |
|
133 int count = stopx - x; |
|
134 fy += SK_Fixed1/2; |
|
135 |
|
136 int y = fy >> 16; |
|
137 uint8_t a = (uint8_t)(fy >> 8); |
|
138 |
|
139 // lower line |
|
140 if (a) { |
|
141 call_hline_blitter(this->getBlitter(), x, y, count, a); |
|
142 } |
|
143 |
|
144 // upper line |
|
145 a = 255 - a; |
|
146 if (a) { |
|
147 call_hline_blitter(this->getBlitter(), x, y - 1, count, a); |
|
148 } |
|
149 |
|
150 return fy - SK_Fixed1/2; |
|
151 } |
|
152 }; |
|
153 |
|
154 class Horish_SkAntiHairBlitter : public SkAntiHairBlitter { |
|
155 public: |
|
156 virtual SkFixed drawCap(int x, SkFixed fy, SkFixed dy, int mod64) SK_OVERRIDE { |
|
157 int16_t runs[2]; |
|
158 uint8_t aa[1]; |
|
159 |
|
160 runs[0] = 1; |
|
161 runs[1] = 0; |
|
162 |
|
163 fy += SK_Fixed1/2; |
|
164 SkBlitter* blitter = this->getBlitter(); |
|
165 |
|
166 int lower_y = fy >> 16; |
|
167 uint8_t a = (uint8_t)(fy >> 8); |
|
168 unsigned ma = SmallDot6Scale(a, mod64); |
|
169 if (ma) { |
|
170 aa[0] = ApplyGamma(gamma, ma); |
|
171 blitter->blitAntiH(x, lower_y, aa, runs); |
|
172 // the clipping blitters might edit runs, but should not affect us |
|
173 SkASSERT(runs[0] == 1); |
|
174 SkASSERT(runs[1] == 0); |
|
175 } |
|
176 ma = SmallDot6Scale(255 - a, mod64); |
|
177 if (ma) { |
|
178 aa[0] = ApplyGamma(gamma, ma); |
|
179 blitter->blitAntiH(x, lower_y - 1, aa, runs); |
|
180 // the clipping blitters might edit runs, but should not affect us |
|
181 SkASSERT(runs[0] == 1); |
|
182 SkASSERT(runs[1] == 0); |
|
183 } |
|
184 fy += dy; |
|
185 |
|
186 return fy - SK_Fixed1/2; |
|
187 } |
|
188 |
|
189 virtual SkFixed drawLine(int x, int stopx, SkFixed fy, SkFixed dy) SK_OVERRIDE { |
|
190 SkASSERT(x < stopx); |
|
191 |
|
192 int16_t runs[2]; |
|
193 uint8_t aa[1]; |
|
194 |
|
195 runs[0] = 1; |
|
196 runs[1] = 0; |
|
197 |
|
198 fy += SK_Fixed1/2; |
|
199 SkBlitter* blitter = this->getBlitter(); |
|
200 do { |
|
201 int lower_y = fy >> 16; |
|
202 uint8_t a = (uint8_t)(fy >> 8); |
|
203 if (a) { |
|
204 aa[0] = a; |
|
205 blitter->blitAntiH(x, lower_y, aa, runs); |
|
206 // the clipping blitters might edit runs, but should not affect us |
|
207 SkASSERT(runs[0] == 1); |
|
208 SkASSERT(runs[1] == 0); |
|
209 } |
|
210 a = 255 - a; |
|
211 if (a) { |
|
212 aa[0] = a; |
|
213 blitter->blitAntiH(x, lower_y - 1, aa, runs); |
|
214 // the clipping blitters might edit runs, but should not affect us |
|
215 SkASSERT(runs[0] == 1); |
|
216 SkASSERT(runs[1] == 0); |
|
217 } |
|
218 fy += dy; |
|
219 } while (++x < stopx); |
|
220 |
|
221 return fy - SK_Fixed1/2; |
|
222 } |
|
223 }; |
|
224 |
|
225 class VLine_SkAntiHairBlitter : public SkAntiHairBlitter { |
|
226 public: |
|
227 virtual SkFixed drawCap(int y, SkFixed fx, SkFixed dx, int mod64) SK_OVERRIDE { |
|
228 SkASSERT(0 == dx); |
|
229 fx += SK_Fixed1/2; |
|
230 |
|
231 int x = fx >> 16; |
|
232 int a = (uint8_t)(fx >> 8); |
|
233 |
|
234 unsigned ma = SmallDot6Scale(a, mod64); |
|
235 if (ma) { |
|
236 this->getBlitter()->blitV(x, y, 1, ma); |
|
237 } |
|
238 ma = SmallDot6Scale(255 - a, mod64); |
|
239 if (ma) { |
|
240 this->getBlitter()->blitV(x - 1, y, 1, ma); |
|
241 } |
|
242 |
|
243 return fx - SK_Fixed1/2; |
|
244 } |
|
245 |
|
246 virtual SkFixed drawLine(int y, int stopy, SkFixed fx, SkFixed dx) SK_OVERRIDE { |
|
247 SkASSERT(y < stopy); |
|
248 SkASSERT(0 == dx); |
|
249 fx += SK_Fixed1/2; |
|
250 |
|
251 int x = fx >> 16; |
|
252 int a = (uint8_t)(fx >> 8); |
|
253 |
|
254 if (a) { |
|
255 this->getBlitter()->blitV(x, y, stopy - y, a); |
|
256 } |
|
257 a = 255 - a; |
|
258 if (a) { |
|
259 this->getBlitter()->blitV(x - 1, y, stopy - y, a); |
|
260 } |
|
261 |
|
262 return fx - SK_Fixed1/2; |
|
