|
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
|
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
|
3 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
4 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
6 |
|
7 /* A type/length-parametrized vector class. */ |
|
8 |
|
9 #ifndef mozilla_Vector_h |
|
10 #define mozilla_Vector_h |
|
11 |
|
12 #include "mozilla/Alignment.h" |
|
13 #include "mozilla/AllocPolicy.h" |
|
14 #include "mozilla/ArrayUtils.h" // for PointerRangeSize |
|
15 #include "mozilla/Assertions.h" |
|
16 #include "mozilla/Attributes.h" |
|
17 #include "mozilla/MathAlgorithms.h" |
|
18 #include "mozilla/MemoryReporting.h" |
|
19 #include "mozilla/Move.h" |
|
20 #include "mozilla/NullPtr.h" |
|
21 #include "mozilla/ReentrancyGuard.h" |
|
22 #include "mozilla/TemplateLib.h" |
|
23 #include "mozilla/TypeTraits.h" |
|
24 |
|
25 #include <new> // for placement new |
|
26 |
|
27 /* Silence dire "bugs in previous versions of MSVC have been fixed" warnings */ |
|
28 #ifdef _MSC_VER |
|
29 #pragma warning(push) |
|
30 #pragma warning(disable:4345) |
|
31 #endif |
|
32 |
|
33 namespace mozilla { |
|
34 |
|
35 template<typename T, size_t N, class AllocPolicy, class ThisVector> |
|
36 class VectorBase; |
|
37 |
|
38 namespace detail { |
|
39 |
|
40 /* |
|
41 * Check that the given capacity wastes the minimal amount of space if |
|
42 * allocated on the heap. This means that cap*sizeof(T) is as close to a |
|
43 * power-of-two as possible. growStorageBy() is responsible for ensuring |
|
44 * this. |
|
45 */ |
|
46 template<typename T> |
|
47 static bool CapacityHasExcessSpace(size_t cap) |
|
48 { |
|
49 size_t size = cap * sizeof(T); |
|
50 return RoundUpPow2(size) - size >= sizeof(T); |
|
51 } |
|
52 |
|
53 /* |
|
54 * This template class provides a default implementation for vector operations |
|
55 * when the element type is not known to be a POD, as judged by IsPod. |
|
56 */ |
|
57 template<typename T, size_t N, class AP, class ThisVector, bool IsPod> |
|
58 struct VectorImpl |
|
59 { |
|
60 /* Destroys constructed objects in the range [begin, end). */ |
|
61 static inline void destroy(T* begin, T* end) { |
|
62 MOZ_ASSERT(begin <= end); |
|
63 for (T* p = begin; p < end; ++p) |
|
64 p->~T(); |
|
65 } |
|
66 |
|
67 /* Constructs objects in the uninitialized range [begin, end). */ |
|
68 static inline void initialize(T* begin, T* end) { |
|
69 MOZ_ASSERT(begin <= end); |
|
70 for (T* p = begin; p < end; ++p) |
|
71 new(p) T(); |
|
72 } |
|
73 |
|
74 /* |
|
75 * Copy-constructs objects in the uninitialized range |
|
76 * [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend). |
|
77 */ |
|
78 template<typename U> |
|
79 static inline void copyConstruct(T* dst, const U* srcbeg, const U* srcend) { |
|
80 MOZ_ASSERT(srcbeg <= srcend); |
|
81 for (const U* p = srcbeg; p < srcend; ++p, ++dst) |
|
82 new(dst) T(*p); |
|
83 } |
|
84 |
|
85 /* |
|
86 * Move-constructs objects in the uninitialized range |
|
87 * [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend). |
|
88 */ |
|
89 template<typename U> |
|
90 static inline void moveConstruct(T* dst, U* srcbeg, U* srcend) { |
|
91 MOZ_ASSERT(srcbeg <= srcend); |
|
92 for (U* p = srcbeg; p < srcend; ++p, ++dst) |
|
93 new(dst) T(Move(*p)); |
|
94 } |
|
95 |
|
96 /* |
|
97 * Copy-constructs objects in the uninitialized range [dst, dst+n) from the |
|
98 * same object u. |
|
99 */ |
|
100 template<typename U> |
|
101 static inline void copyConstructN(T* dst, size_t n, const U& u) { |
|
102 for (T* end = dst + n; dst < end; ++dst) |
|
103 new(dst) T(u); |
|
104 } |
|
105 |
|
106 /* |
|
107 * Grows the given buffer to have capacity newCap, preserving the objects |
|
108 * constructed in the range [begin, end) and updating v. Assumes that (1) |
|
109 * newCap has not overflowed, and (2) multiplying newCap by sizeof(T) will |
|
110 * not overflow. |
|
111 */ |
|
112 static inline bool |
|
113 growTo(VectorBase<T, N, AP, ThisVector>& v, size_t newCap) { |
|
114 MOZ_ASSERT(!v.usingInlineStorage()); |
|
115 MOZ_ASSERT(!CapacityHasExcessSpace<T>(newCap)); |
|
116 T* newbuf = reinterpret_cast<T*>(v.malloc_(newCap * sizeof(T))); |
|
117 if (!newbuf) |
|
118 return false; |
|
119 T* dst = newbuf; |
|
120 T* src = v.beginNoCheck(); |
|
121 for (; src < v.endNoCheck(); ++dst, ++src) |
|
122 new(dst) T(Move(*src)); |
|
123 VectorImpl::destroy(v.beginNoCheck(), v.endNoCheck()); |
|
124 v.free_(v.mBegin); |
|
125 v.mBegin = newbuf; |
|
126 /* v.mLength is unchanged. */ |
|
127 v.mCapacity = newCap; |
|
128 return true; |