263 } |
|
264 }; |
|
265 |
|
266 class Vertish_SkAntiHairBlitter : public SkAntiHairBlitter { |
|
267 public: |
|
268 virtual SkFixed drawCap(int y, SkFixed fx, SkFixed dx, int mod64) SK_OVERRIDE { |
|
269 int16_t runs[3]; |
|
270 uint8_t aa[2]; |
|
271 |
|
272 runs[0] = 1; |
|
273 runs[2] = 0; |
|
274 |
|
275 fx += SK_Fixed1/2; |
|
276 int x = fx >> 16; |
|
277 uint8_t a = (uint8_t)(fx >> 8); |
|
278 |
|
279 aa[0] = SmallDot6Scale(255 - a, mod64); |
|
280 aa[1] = SmallDot6Scale(a, mod64); |
|
281 // the clippng blitters might overwrite this guy, so we have to reset it each time |
|
282 runs[1] = 1; |
|
283 this->getBlitter()->blitAntiH(x - 1, y, aa, runs); |
|
284 // the clipping blitters might edit runs, but should not affect us |
|
285 SkASSERT(runs[0] == 1); |
|
286 SkASSERT(runs[2] == 0); |
|
287 fx += dx; |
|
288 |
|
289 return fx - SK_Fixed1/2; |
|
290 } |
|
291 |
|
292 virtual SkFixed drawLine(int y, int stopy, SkFixed fx, SkFixed dx) SK_OVERRIDE { |
|
293 SkASSERT(y < stopy); |
|
294 int16_t runs[3]; |
|
295 uint8_t aa[2]; |
|
296 |
|
297 runs[0] = 1; |
|
298 runs[2] = 0; |
|
299 |
|
300 fx += SK_Fixed1/2; |
|
301 do { |
|
302 int x = fx >> 16; |
|
303 uint8_t a = (uint8_t)(fx >> 8); |
|
304 |
|
305 aa[0] = 255 - a; |
|
306 aa[1] = a; |
|
307 // the clippng blitters might overwrite this guy, so we have to reset it each time |
|
308 runs[1] = 1; |
|
309 this->getBlitter()->blitAntiH(x - 1, y, aa, runs); |
|
310 // the clipping blitters might edit runs, but should not affect us |
|
311 SkASSERT(runs[0] == 1); |
|
312 SkASSERT(runs[2] == 0); |
|
313 fx += dx; |
|
314 } while (++y < stopy); |
|
315 |
|
316 return fx - SK_Fixed1/2; |
|
317 } |
|
318 }; |
|
319 |
|
320 static inline SkFixed fastfixdiv(SkFDot6 a, SkFDot6 b) { |
|
321 SkASSERT((a << 16 >> 16) == a); |
|
322 SkASSERT(b != 0); |
|
323 return (a << 16) / b; |
|
324 } |
|
325 |
|
326 #define SkBITCOUNT(x) (sizeof(x) << 3) |
|
327 |
|
328 #if 1 |
|
329 // returns high-bit set iff x==0x8000... |
|
330 static inline int bad_int(int x) { |
|
331 return x & -x; |
|
332 } |
|
333 |
|
334 static int any_bad_ints(int a, int b, int c, int d) { |
|
335 return (bad_int(a) | bad_int(b) | bad_int(c) | bad_int(d)) >> (SkBITCOUNT(int) - 1); |
|
336 } |
|
337 #else |
|
338 static inline int good_int(int x) { |
|
339 return x ^ (1 << (SkBITCOUNT(x) - 1)); |
|
340 } |
|
341 |
|
342 static int any_bad_ints(int a, int b, int c, int d) { |
|
343 return !(good_int(a) & good_int(b) & good_int(c) & good_int(d)); |
|
344 } |
|
345 #endif |
|
346 |
|
347 #ifdef SK_DEBUG |
|
348 static bool canConvertFDot6ToFixed(SkFDot6 x) { |
|
349 const int maxDot6 = SK_MaxS32 >> (16 - 6); |
|
350 return SkAbs32(x) <= maxDot6; |
|
351 } |
|
352 #endif |
|
353 |
|
354 /* |
|
355 * We want the fractional part of ordinate, but we want multiples of 64 to |
|
356 * return 64, not 0, so we can't just say (ordinate & 63). |
|
357 * We basically want to compute those bits, and if they're 0, return 64. |
|
358 * We can do that w/o a branch with an extra sub and add. |
|
359 */ |
|
360 static int contribution_64(SkFDot6 ordinate) { |
|
361 #if 0 |
|
362 int result = ordinate & 63; |
|
363 if (0 == result) { |
|
364 result = 64; |
|
365 } |
|
366 #else |
|
367 int result = ((ordinate - 1) & 63) + 1; |
|
368 #endif |
|
369 SkASSERT(result > 0 && result <= 64); |
|
370 return result; |
|
371 } |
|
372 |
|
373 static void do_anti_hairline(SkFDot6 x0, SkFDot6 y0, SkFDot6 x1, SkFDot6 y1, |
|
374 const SkIRect* clip, SkBlitter* blitter) { |
|
375 // check for integer NaN (0x80000000) which we can't handle (can't negate it) |
|
376 // It appears typically from a huge float (inf or nan) being converted to int. |
|
377 // If we see it, just don't draw. |
|
378 if (any_bad_ints(x0, y0, x1, y1)) { |
|
379 return; |
|
380 } |
|
381 |
|
382 // The caller must clip the line to [-32767.0 ... 32767.0] ahead of time |
|
383 // (in dot6 format) |
|
384 SkASSERT(canConvertFDot6ToFixed(x0)); |
|
385 SkASSERT(canConvertFDot6ToFixed(y0)); |
|
386 SkASSERT(canConvertFDot6ToFixed(x1)); |
|
387 SkASSERT(canConvertFDot6ToFixed(y1)); |
|
388 |
|
389 if (SkAbs32(x1 - x0) > SkIntToFDot6(511) || SkAbs32(y1 - y0) > SkIntToFDot6(511)) { |
|
390 /* instead of (x0 + x1) >> 1, we shift each separately. This is less |
|
391 precise, but avoids overflowing the intermediate result if the |
|
392 values are huge. A better fix might be to clip the original pts |
|
393 directly (i.e. do the divide), so we don't spend time subdividing |
|
394 huge lines at all. |
|
395 */ |
|
396 int hx = (x0 >> 1) + (x1 >> 1); |
|
397 int hy = (y0 >> 1) + (y1 >> 1); |
|
398 do_anti_hairline(x0, y0, hx, hy, clip, blitter); |
|
399 do_anti_hairline(hx, hy, x1, y1, clip, blitter); |
|
400 return; |
|
401 } |
|
402 |
|
403 int scaleStart, scaleStop; |
|
404 int istart, istop; |
|
405 SkFixed fstart, slope; |
|
406 |
|
407 HLine_SkAntiHairBlitter hline_blitter; |
|
408 Horish_SkAntiHairBlitter horish_blitter; |
|
409 VLine_SkAntiHairBlitter vline_blitter; |
|
410 Vertish_SkAntiHairBlitter vertish_blitter; |
|
411 SkAntiHairBlitter* hairBlitter = NULL; |
|
412 |
|
413 if (SkAbs32(x1 - x0) > SkAbs32(y1 - y0)) { // mostly horizontal |
|
414 if (x0 > x1) { // we want to go left-to-right |
|
415 SkTSwap<SkFDot6>(x0, x1); |
|
416 SkTSwap<SkFDot6>(y0, y1); |
|
417 } |
|
418 |
|
419 istart = SkFDot6Floor(x0); |
|
420 istop = SkFDot6Ceil(x1); |
|
421 fstart = SkFDot6ToFixed(y0); |
|
422 if (y0 == y1) { // completely horizontal, take fast case |
|
423 slope = 0; |
|
424 hairBlitter = &hline_blitter; |
|
425 } else { |
|
426 slope = fastfixdiv(y1 - y0, x1 - x0); |
|
427 SkASSERT(slope >= -SK_Fixed1 && slope <= SK_Fixed1); |
|
428 fstart += (slope * (32 - (x0 & 63)) + 32) >> 6; |
|
429 hairBlitter = &horish_blitter; |
|
430 } |
|
431 |
|
432 SkASSERT(istop > istart); |
|
433 if (istop - istart == 1) { |
|
434 // we are within a single pixel |
|
435 scaleStart = x1 - x0; |
|
436 SkASSERT(scaleStart >= 0 && scaleStart <= 64); |
|
437 scaleStop = 0; |
|
438 } else { |
|
439 scaleStart = 64 - (x0 & 63); |
|
440 scaleStop = x1 & 63; |
|
441 } |
|
442 |
|
443 if (clip){ |
|
444 if (istart >= clip->fRight || istop <= clip->fLeft) { |
|
445 return; |
|
446 } |
|
447 if (istart < clip->fLeft) { |
|
448 fstart += slope * (clip->fLeft - istart); |
|
449 istart = clip->fLeft; |
|
450 scaleStart = 64; |
|
451 if (istop - istart == 1) { |
|
452 // we are within a single pixel |
|
453 scaleStart = contribution_64(x1); |
|
454 scaleStop = 0; |
|
455 } |
|
456 } |
|
457 if (istop > clip->fRight) { |
|
458 istop = clip->fRight; |
|
459 scaleStop = 0; // so we don't draw this last column |
|
460 } |
|
461 |
|
462 SkASSERT(istart <= istop); |
|
463 if (istart == istop) { |
|
464 return; |
|
465 } |
|
466 // now test if our Y values are completely inside the clip |
|
467 int top, bottom; |
|
468 if (slope >= 0) { // T2B |
|
469 top = SkFixedFloorToInt(fstart - SK_FixedHalf); |
|
470 bottom = SkFixedCeilToInt(fstart + (istop - istart - 1) * slope + SK_FixedHalf); |
|
471 } else { // B2T |
|
472 bottom = SkFixedCeilToInt(fstart + SK_FixedHalf); |
|
473 top = SkFixedFloorToInt(fstart + (istop - istart - 1) * slope - SK_FixedHalf); |
|
474 } |
|
475 #ifdef OUTSET_BEFORE_CLIP_TEST |
|
476 top -= 1; |
|
477 bottom += 1; |
|
478 #endif |
|
479 if (top >= clip->fBottom || bottom <= clip->fTop) { |
|
480 return; |
|
481 } |
|