|
129 } |
|
130 }; |
|
131 |
|
132 /* |
|
133 * This partial template specialization provides a default implementation for |
|
134 * vector operations when the element type is known to be a POD, as judged by |
|
135 * IsPod. |
|
136 */ |
|
137 template<typename T, size_t N, class AP, class ThisVector> |
|
138 struct VectorImpl<T, N, AP, ThisVector, true> |
|
139 { |
|
140 static inline void destroy(T*, T*) {} |
|
141 |
|
142 static inline void initialize(T* begin, T* end) { |
|
143 /* |
|
144 * You would think that memset would be a big win (or even break even) |
|
145 * when we know T is a POD. But currently it's not. This is probably |
|
146 * because |append| tends to be given small ranges and memset requires |
|
147 * a function call that doesn't get inlined. |
|
148 * |
|
149 * memset(begin, 0, sizeof(T) * (end-begin)); |
|
150 */ |
|
151 MOZ_ASSERT(begin <= end); |
|
152 for (T* p = begin; p < end; ++p) |
|
153 new(p) T(); |
|
154 } |
|
155 |
|
156 template<typename U> |
|
157 static inline void copyConstruct(T* dst, const U* srcbeg, const U* srcend) { |
|
158 /* |
|
159 * See above memset comment. Also, notice that copyConstruct is |
|
160 * currently templated (T != U), so memcpy won't work without |
|
161 * requiring T == U. |
|
162 * |
|
163 * memcpy(dst, srcbeg, sizeof(T) * (srcend - srcbeg)); |
|
164 */ |
|
165 MOZ_ASSERT(srcbeg <= srcend); |
|
166 for (const U* p = srcbeg; p < srcend; ++p, ++dst) |
|
167 *dst = *p; |
|
168 } |
|
169 |
|
170 template<typename U> |
|
171 static inline void moveConstruct(T* dst, const U* srcbeg, const U* srcend) { |
|
172 copyConstruct(dst, srcbeg, srcend); |
|
173 } |
|
174 |
|
175 static inline void copyConstructN(T* dst, size_t n, const T& t) { |
|
176 for (T* end = dst + n; dst < end; ++dst) |
|
177 *dst = t; |
|
178 } |
|
179 |
|
180 static inline bool |
|
181 growTo(VectorBase<T, N, AP, ThisVector>& v, size_t newCap) { |
|
182 MOZ_ASSERT(!v.usingInlineStorage()); |
|
183 MOZ_ASSERT(!CapacityHasExcessSpace<T>(newCap)); |
|
184 size_t oldSize = sizeof(T) * v.mCapacity; |
|
185 size_t newSize = sizeof(T) * newCap; |
|
186 T* newbuf = reinterpret_cast<T*>(v.realloc_(v.mBegin, oldSize, newSize)); |
|
187 if (!newbuf) |
|
188 return false; |
|
189 v.mBegin = newbuf; |
|
190 /* v.mLength is unchanged. */ |
|
191 v.mCapacity = newCap; |
|
192 return true; |
|
193 } |
|
194 }; |
|
195 |
|
196 } // namespace detail |
|
197 |
|
198 /* |
|
199 * A CRTP base class for vector-like classes. Unless you really really want |
|
200 * your own vector class -- and you almost certainly don't -- you should use |
|
201 * mozilla::Vector instead! |
|
202 * |
|
203 * See mozilla::Vector for interface requirements. |
|
204 */ |
|
205 template<typename T, size_t N, class AllocPolicy, class ThisVector> |
|
206 class VectorBase : private AllocPolicy |
|
207 { |
|
208 /* utilities */ |
|
209 |
|
210 static const bool sElemIsPod = IsPod<T>::value; |
|
211 typedef detail::VectorImpl<T, N, AllocPolicy, ThisVector, sElemIsPod> Impl; |
|
212 friend struct detail::VectorImpl<T, N, AllocPolicy, ThisVector, sElemIsPod>; |
|
213 |
|
214 bool growStorageBy(size_t incr); |
|
215 bool convertToHeapStorage(size_t newCap); |
|
216 |
|
217 /* magic constants */ |
|
218 |
|
219 static const int sMaxInlineBytes = 1024; |
|
220 |
|
221 /* compute constants */ |
|
222 |
|
223 /* |
|
224 * Consider element size to be 1 for buffer sizing if there are 0 inline |
|
225 * elements. This allows us to compile when the definition of the element |
|
226 * type is not visible here. |
|
227 * |
|
228 * Explicit specialization is only allowed at namespace scope, so in order |
|
229 * to keep everything here, we use a dummy template parameter with partial |
|
230 * specialization. |
|
231 */ |
|
232 template<int M, int Dummy> |
|
233 struct ElemSize |
|
234 { |
|
235 static const size_t value = sizeof(T); |
|
236 }; |
|
237 template<int Dummy> |
|
238 struct ElemSize<0, Dummy> |
|
239 { |
|
240 static const size_t value = 1; |
|
241 }; |
|
242 |
|
243 static const size_t sInlineCapacity = |
|
244 tl::Min<N, sMaxInlineBytes / ElemSize<N, 0>::value>::value; |
|
245 |
|
246 /* Calculate inline buffer size; avoid 0-sized array. */ |
|
247 static const size_t sInlineBytes = |
|
248 tl::Max<1, sInlineCapacity * ElemSize<N, 0>::value>::value; |
|
249 |
|
250 /* member data */ |
|
251 |
|
252 /* |
|
253 * Pointer to the buffer, be it inline or heap-allocated. Only [mBegin, |
|
254 * mBegin + mLength) hold valid constructed T objects. The range [mBegin + |
|
255 * mLength, mBegin + mCapacity) holds uninitialized memory. The range |
|
256 * [mBegin + mLength, mBegin + mReserved) also holds uninitialized memory |
|
257 * previously allocated by a call to reserve(). |
|
258 */ |
|
259 T* mBegin; |
|
260 |
|
261 /* Number of elements in the vector. */ |
|
262 size_t mLength; |
|
263 |
|
264 /* Max number of elements storable in the vector without resizing. */ |
|
265 size_t mCapacity; |
|
266 |
|
267 #ifdef DEBUG |
|
268 /* Max elements of reserved or used space in this vector. */ |
|
269 size_t mReserved; |
|
270 #endif |
|
271 |
|
272 /* Memory used for inline storage. */ |
|
273 AlignedStorage<sInlineBytes> storage; |
|
274 |
|
275 #ifdef DEBUG |
|
276 friend class ReentrancyGuard; |
|
277 bool entered; |
|
278 #endif |
|
279 |
|
280 /* private accessors */ |
|
281 |
|
282 bool usingInlineStorage() const { |
|
283 return mBegin == const_cast<VectorBase*>(this)->inlineStorage(); |
|
284 } |
|
285 |
|
286 T* inlineStorage() { |
|
287 return static_cast<T*>(storage.addr()); |
|
288 } |
|
289 |
|
290 T* beginNoCheck() const { |
|
291 return mBegin; |
|
292 } |
|
293 |
|
294 T* endNoCheck() { |
|
295 return mBegin + mLength; |
|
296 } |
|
297 |
|
298 const T* endNoCheck() const { |
|
299 return mBegin + mLength; |
|
300 } |
|
301 |
|
302 #ifdef DEBUG |
|
303 size_t reserved() const { |
|
304 MOZ_ASSERT(mReserved <= mCapacity); |
|
305 MOZ_ASSERT(mLength <= mReserved); |
|
306 return mReserved; |
|
307 } |
|
308 #endif |
|
309 |
|
310 /* Append operations guaranteed to succeed due to pre-reserved space. */ |
|
311 template<typename U> void internalAppend(U&& u); |
|
312 template<typename U, size_t O, class BP, class UV> |
|
313 void internalAppendAll(const VectorBase<U, O, BP, UV>& u); |
|
314 void internalAppendN(const T& t, size_t n); |
|
315 template<typename U> void internalAppend(const U* begin, size_t length); |
|
316 |
|
317 public: |
|
318 static const size_t sMaxInlineStorage = N; |
|
319 |
|
320 typedef T ElementType; |
|
321 |
|
322 VectorBase(AllocPolicy = AllocPolicy()); |
|
323 VectorBase(ThisVector&&); /* Move constructor. */ |
|
324 ThisVector& operator=(ThisVector&&); /* Move assignment. */ |
|
325 ~VectorBase(); |
|
326 |
|
327 /* accessors */ |
|
328 |
|
329 const AllocPolicy& allocPolicy() const { |
|
330 return *this; |
|
331 } |
|
332 |
|
333 AllocPolicy& allocPolicy() { |
|
334 return *this; |
|
335 } |
|
336 |
|
337 enum { InlineLength = N }; |
|
338 |
|
339 size_t length() const { |
|
340 return mLength; |
|
341 } |
|
342 |
|
343 bool empty() const { |
|
344 return mLength == 0; |
|
345 } |
|
346 |
|
347 size_t capacity() const { |
|
348 return mCapacity; |
|
349 } |
|
350 |
|
351 T* begin() { |
|
352 MOZ_ASSERT(!entered); |
|
353 return mBegin; |
|
354 } |
|
355 |
|
356 const T* begin() const { |
|
357 MOZ_ASSERT(!entered); |
|
358 return mBegin; |
|
359 } |
|
360 |
|
361 T* end() { |
|
362 MOZ_ASSERT(!entered); |
|
363 return mBegin + mLength; |
|
364 } |
|
365 |
|
366 const T* end() const { |
|
367 MOZ_ASSERT(!entered); |
|
368 return mBegin + mLength; |
|
369 } |
|
370 |
|
371 T& operator[](size_t i) { |
|
372 MOZ_ASSERT(!entered); |
|
373 MOZ_ASSERT(i < mLength); |
|
374 return begin()[i]; |
|
375 } |
|
376 |
|
377 const T& operator[](size_t i) const { |
|
378 MOZ_ASSERT(!entered); |
|
379 MOZ_ASSERT(i < mLength); |
|
380 return begin()[i]; |
|
381 } |
|
382 |
|
383 T& back() { |
|
384 MOZ_ASSERT(!entered); |
|
385 MOZ_ASSERT(!empty()); |
|
386 return *(end() - 1); |
|
387 } |
|
388 |
|
389 const T& back() const { |
|
390 MOZ_ASSERT(!entered); |
|
391 MOZ_ASSERT(!empty()); |
|
392 return *(end() - 1); |
|
393 } |
|
394 |
|
395 class Range |
|
396 { |
|
397 friend class VectorBase; |
|
398 T* cur_; |
|
399 T* end_; |
|
400 Range(T* cur, T* end) : cur_(cur), end_(end) { |
|
401 MOZ_ASSERT(cur <= end); |
|
402 } |
|
403 |
|
404 public: |
|
405 Range() {} |
|
406 bool empty() const { return cur_ == end_; } |
|
407 size_t remain() const { return PointerRangeSize(cur_, end_); } |
|
408 T& front() const { MOZ_ASSERT(!empty()); return *cur_; } |
|
409 void popFront() { MOZ_ASSERT(!empty()); ++cur_; } |
|
410 T popCopyFront() { MOZ_ASSERT(!empty()); return *cur_++; } |
|
411 }; |
|
412 |
|
413 Range all() { |
|
414 return Range(begin(), end()); |
|
415 } |
|
416 |
|
417 /* mutators */ |
|
418 |
|
419 /** |
|
420 * Given that the vector is empty and has no inline storage, grow to |
|
421 * |capacity|. |
|
422 */ |
|
423 bool initCapacity(size_t request); |
|
424 |
|
425 /** |
|
426 * If reserve(length() + N) succeeds, the N next appends are guaranteed to |