482 if (clip->fTop <= top && clip->fBottom >= bottom) { |
|
483 clip = NULL; |
|
484 } |
|
485 } |
|
486 } else { // mostly vertical |
|
487 if (y0 > y1) { // we want to go top-to-bottom |
|
488 SkTSwap<SkFDot6>(x0, x1); |
|
489 SkTSwap<SkFDot6>(y0, y1); |
|
490 } |
|
491 |
|
492 istart = SkFDot6Floor(y0); |
|
493 istop = SkFDot6Ceil(y1); |
|
494 fstart = SkFDot6ToFixed(x0); |
|
495 if (x0 == x1) { |
|
496 if (y0 == y1) { // are we zero length? |
|
497 return; // nothing to do |
|
498 } |
|
499 slope = 0; |
|
500 hairBlitter = &vline_blitter; |
|
501 } else { |
|
502 slope = fastfixdiv(x1 - x0, y1 - y0); |
|
503 SkASSERT(slope <= SK_Fixed1 && slope >= -SK_Fixed1); |
|
504 fstart += (slope * (32 - (y0 & 63)) + 32) >> 6; |
|
505 hairBlitter = &vertish_blitter; |
|
506 } |
|
507 |
|
508 SkASSERT(istop > istart); |
|
509 if (istop - istart == 1) { |
|
510 // we are within a single pixel |
|
511 scaleStart = y1 - y0; |
|
512 SkASSERT(scaleStart >= 0 && scaleStart <= 64); |
|
513 scaleStop = 0; |
|
514 } else { |
|
515 scaleStart = 64 - (y0 & 63); |
|
516 scaleStop = y1 & 63; |
|
517 } |
|
518 |
|
519 if (clip) { |
|
520 if (istart >= clip->fBottom || istop <= clip->fTop) { |
|
521 return; |
|
522 } |
|
523 if (istart < clip->fTop) { |
|
524 fstart += slope * (clip->fTop - istart); |
|
525 istart = clip->fTop; |
|
526 scaleStart = 64; |
|
527 if (istop - istart == 1) { |
|
528 // we are within a single pixel |
|
529 scaleStart = contribution_64(y1); |
|
530 scaleStop = 0; |
|
531 } |
|
532 } |
|
533 if (istop > clip->fBottom) { |
|
534 istop = clip->fBottom; |
|
535 scaleStop = 0; // so we don't draw this last row |
|
536 } |
|
537 |
|
538 SkASSERT(istart <= istop); |
|
539 if (istart == istop) |
|
540 return; |
|
541 |
|
542 // now test if our X values are completely inside the clip |
|
543 int left, right; |
|
544 if (slope >= 0) { // L2R |
|
545 left = SkFixedFloorToInt(fstart - SK_FixedHalf); |
|
546 right = SkFixedCeilToInt(fstart + (istop - istart - 1) * slope + SK_FixedHalf); |
|
547 } else { // R2L |
|
548 right = SkFixedCeilToInt(fstart + SK_FixedHalf); |
|
549 left = SkFixedFloorToInt(fstart + (istop - istart - 1) * slope - SK_FixedHalf); |
|
550 } |
|
551 #ifdef OUTSET_BEFORE_CLIP_TEST |
|
552 left -= 1; |
|
553 right += 1; |
|
554 #endif |
|
555 if (left >= clip->fRight || right <= clip->fLeft) { |
|
556 return; |
|
557 } |
|
558 if (clip->fLeft <= left && clip->fRight >= right) { |
|
559 clip = NULL; |
|
560 } |
|
561 } |
|
562 } |
|
563 |
|
564 SkRectClipBlitter rectClipper; |
|
565 if (clip) { |
|
566 rectClipper.init(blitter, *clip); |
|
567 blitter = &rectClipper; |
|
568 } |
|
569 |
|
570 SkASSERT(hairBlitter); |
|
571 hairBlitter->setup(blitter); |
|
572 |
|
573 #ifdef SK_DEBUG |
|
574 if (scaleStart > 0 && scaleStop > 0) { |
|
575 // be sure we don't draw twice in the same pixel |
|
576 SkASSERT(istart < istop - 1); |
|
577 } |
|
578 #endif |
|
579 |
|
580 fstart = hairBlitter->drawCap(istart, fstart, slope, scaleStart); |
|
581 istart += 1; |
|
582 int fullSpans = istop - istart - (scaleStop > 0); |
|
583 if (fullSpans > 0) { |
|
584 fstart = hairBlitter->drawLine(istart, istart + fullSpans, fstart, slope); |
|
585 } |
|
586 if (scaleStop > 0) { |
|
587 hairBlitter->drawCap(istop - 1, fstart, slope, scaleStop); |
|
588 } |
|
589 } |
|
590 |
|
591 void SkScan::AntiHairLineRgn(const SkPoint& pt0, const SkPoint& pt1, |
|
592 const SkRegion* clip, SkBlitter* blitter) { |
|
593 if (clip && clip->isEmpty()) { |
|
594 return; |
|
595 } |
|
596 |
|
597 SkASSERT(clip == NULL || !clip->getBounds().isEmpty()); |
|
598 |
|
599 #ifdef TEST_GAMMA |
|
600 build_gamma_table(); |
|
601 #endif |
|
602 |
|
603 SkPoint pts[2] = { pt0, pt1 }; |