|
427 * succeed. |
|
428 */ |
|
429 bool reserve(size_t request); |
|
430 |
|
431 /** |
|
432 * Destroy elements in the range [end() - incr, end()). Does not deallocate |
|
433 * or unreserve storage for those elements. |
|
434 */ |
|
435 void shrinkBy(size_t incr); |
|
436 |
|
437 /** Grow the vector by incr elements. */ |
|
438 bool growBy(size_t incr); |
|
439 |
|
440 /** Call shrinkBy or growBy based on whether newSize > length(). */ |
|
441 bool resize(size_t newLength); |
|
442 |
|
443 /** |
|
444 * Increase the length of the vector, but don't initialize the new elements |
|
445 * -- leave them as uninitialized memory. |
|
446 */ |
|
447 bool growByUninitialized(size_t incr); |
|
448 bool resizeUninitialized(size_t newLength); |
|
449 |
|
450 /** Shorthand for shrinkBy(length()). */ |
|
451 void clear(); |
|
452 |
|
453 /** Clears and releases any heap-allocated storage. */ |
|
454 void clearAndFree(); |
|
455 |
|
456 /** |
|
457 * If true, appending |needed| elements won't reallocate elements storage. |
|
458 * This *doesn't* mean that infallibleAppend may be used! You still must |
|
459 * reserve the extra space, even if this method indicates that appends won't |
|
460 * need to reallocate elements storage. |
|
461 */ |
|
462 bool canAppendWithoutRealloc(size_t needed) const; |
|
463 |
|
464 /** Potentially fallible append operations. */ |
|
465 |
|
466 /** |
|
467 * This can take either a T& or a T&&. Given a T&&, it moves |u| into the |
|
468 * vector, instead of copying it. If it fails, |u| is left unmoved. ("We are |
|
469 * not amused.") |
|
470 */ |
|
471 template<typename U> bool append(U&& u); |
|
472 |
|
473 template<typename U, size_t O, class BP, class UV> |
|
474 bool appendAll(const VectorBase<U, O, BP, UV>& u); |
|
475 bool appendN(const T& t, size_t n); |
|
476 template<typename U> bool append(const U* begin, const U* end); |
|
477 template<typename U> bool append(const U* begin, size_t length); |
|
478 |
|
479 /* |
|
480 * Guaranteed-infallible append operations for use upon vectors whose |
|
481 * memory has been pre-reserved. Don't use this if you haven't reserved the |
|
482 * memory! |
|
483 */ |
|
484 template<typename U> void infallibleAppend(U&& u) { |
|
485 internalAppend(Forward<U>(u)); |
|
486 } |
|
487 void infallibleAppendN(const T& t, size_t n) { |
|
488 internalAppendN(t, n); |
|
489 } |
|
490 template<typename U> void infallibleAppend(const U* aBegin, const U* aEnd) { |
|
491 internalAppend(aBegin, PointerRangeSize(aBegin, aEnd)); |
|
492 } |
|
493 template<typename U> void infallibleAppend(const U* aBegin, size_t aLength) { |
|
494 internalAppend(aBegin, aLength); |
|
495 } |
|
496 |
|
497 void popBack(); |
|
498 |
|
499 T popCopy(); |
|
500 |
|
501 /** |
|
502 * Transfers ownership of the internal buffer used by this vector to the |
|
503 * caller. (It's the caller's responsibility to properly deallocate this |
|
504 * buffer, in accordance with this vector's AllocPolicy.) After this call, |
|
505 * the vector is empty. Since the returned buffer may need to be allocated |
|
506 * (if the elements are currently stored in-place), the call can fail, |
|
507 * returning nullptr. |
|
508 * |
|
509 * N.B. Although a T*, only the range [0, length()) is constructed. |
|
510 */ |
|
511 T* extractRawBuffer(); |
|
512 |
|
513 /** |
|
514 * Transfer ownership of an array of objects into the vector. The caller |
|
515 * must have allocated the array in accordance with this vector's |
|
516 * AllocPolicy. |
|
517 * |
|
518 * N.B. This call assumes that there are no uninitialized elements in the |
|
519 * passed array. |
|
520 */ |
|
521 void replaceRawBuffer(T* p, size_t length); |
|
522 |
|
523 /** |
|
524 * Places |val| at position |p|, shifting existing elements from |p| onward |
|
525 * one position higher. On success, |p| should not be reused because it'll |
|
526 * be a dangling pointer if reallocation of the vector storage occurred; the |
|
527 * return value should be used instead. On failure, nullptr is returned. |
|
528 * |
|
529 * Example usage: |
|
530 * |
|
531 * if (!(p = vec.insert(p, val))) |
|
532 * <handle failure> |
|
533 * <keep working with p> |
|
534 * |
|
535 * This is inherently a linear-time operation. Be careful! |
|
536 */ |
|
537 template<typename U> |
|
538 T* insert(T* p, U&& val); |
|
539 |
|
540 /** |
|
541 * Removes the element |t|, which must fall in the bounds [begin, end), |
|
542 * shifting existing elements from |t + 1| onward one position lower. |
|
543 */ |
|
544 void erase(T* t); |
|
545 |
|
546 /** |
|
547 * Measure the size of the vector's heap-allocated storage. |
|
548 */ |
|
549 size_t sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const; |
|
550 |
|
551 /** |
|
552 * Like sizeOfExcludingThis, but also measures the size of the vector |
|
553 * object (which must be heap-allocated) itself. |
|
554 */ |
|
555 size_t sizeOfIncludingThis(MallocSizeOf mallocSizeOf) const; |
|
556 |
|
557 void swap(ThisVector& other); |
|
558 |
|
559 private: |
|
560 VectorBase(const VectorBase&) MOZ_DELETE; |
|
561 void operator=(const VectorBase&) MOZ_DELETE; |
|
562 |
|
563 /* Move-construct/assign only from our derived class, ThisVector. */ |
|
564 VectorBase(VectorBase&&) MOZ_DELETE; |
|
565 void operator=(VectorBase&&) MOZ_DELETE; |
|
566 }; |
|
567 |
|
568 /* This does the re-entrancy check plus several other sanity checks. */ |
|
569 #define MOZ_REENTRANCY_GUARD_ET_AL \ |
|
570 ReentrancyGuard g(*this); \ |
|
571 MOZ_ASSERT_IF(usingInlineStorage(), mCapacity == sInlineCapacity); \ |
|
572 MOZ_ASSERT(reserved() <= mCapacity); \ |
|
573 MOZ_ASSERT(mLength <= reserved()); \ |
|
574 MOZ_ASSERT(mLength <= mCapacity) |
|
575 |
|
576 /* Vector Implementation */ |
|
577 |
|
578 template<typename T, size_t N, class AP, class TV> |
|
579 MOZ_ALWAYS_INLINE |
|
580 VectorBase<T, N, AP, TV>::VectorBase(AP ap) |
|
581 : AP(ap), |
|
582 mLength(0), |
|
583 mCapacity(sInlineCapacity) |
|
584 #ifdef DEBUG |
|
585 , mReserved(sInlineCapacity), |
|
586 entered(false) |
|
587 #endif |
|
588 { |
|
589 mBegin = static_cast<T*>(storage.addr()); |
|
590 } |
|
591 |
|
592 /* Move constructor. */ |
|
593 template<typename T, size_t N, class AllocPolicy, class TV> |
|
594 MOZ_ALWAYS_INLINE |
|
595 VectorBase<T, N, AllocPolicy, TV>::VectorBase(TV&& rhs) |
|
596 : AllocPolicy(Move(rhs)) |
|
597 #ifdef DEBUG |
|
598 , entered(false) |
|
599 #endif |
|
600 { |
|
601 mLength = rhs.mLength; |
|
602 mCapacity = rhs.mCapacity; |
|
603 #ifdef DEBUG |
|
604 mReserved = rhs.mReserved; |
|
605 #endif |
|
606 |
|
607 if (rhs.usingInlineStorage()) { |
|
608 /* We can't move the buffer over in this case, so copy elements. */ |
|
609 mBegin = static_cast<T*>(storage.addr()); |
|
610 Impl::moveConstruct(mBegin, rhs.beginNoCheck(), rhs.endNoCheck()); |
|
611 /* |
|
612 * Leave rhs's mLength, mBegin, mCapacity, and mReserved as they are. |
|
613 * The elements in its in-line storage still need to be destroyed. |
|
614 */ |
|
615 } else { |
|
616 /* |
|
617 * Take src's buffer, and turn src into an empty vector using |
|
618 * in-line storage. |
|
619 */ |
|
620 mBegin = rhs.mBegin; |
|
621 rhs.mBegin = static_cast<T*>(rhs.storage.addr()); |
|
622 rhs.mCapacity = sInlineCapacity; |
|
623 rhs.mLength = 0; |
|
624 #ifdef DEBUG |
|
625 rhs.mReserved = sInlineCapacity; |
|
626 #endif |
|
627 } |
|
628 } |
|
629 |
|
630 /* Move assignment. */ |
|
631 template<typename T, size_t N, class AP, class TV> |
|
632 MOZ_ALWAYS_INLINE |
|
633 TV& |
|
634 VectorBase<T, N, AP, TV>::operator=(TV&& rhs) |
|
635 { |
|
636 MOZ_ASSERT(this != &rhs, "self-move assignment is prohibited"); |
|
637 TV* tv = static_cast<TV*>(this); |
|
638 tv->~TV(); |
|
639 new(tv) TV(Move(rhs)); |
|
640 return *tv; |
|
641 } |
|
642 |
|
643 template<typename T, size_t N, class AP, class TV> |
|
644 MOZ_ALWAYS_INLINE |
|
645 VectorBase<T, N, AP, TV>::~VectorBase() |
|
646 { |
|
647 MOZ_REENTRANCY_GUARD_ET_AL; |
|
648 Impl::destroy(beginNoCheck(), endNoCheck()); |
|
649 if (!usingInlineStorage()) |
|
650 this->free_(beginNoCheck()); |
|
651 } |
|
652 |
|
653 /* |
|
654 * This function will create a new heap buffer with capacity newCap, |
|
655 * move all elements in the inline buffer to this new buffer, |
|
656 * and fail on OOM. |
|
657 */ |
|
658 template<typename T, size_t N, class AP, class TV> |
|
659 inline bool |
|
660 VectorBase<T, N, AP, TV>::convertToHeapStorage(size_t newCap) |
|
661 { |
|
662 MOZ_ASSERT(usingInlineStorage()); |
|
663 |
|
664 /* Allocate buffer. */ |
|
665 MOZ_ASSERT(!detail::CapacityHasExcessSpace<T>(newCap)); |
|
666 T* newBuf = reinterpret_cast<T*>(this->malloc_(newCap * sizeof(T))); |
|
667 if (!newBuf) |
|
668 return false; |
|
669 |
|
670 /* Copy inline elements into heap buffer. */ |
|
671 Impl::moveConstruct(newBuf, beginNoCheck(), endNoCheck()); |
|
672 Impl::destroy(beginNoCheck(), endNoCheck()); |
|
673 |
|
674 /* Switch in heap buffer. */ |
|
675 mBegin = newBuf; |
|
676 /* mLength is unchanged. */ |
|
677 mCapacity = newCap; |
|
678 return true; |
|
679 } |
|
680 |
|
681 template<typename T, size_t N, class AP, class TV> |