|
604 |
|
605 // We have to pre-clip the line to fit in a SkFixed, so we just chop |
|
606 // the line. TODO find a way to actually draw beyond that range. |
|
607 { |
|
608 SkRect fixedBounds; |
|
609 const SkScalar max = SkIntToScalar(32767); |
|
610 fixedBounds.set(-max, -max, max, max); |
|
611 if (!SkLineClipper::IntersectLine(pts, fixedBounds, pts)) { |
|
612 return; |
|
613 } |
|
614 } |
|
615 |
|
616 if (clip) { |
|
617 SkRect clipBounds; |
|
618 clipBounds.set(clip->getBounds()); |
|
619 /* We perform integral clipping later on, but we do a scalar clip first |
|
620 to ensure that our coordinates are expressible in fixed/integers. |
|
621 |
|
622 antialiased hairlines can draw up to 1/2 of a pixel outside of |
|
623 their bounds, so we need to outset the clip before calling the |
|
624 clipper. To make the numerics safer, we outset by a whole pixel, |
|
625 since the 1/2 pixel boundary is important to the antihair blitter, |
|
626 we don't want to risk numerical fate by chopping on that edge. |
|
627 */ |
|
628 clipBounds.inset(-SK_Scalar1, -SK_Scalar1); |
|
629 |
|
630 if (!SkLineClipper::IntersectLine(pts, clipBounds, pts)) { |
|
631 return; |
|
632 } |
|
633 } |
|
634 |
|
635 SkFDot6 x0 = SkScalarToFDot6(pts[0].fX); |
|
636 SkFDot6 y0 = SkScalarToFDot6(pts[0].fY); |
|
637 SkFDot6 x1 = SkScalarToFDot6(pts[1].fX); |
|
638 SkFDot6 y1 = SkScalarToFDot6(pts[1].fY); |
|
639 |
|
640 if (clip) { |
|
641 SkFDot6 left = SkMin32(x0, x1); |
|
642 SkFDot6 top = SkMin32(y0, y1); |
|
643 SkFDot6 right = SkMax32(x0, x1); |
|
644 SkFDot6 bottom = SkMax32(y0, y1); |
|
645 SkIRect ir; |
|
646 |
|
647 ir.set( SkFDot6Floor(left) - 1, |
|
648 SkFDot6Floor(top) - 1, |
|
649 SkFDot6Ceil(right) + 1, |
|
650 SkFDot6Ceil(bottom) + 1); |
|
651 |
|
652 if (clip->quickReject(ir)) { |
|
653 return; |
|
654 } |
|
655 if (!clip->quickContains(ir)) { |
|
656 SkRegion::Cliperator iter(*clip, ir); |
|
657 const SkIRect* r = &iter.rect(); |
|
658 |
|
659 while (!iter.done()) { |
|
660 do_anti_hairline(x0, y0, x1, y1, r, blitter); |
|
661 iter.next(); |
|
662 } |
|
663 return; |
|
664 } |
|
665 // fall through to no-clip case |
|
666 } |
|
667 do_anti_hairline(x0, y0, x1, y1, NULL, blitter); |
|
668 } |
|
669 |
|
670 void SkScan::AntiHairRect(const SkRect& rect, const SkRasterClip& clip, |
|
671 SkBlitter* blitter) { |
|
672 SkPoint p0, p1; |
|
673 |
|
674 p0.set(rect.fLeft, rect.fTop); |
|
675 p1.set(rect.fRight, rect.fTop); |
|
676 SkScan::AntiHairLine(p0, p1, clip, blitter); |
|
677 p0.set(rect.fRight, rect.fBottom); |
|
678 SkScan::AntiHairLine(p0, p1, clip, blitter); |
|
679 p1.set(rect.fLeft, rect.fBottom); |
|
680 SkScan::AntiHairLine(p0, p1, clip, blitter); |
|
681 p0.set(rect.fLeft, rect.fTop); |
|
682 SkScan::AntiHairLine(p0, p1, clip, blitter); |
|
683 } |
|
684 |
|
685 /////////////////////////////////////////////////////////////////////////////// |
|
686 |
|
687 typedef int FDot8; // 24.8 integer fixed point |
|
688 |
|
689 static inline FDot8 SkFixedToFDot8(SkFixed x) { |
|
690 return (x + 0x80) >> 8; |
|
691 } |
|
692 |
|
693 static void do_scanline(FDot8 L, int top, FDot8 R, U8CPU alpha, |
|
694 SkBlitter* blitter) { |
|
695 SkASSERT(L < R); |
|
696 |
|
697 if ((L >> 8) == ((R - 1) >> 8)) { // 1x1 pixel |
|
698 blitter->blitV(L >> 8, top, 1, SkAlphaMul(alpha, R - L)); |
|
699 return; |
|
700 } |
|
701 |
|
702 int left = L >> 8; |
|
703 |
|
704 if (L & 0xFF) { |
|
705 blitter->blitV(left, top, 1, SkAlphaMul(alpha, 256 - (L & 0xFF))); |
|
706 left += 1; |
|
707 } |
|
708 |
|
709 int rite = R >> 8; |
|
710 int width = rite - left; |
|
711 if (width > 0) { |
|
712 call_hline_blitter(blitter, left, top, width, alpha); |
|
713 } |
|