|
682 MOZ_NEVER_INLINE bool |
|
683 VectorBase<T, N, AP, TV>::growStorageBy(size_t incr) |
|
684 { |
|
685 MOZ_ASSERT(mLength + incr > mCapacity); |
|
686 MOZ_ASSERT_IF(!usingInlineStorage(), |
|
687 !detail::CapacityHasExcessSpace<T>(mCapacity)); |
|
688 |
|
689 /* |
|
690 * When choosing a new capacity, its size should is as close to 2**N bytes |
|
691 * as possible. 2**N-sized requests are best because they are unlikely to |
|
692 * be rounded up by the allocator. Asking for a 2**N number of elements |
|
693 * isn't as good, because if sizeof(T) is not a power-of-two that would |
|
694 * result in a non-2**N request size. |
|
695 */ |
|
696 |
|
697 size_t newCap; |
|
698 |
|
699 if (incr == 1) { |
|
700 if (usingInlineStorage()) { |
|
701 /* This case occurs in ~70--80% of the calls to this function. */ |
|
702 size_t newSize = |
|
703 tl::RoundUpPow2<(sInlineCapacity + 1) * sizeof(T)>::value; |
|
704 newCap = newSize / sizeof(T); |
|
705 goto convert; |
|
706 } |
|
707 |
|
708 if (mLength == 0) { |
|
709 /* This case occurs in ~0--10% of the calls to this function. */ |
|
710 newCap = 1; |
|
711 goto grow; |
|
712 } |
|
713 |
|
714 /* This case occurs in ~15--20% of the calls to this function. */ |
|
715 |
|
716 /* |
|
717 * Will mLength * 4 *sizeof(T) overflow? This condition limits a vector |
|
718 * to 1GB of memory on a 32-bit system, which is a reasonable limit. It |
|
719 * also ensures that |
|
720 * |
|
721 * static_cast<char*>(end()) - static_cast<char*>(begin()) |
|
722 * |
|
723 * doesn't overflow ptrdiff_t (see bug 510319). |
|
724 */ |
|
725 if (mLength & tl::MulOverflowMask<4 * sizeof(T)>::value) { |
|
726 this->reportAllocOverflow(); |
|
727 return false; |
|
728 } |
|
729 |
|
730 /* |
|
731 * If we reach here, the existing capacity will have a size that is already |
|
732 * as close to 2^N as sizeof(T) will allow. Just double the capacity, and |
|
733 * then there might be space for one more element. |
|
734 */ |
|
735 newCap = mLength * 2; |
|
736 if (detail::CapacityHasExcessSpace<T>(newCap)) |
|
737 newCap += 1; |
|
738 } else { |
|
739 /* This case occurs in ~2% of the calls to this function. */ |
|
740 size_t newMinCap = mLength + incr; |
|
741 |
|
742 /* Did mLength + incr overflow? Will newCap * sizeof(T) overflow? */ |
|
743 if (newMinCap < mLength || |
|
744 newMinCap & tl::MulOverflowMask<2 * sizeof(T)>::value) |
|
745 { |
|
746 this->reportAllocOverflow(); |
|
747 return false; |
|
748 } |
|
749 |
|
750 size_t newMinSize = newMinCap * sizeof(T); |
|
751 size_t newSize = RoundUpPow2(newMinSize); |
|
752 newCap = newSize / sizeof(T); |
|
753 } |
|
754 |
|
755 if (usingInlineStorage()) { |
|
756 convert: |
|
757 return convertToHeapStorage(newCap); |
|
758 } |
|
759 |
|
760 grow: |
|
761 return Impl::growTo(*this, newCap); |
|
762 } |
|
763 |
|
764 template<typename T, size_t N, class AP, class TV> |
|
765 inline bool |
|
766 VectorBase<T, N, AP, TV>::initCapacity(size_t request) |
|
767 { |
|
768 MOZ_ASSERT(empty()); |
|
769 MOZ_ASSERT(usingInlineStorage()); |
|
770 if (request == 0) |
|
771 return true; |
|
772 T* newbuf = reinterpret_cast<T*>(this->malloc_(request * sizeof(T))); |
|
773 if (!newbuf) |
|
774 return false; |
|
775 mBegin = newbuf; |
|
776 mCapacity = request; |
|
777 #ifdef DEBUG |
|
778 mReserved = request; |
|
779 #endif |
|
780 return true; |
|
781 } |
|
782 |
|
783 template<typename T, size_t N, class AP, class TV> |
|
784 inline bool |
|
785 VectorBase<T, N, AP, TV>::reserve(size_t request) |
|
786 { |
|
787 MOZ_REENTRANCY_GUARD_ET_AL; |
|
788 if (request > mCapacity && !growStorageBy(request - mLength)) |
|
789 return false; |
|
790 |
|
791 #ifdef DEBUG |
|
792 if (request > mReserved) |
|
793 mReserved = request; |
|
794 MOZ_ASSERT(mLength <= mReserved); |
|
795 MOZ_ASSERT(mReserved <= mCapacity); |
|
796 #endif |
|
797 return true; |
|
798 } |
|
799 |
|
800 template<typename T, size_t N, class AP, class TV> |
|
801 inline void |
|
802 VectorBase<T, N, AP, TV>::shrinkBy(size_t incr) |
|
803 { |
|
804 MOZ_REENTRANCY_GUARD_ET_AL; |
|
805 MOZ_ASSERT(incr <= mLength); |
|
806 Impl::destroy(endNoCheck() - incr, endNoCheck()); |
|
807 mLength -= incr; |
|
808 } |
|
809 |
|
810 template<typename T, size_t N, class AP, class TV> |
|
811 MOZ_ALWAYS_INLINE bool |
|
812 VectorBase<T, N, AP, TV>::growBy(size_t incr) |
|
813 { |
|
814 MOZ_REENTRANCY_GUARD_ET_AL; |
|
815 if (incr > mCapacity - mLength && !growStorageBy(incr)) |
|
816 return false; |
|
817 |
|
818 MOZ_ASSERT(mLength + incr <= mCapacity); |
|
819 T* newend = endNoCheck() + incr; |
|
820 Impl::initialize(endNoCheck(), newend); |
|
821 mLength += incr; |
|
822 #ifdef DEBUG |
|
823 if (mLength > mReserved) |
|
824 mReserved = mLength; |
|
825 #endif |
|
826 return true; |
|
827 } |
|
828 |
|
829 template<typename T, size_t N, class AP, class TV> |
|
830 MOZ_ALWAYS_INLINE bool |
|
831 VectorBase<T, N, AP, TV>::growByUninitialized(size_t incr) |
|
832 { |
|
833 MOZ_REENTRANCY_GUARD_ET_AL; |
|
834 if (incr > mCapacity - mLength && !growStorageBy(incr)) |
|
835 return false; |
|
836 |
|
837 MOZ_ASSERT(mLength + incr <= mCapacity); |
|
838 mLength += incr; |
|
839 #ifdef DEBUG |
|
840 if (mLength > mReserved) |
|
841 mReserved = mLength; |
|
842 #endif |
|
843 return true; |
|
844 } |
|
845 |
|
846 template<typename T, size_t N, class AP, class TV> |
|
847 inline bool |
|
848 VectorBase<T, N, AP, TV>::resize(size_t newLength) |
|
849 { |
|
850 size_t curLength = mLength; |
|
851 if (newLength > curLength) |
|
852 return growBy(newLength - curLength); |
|
853 shrinkBy(curLength - newLength); |
|
854 return true; |
|
855 } |
|
856 |
|
857 template<typename T, size_t N, class AP, class TV> |
|
858 MOZ_ALWAYS_INLINE bool |
|
859 VectorBase<T, N, AP, TV>::resizeUninitialized(size_t newLength) |
|
860 { |
|
861 size_t curLength = mLength; |
|
862 if (newLength > curLength) |
|
863 return growByUninitialized(newLength - curLength); |
|
864 shrinkBy(curLength - newLength); |
|
865 return true; |
|
866 } |
|
867 |
|
868 template<typename T, size_t N, class AP, class TV> |
|
869 inline void |
|
870 VectorBase<T, N, AP, TV>::clear() |
|
871 { |
|
872 MOZ_REENTRANCY_GUARD_ET_AL; |
|
873 Impl::destroy(beginNoCheck(), endNoCheck()); |
|
874 mLength = 0; |
|
875 } |
|
876 |
|
877 template<typename T, size_t N, class AP, class TV> |
|
878 inline void |
|
879 VectorBase<T, N, AP, TV>::clearAndFree() |
|
880 { |
|
881 clear(); |
|
882 |
|
883 if (usingInlineStorage()) |
|
884 return; |
|
885 |
|
886 this->free_(beginNoCheck()); |
|
887 mBegin = static_cast<T*>(storage.addr()); |
|
888 mCapacity = sInlineCapacity; |
|
889 #ifdef DEBUG |
|
890 mReserved = sInlineCapacity; |
|
891 #endif |
|
892 } |
|
893 |
|
894 template<typename T, size_t N, class AP, class TV> |
|
895 inline bool |
|
896 VectorBase<T, N, AP, TV>::canAppendWithoutRealloc(size_t needed) const |
|
897 { |
|
898 return mLength + needed <= mCapacity; |
|
899 } |
|
900 |
|
901 template<typename T, size_t N, class AP, class TV> |
|
902 template<typename U, size_t O, class BP, class UV> |
|
903 MOZ_ALWAYS_INLINE void |
|
904 VectorBase<T, N, AP, TV>::internalAppendAll(const VectorBase<U, O, BP, UV>& other) |
|
905 { |
|
906 internalAppend(other.begin(), other.length()); |
|
907 } |
|
908 |
|
909 template<typename T, size_t N, class AP, class TV> |
|
910 template<typename U> |
|
911 MOZ_ALWAYS_INLINE void |
|
912 VectorBase<T, N, AP, TV>::internalAppend(U&& u) |
|
913 { |
|
914 MOZ_ASSERT(mLength + 1 <= mReserved); |
|
915 MOZ_ASSERT(mReserved <= mCapacity); |
|
916 new(endNoCheck()) T(Forward<U>(u)); |
|
917 ++mLength; |
|
918 } |
|
919 |
|
920 template<typename T, size_t N, class AP, class TV> |
|
921 MOZ_ALWAYS_INLINE bool |
|
922 VectorBase<T, N, AP, TV>::appendN(const T& t, size_t needed) |
|
923 { |
|
924 MOZ_REENTRANCY_GUARD_ET_AL; |
|
925 if (mLength + needed > mCapacity && !growStorageBy(needed)) |
|
926 return false; |
|
927 |
|
928 #ifdef DEBUG |
|
929 if (mLength + needed > mReserved) |
|
930 mReserved = mLength + needed; |
|
931 #endif |
|
932 internalAppendN(t, needed); |
|
933 return true; |
|
934 } |
|
935 |
|
936 template<typename T, size_t N, class AP, class TV> |
|
937 MOZ_ALWAYS_INLINE void |
|
938 VectorBase<T, N, AP, TV>::internalAppendN(const T& t, size_t needed) |
|
939 { |
|
940 MOZ_ASSERT(mLength + needed <= mReserved); |
|
941 MOZ_ASSERT(mReserved <= mCapacity); |
|
942 Impl::copyConstructN(endNoCheck(), needed, t); |
|
943 mLength += needed; |
|
944 } |
|
945 |
|
946 template<typename T, size_t N, class AP, class TV> |
|
947 template<typename U> |
|
948 inline T* |
|
949 VectorBase<T, N, AP, TV>::insert(T* p, U&& val) |
|
950 { |
|
951 MOZ_ASSERT(begin() <= p); |
|
952 MOZ_ASSERT(p <= end()); |
|
953 size_t pos = p - begin(); |
|
954 MOZ_ASSERT(pos <= mLength); |
|
955 size_t oldLength = mLength; |
|
956 if (pos == oldLength) { |
|
957 if (!append(Forward<U>(val))) |
|
958 return nullptr; |
|
959 } else { |
|
960 T oldBack = Move(back()); |
|
961 if (!append(Move(oldBack))) /* Dup the last element. */ |
|
962 return nullptr; |
|
963 for (size_t i = oldLength; i > pos; --i) |