714 if (R & 0xFF) { |
|
715 blitter->blitV(rite, top, 1, SkAlphaMul(alpha, R & 0xFF)); |
|
716 } |
|
717 } |
|
718 |
|
719 static void antifilldot8(FDot8 L, FDot8 T, FDot8 R, FDot8 B, SkBlitter* blitter, |
|
720 bool fillInner) { |
|
721 // check for empty now that we're in our reduced precision space |
|
722 if (L >= R || T >= B) { |
|
723 return; |
|
724 } |
|
725 int top = T >> 8; |
|
726 if (top == ((B - 1) >> 8)) { // just one scanline high |
|
727 do_scanline(L, top, R, B - T - 1, blitter); |
|
728 return; |
|
729 } |
|
730 |
|
731 if (T & 0xFF) { |
|
732 do_scanline(L, top, R, 256 - (T & 0xFF), blitter); |
|
733 top += 1; |
|
734 } |
|
735 |
|
736 int bot = B >> 8; |
|
737 int height = bot - top; |
|
738 if (height > 0) { |
|
739 int left = L >> 8; |
|
740 if (left == ((R - 1) >> 8)) { // just 1-pixel wide |
|
741 blitter->blitV(left, top, height, R - L - 1); |
|
742 } else { |
|
743 if (L & 0xFF) { |
|
744 blitter->blitV(left, top, height, 256 - (L & 0xFF)); |
|
745 left += 1; |
|
746 } |
|
747 int rite = R >> 8; |
|
748 int width = rite - left; |
|
749 if (width > 0 && fillInner) { |
|
750 blitter->blitRect(left, top, width, height); |
|
751 } |
|
752 if (R & 0xFF) { |
|
753 blitter->blitV(rite, top, height, R & 0xFF); |
|
754 } |
|
755 } |
|
756 } |
|
757 |
|
758 if (B & 0xFF) { |
|
759 do_scanline(L, bot, R, B & 0xFF, blitter); |
|
760 } |
|
761 } |
|
762 |
|
763 static void antifillrect(const SkXRect& xr, SkBlitter* blitter) { |
|
764 antifilldot8(SkFixedToFDot8(xr.fLeft), SkFixedToFDot8(xr.fTop), |
|
765 SkFixedToFDot8(xr.fRight), SkFixedToFDot8(xr.fBottom), |
|
766 blitter, true); |
|
767 } |
|
768 |
|
769 /////////////////////////////////////////////////////////////////////////////// |
|
770 |
|
771 void SkScan::AntiFillXRect(const SkXRect& xr, const SkRegion* clip, |
|
772 SkBlitter* blitter) { |
|
773 if (NULL == clip) { |
|
774 antifillrect(xr, blitter); |
|
775 } else { |
|
776 SkIRect outerBounds; |
|
777 XRect_roundOut(xr, &outerBounds); |
|
778 |
|
779 if (clip->isRect()) { |
|
780 const SkIRect& clipBounds = clip->getBounds(); |
|
781 |
|
782 if (clipBounds.contains(outerBounds)) { |
|
783 antifillrect(xr, blitter); |
|
784 } else { |
|
785 SkXRect tmpR; |
|
786 // this keeps our original edges fractional |
|
787 XRect_set(&tmpR, clipBounds); |
|
788 if (tmpR.intersect(xr)) { |
|
789 antifillrect(tmpR, blitter); |
|
790 } |
|
791 } |
|
792 } else { |
|
793 SkRegion::Cliperator clipper(*clip, outerBounds); |
|
794 const SkIRect& rr = clipper.rect(); |
|
795 |
|
796 while (!clipper.done()) { |
|
797 SkXRect tmpR; |
|
798 |
|
799 // this keeps our original edges fractional |
|
800 XRect_set(&tmpR, rr); |
|
801 if (tmpR.intersect(xr)) { |
|
802 antifillrect(tmpR, blitter); |
|
803 } |
|
804 clipper.next(); |
|
805 } |
|
806 } |
|
807 } |
|
808 } |
|
809 |
|
810 void SkScan::AntiFillXRect(const SkXRect& xr, const SkRasterClip& clip, |
|
811 SkBlitter* blitter) { |
|
812 if (clip.isBW()) { |
|
813 AntiFillXRect(xr, &clip.bwRgn(), blitter); |
|
814 } else { |
|
815 SkIRect outerBounds; |
|
816 XRect_roundOut(xr, &outerBounds); |
|
817 |
|
818 if (clip.quickContains(outerBounds)) { |
|
819 AntiFillXRect(xr, NULL, blitter); |
|
820 } else { |
|
821 SkAAClipBlitterWrapper wrapper(clip, blitter); |
|
822 blitter = wrapper.getBlitter(); |
|
823 |
|
824 AntiFillXRect(xr, &wrapper.getRgn(), wrapper.getBlitter()); |
|
825 } |
|
826 } |
|
827 } |
|
828 |
|
829 /* This guy takes a float-rect, but with the key improvement that it has |
|
830 already been clipped, so we know that it is safe to convert it into a |
|
831 XRect (fixedpoint), as it won't overflow. |
|
832 */ |
|
833 static void antifillrect(const SkRect& r, SkBlitter* blitter) { |
|
834 SkXRect xr; |
|
835 |
|
836 XRect_set(&xr, r); |
|
837 antifillrect(xr, blitter); |
|
838 } |
|
839 |
|
840 /* We repeat the clipping logic of AntiFillXRect because the float rect might |
|
841 overflow if we blindly converted it to an XRect. This sucks that we have to |
|
842 repeat the clipping logic, but I don't see how to share the code/logic. |
|
843 |
|
844 We clip r (as needed) into one or more (smaller) float rects, and then pass |
|
845 those to our version of antifillrect, which converts it into an XRect and |
|
846 then calls the blit. |
|
847 */ |
|
848 void SkScan::AntiFillRect(const SkRect& origR, const SkRegion* clip, |
|
849 SkBlitter* blitter) { |
|
850 if (clip) { |
|
851 SkRect newR; |
|
852 newR.set(clip->getBounds()); |
|
853 if (!newR.intersect(origR)) { |
|
854 return; |
|
855 } |
|
856 |
|
857 SkIRect outerBounds; |
|
858 newR.roundOut(&outerBounds); |
|
859 |
|
860 if (clip->isRect()) { |
|
861 antifillrect(newR, blitter); |
|
862 } else { |
|
863 SkRegion::Cliperator clipper(*clip, outerBounds); |
|
864 while (!clipper.done()) { |
|
865 newR.set(clipper.rect()); |
|
866 if (newR.intersect(origR)) { |
|
867 antifillrect(newR, blitter); |
|
868 } |
|
869 clipper.next(); |
|
870 } |
|
871 } |
|
872 } else { |
|
873 antifillrect(origR, blitter); |
|
874 } |
|
875 } |
|
876 |
|
877 void SkScan::AntiFillRect(const SkRect& r, const SkRasterClip& clip, |
|
878 SkBlitter* blitter) { |
|
879 if (clip.isBW()) { |
|
880 AntiFillRect(r, &clip.bwRgn(), blitter); |
|
881 } else { |
|
882 SkAAClipBlitterWrapper wrap(clip, blitter); |
|
883 AntiFillRect(r, &wrap.getRgn(), wrap.getBlitter()); |
|
884 } |
|
885 } |
|
886 |
|
887 /////////////////////////////////////////////////////////////////////////////// |
|
888 |
|
889 #define SkAlphaMulRound(a, b) SkMulDiv255Round(a, b) |
|
890 |
|
891 // calls blitRect() if the rectangle is non-empty |
|
892 static void fillcheckrect(int L, int T, int R, int B, SkBlitter* blitter) { |
|
893 if (L < R && T < B) { |
|
894 blitter->blitRect(L, T, R - L, B - T); |
|
895 } |
|
896 } |
|
897 |
|
898 static inline FDot8 SkScalarToFDot8(SkScalar x) { |
|
899 return (int)(x * 256); |
|
900 } |
|
901 |
|
902 static inline int FDot8Floor(FDot8 x) { |
|
903 return x >> 8; |
|
904 } |
|
905 |
|
906 static inline int FDot8Ceil(FDot8 x) { |
|
907 return (x + 0xFF) >> 8; |
|
908 } |
|
909 |
|
910 // 1 - (1 - a)*(1 - b) |
|
911 static inline U8CPU InvAlphaMul(U8CPU a, U8CPU b) { |
|
912 // need precise rounding (not just SkAlphaMul) so that values like |
|
913 // a=228, b=252 don't overflow the result |
|
914 return SkToU8(a + b - SkAlphaMulRound(a, b)); |
|
915 } |
|
916 |
|
917 static void inner_scanline(FDot8 L, int top, FDot8 R, U8CPU alpha, |
|
918 SkBlitter* blitter) { |
|
919 SkASSERT(L < R); |
|
920 |
|
921 if ((L >> 8) == ((R - 1) >> 8)) { // 1x1 pixel |
|
922 blitter->blitV(L >> 8, top, 1, InvAlphaMul(alpha, R - L)); |
|
923 return; |
|
924 } |
|
925 |
|
926 int left = L >> 8; |
|
927 if (L & 0xFF) { |
|
928 blitter->blitV(left, top, 1, InvAlphaMul(alpha, L & 0xFF)); |
|
929 left += 1; |
|
930 } |
|
931 |
|
932 int rite = R >> 8; |
|
933 int width = rite - left; |
|
934 if (width > 0) { |
|
935 call_hline_blitter(blitter, left, top, width, alpha); |
|
936 } |
|
937 |
|
938 if (R & 0xFF) { |
|
939 blitter->blitV(rite, top, 1, InvAlphaMul(alpha, ~R & 0xFF)); |
|
940 } |
|
941 } |
|
942 |
|
943 static void innerstrokedot8(FDot8 L, FDot8 T, FDot8 R, FDot8 B, |
|
944 SkBlitter* blitter) { |
|
945 SkASSERT(L < R && T < B); |
|
946 |
|
947 int top = T >> 8; |
|
948 if (top == ((B - 1) >> 8)) { // just one scanline high |
|
949 // We want the inverse of B-T, since we're the inner-stroke |
|
950 int alpha = 256 - (B - T); |
|
951 if (alpha) { |
|
952 inner_scanline(L, top, R, alpha, blitter); |
|
953 } |
|
954 return; |
|
955 } |
|
956 |
|
957 if (T & 0xFF) { |
|
958 inner_scanline(L, top, R, T & 0xFF, blitter); |
|
959 top += 1; |
|
960 } |
|
961 |
|
962 int bot = B >> 8; |
|
963 int height = bot - top; |
|
964 if (height > 0) { |
|
965 if (L & 0xFF) { |
|
966 blitter->blitV(L >> 8, top, height, L & 0xFF); |
|
967 } |
|
968 if (R & 0xFF) { |
|
969 blitter->blitV(R >> 8, top, height, ~R & 0xFF); |
|
970 } |
|
971 } |
|
972 |
|
973 if (B & 0xFF) { |
|
974 inner_scanline(L, bot, R, ~B & 0xFF, blitter); |
|
975 } |
|
976 } |
|
977 |
|
978 void SkScan::AntiFrameRect(const SkRect& r, const SkPoint& strokeSize, |
|
979 const SkRegion* clip, SkBlitter* blitter) { |
|
980 SkASSERT(strokeSize.fX >= 0 && strokeSize.fY >= 0); |
|
981 |
|
982 SkScalar rx = SkScalarHalf(strokeSize.fX); |
|
983 SkScalar ry = SkScalarHalf(strokeSize.fY); |
|
984 |
|
985 // outset by the radius |
|
986 FDot8 L = SkScalarToFDot8(r.fLeft - rx); |
|
987 FDot8 T = SkScalarToFDot8(r.fTop - ry); |
|
988 FDot8 R = SkScalarToFDot8(r.fRight + rx); |
|
989 FDot8 B = SkScalarToFDot8(r.fBottom + ry); |
|
990 |
|
991 SkIRect outer; |
|
992 // set outer to the outer rect of the outer section |
|
993 outer.set(FDot8Floor(L), FDot8Floor(T), FDot8Ceil(R), FDot8Ceil(B)); |
|
994 |
|
995 SkBlitterClipper clipper; |
|
996 if (clip) { |
|
997 if (clip->quickReject(outer)) { |
|
998 return; |
|
999 } |
|
1000 if (!clip->contains(outer)) { |
|
1001 blitter = clipper.apply(blitter, clip, &outer); |
|
1002 } |
|
1003 // now we can ignore clip for the rest of the function |
|
1004 } |
|
1005 |
|
1006 // stroke the outer hull |
|
1007 antifilldot8(L, T, R, B, blitter, false); |
|
1008 |
|
1009 // set outer to the outer rect of the middle section |
|
1010 outer.set(FDot8Ceil(L), FDot8Ceil(T), FDot8Floor(R), FDot8Floor(B)); |
|
1011 |
|
1012 // in case we lost a bit with diameter/2 |
|
1013 rx = strokeSize.fX - rx; |
|
1014 ry = strokeSize.fY - ry; |
|
1015 // inset by the radius |
|
1016 L = SkScalarToFDot8(r.fLeft + rx); |
|
1017 T = SkScalarToFDot8(r.fTop + ry); |
|
1018 R = SkScalarToFDot8(r.fRight - rx); |
|
1019 B = SkScalarToFDot8(r.fBottom - ry); |
|
1020 |
|
1021 if (L >= R || T >= B) { |
|
1022 fillcheckrect(outer.fLeft, outer.fTop, outer.fRight, outer.fBottom, |
|
1023 blitter); |
|
1024 } else { |
|
1025 SkIRect inner; |
|
1026 // set inner to the inner rect of the middle section |
|
1027 inner.set(FDot8Floor(L), FDot8Floor(T), FDot8Ceil(R), FDot8Ceil(B)); |
|
1028 |
|
1029 // draw the frame in 4 pieces |
|
1030 fillcheckrect(outer.fLeft, outer.fTop, outer.fRight, inner.fTop, |
|
1031 blitter); |
|
1032 fillcheckrect(outer.fLeft, inner.fTop, inner.fLeft, inner.fBottom, |
|
1033 blitter); |
|
1034 fillcheckrect(inner.fRight, inner.fTop, outer.fRight, inner.fBottom, |
|
1035 blitter); |
|
1036 fillcheckrect(outer.fLeft, inner.fBottom, outer.fRight, outer.fBottom, |
|
1037 blitter); |
|
1038 |
|
1039 // now stroke the inner rect, which is similar to antifilldot8() except that |
|
1040 // it treats the fractional coordinates with the inverse bias (since its |
|
1041 // inner). |
|
1042 innerstrokedot8(L, T, R, B, blitter); |
|
1043 } |
|
1044 } |
|
1045 |
|
1046 void SkScan::AntiFrameRect(const SkRect& r, const SkPoint& strokeSize, |
|
1047 const SkRasterClip& clip, SkBlitter* blitter) { |
|
1048 if (clip.isBW()) { |
|
1049 AntiFrameRect(r, strokeSize, &clip.bwRgn(), blitter); |
|
1050 } else { |
|
1051 SkAAClipBlitterWrapper wrap(clip, blitter); |
|
1052 AntiFrameRect(r, strokeSize, &wrap.getRgn(), wrap.getBlitter()); |
|
1053 } |
|
1054 } |