|
964 (*this)[i] = Move((*this)[i - 1]); |
|
965 (*this)[pos] = Forward<U>(val); |
|
966 } |
|
967 return begin() + pos; |
|
968 } |
|
969 |
|
970 template<typename T, size_t N, class AP, class TV> |
|
971 inline void |
|
972 VectorBase<T, N, AP, TV>::erase(T* it) |
|
973 { |
|
974 MOZ_ASSERT(begin() <= it); |
|
975 MOZ_ASSERT(it < end()); |
|
976 while (it + 1 < end()) { |
|
977 *it = *(it + 1); |
|
978 ++it; |
|
979 } |
|
980 popBack(); |
|
981 } |
|
982 |
|
983 template<typename T, size_t N, class AP, class TV> |
|
984 template<typename U> |
|
985 MOZ_ALWAYS_INLINE bool |
|
986 VectorBase<T, N, AP, TV>::append(const U* insBegin, const U* insEnd) |
|
987 { |
|
988 MOZ_REENTRANCY_GUARD_ET_AL; |
|
989 size_t needed = PointerRangeSize(insBegin, insEnd); |
|
990 if (mLength + needed > mCapacity && !growStorageBy(needed)) |
|
991 return false; |
|
992 |
|
993 #ifdef DEBUG |
|
994 if (mLength + needed > mReserved) |
|
995 mReserved = mLength + needed; |
|
996 #endif |
|
997 internalAppend(insBegin, needed); |
|
998 return true; |
|
999 } |
|
1000 |
|
1001 template<typename T, size_t N, class AP, class TV> |
|
1002 template<typename U> |
|
1003 MOZ_ALWAYS_INLINE void |
|
1004 VectorBase<T, N, AP, TV>::internalAppend(const U* insBegin, size_t insLength) |
|
1005 { |
|
1006 MOZ_ASSERT(mLength + insLength <= mReserved); |
|
1007 MOZ_ASSERT(mReserved <= mCapacity); |
|
1008 Impl::copyConstruct(endNoCheck(), insBegin, insBegin + insLength); |
|
1009 mLength += insLength; |
|
1010 } |
|
1011 |
|
1012 template<typename T, size_t N, class AP, class TV> |
|
1013 template<typename U> |
|
1014 MOZ_ALWAYS_INLINE bool |
|
1015 VectorBase<T, N, AP, TV>::append(U&& u) |
|
1016 { |
|
1017 MOZ_REENTRANCY_GUARD_ET_AL; |
|
1018 if (mLength == mCapacity && !growStorageBy(1)) |
|
1019 return false; |
|
1020 |
|
1021 #ifdef DEBUG |
|
1022 if (mLength + 1 > mReserved) |
|
1023 mReserved = mLength + 1; |
|
1024 #endif |
|
1025 internalAppend(Forward<U>(u)); |
|
1026 return true; |
|
1027 } |
|
1028 |
|
1029 template<typename T, size_t N, class AP, class TV> |
|
1030 template<typename U, size_t O, class BP, class UV> |
|
1031 MOZ_ALWAYS_INLINE bool |
|
1032 VectorBase<T, N, AP, TV>::appendAll(const VectorBase<U, O, BP, UV>& other) |
|
1033 { |
|
1034 return append(other.begin(), other.length()); |
|
1035 } |
|
1036 |
|
1037 template<typename T, size_t N, class AP, class TV> |
|
1038 template<class U> |
|
1039 MOZ_ALWAYS_INLINE bool |
|
1040 VectorBase<T, N, AP, TV>::append(const U *insBegin, size_t insLength) |
|
1041 { |
|
1042 return append(insBegin, insBegin + insLength); |
|
1043 } |
|
1044 |
|
1045 template<typename T, size_t N, class AP, class TV> |
|
1046 MOZ_ALWAYS_INLINE void |
|
1047 VectorBase<T, N, AP, TV>::popBack() |
|
1048 { |
|
1049 MOZ_REENTRANCY_GUARD_ET_AL; |
|
1050 MOZ_ASSERT(!empty()); |
|
1051 --mLength; |
|
1052 endNoCheck()->~T(); |
|
1053 } |
|
1054 |
|
1055 template<typename T, size_t N, class AP, class TV> |
|
1056 MOZ_ALWAYS_INLINE T |
|
1057 VectorBase<T, N, AP, TV>::popCopy() |
|
1058 { |
|
1059 T ret = back(); |
|
1060 popBack(); |
|
1061 return ret; |
|
1062 } |
|
1063 |
|
1064 template<typename T, size_t N, class AP, class TV> |
|
1065 inline T* |
|
1066 VectorBase<T, N, AP, TV>::extractRawBuffer() |
|
1067 { |
|
1068 T* ret; |
|
1069 if (usingInlineStorage()) { |
|
1070 ret = reinterpret_cast<T*>(this->malloc_(mLength * sizeof(T))); |
|
1071 if (!ret) |
|
1072 return nullptr; |
|
1073 Impl::copyConstruct(ret, beginNoCheck(), endNoCheck()); |
|
1074 Impl::destroy(beginNoCheck(), endNoCheck()); |
|
1075 /* mBegin, mCapacity are unchanged. */ |
|
1076 mLength = 0; |
|
1077 } else { |
|
1078 ret = mBegin; |
|
1079 mBegin = static_cast<T*>(storage.addr()); |
|
1080 mLength = 0; |
|
1081 mCapacity = sInlineCapacity; |
|
1082 #ifdef DEBUG |
|
1083 mReserved = sInlineCapacity; |
|
1084 #endif |
|
1085 } |
|
1086 return ret; |
|
1087 } |
|
1088 |
|
1089 template<typename T, size_t N, class AP, class TV> |
|
1090 inline void |
|
1091 VectorBase<T, N, AP, TV>::replaceRawBuffer(T* p, size_t aLength) |
|
1092 { |
|
1093 MOZ_REENTRANCY_GUARD_ET_AL; |
|
1094 |
|
1095 /* Destroy what we have. */ |
|
1096 Impl::destroy(beginNoCheck(), endNoCheck()); |
|
1097 if (!usingInlineStorage()) |
|
1098 this->free_(beginNoCheck()); |
|
1099 |
|
1100 /* Take in the new buffer. */ |
|
1101 if (aLength <= sInlineCapacity) { |
|
1102 /* |
|
1103 * We convert to inline storage if possible, even though p might |
|
1104 * otherwise be acceptable. Maybe this behaviour should be |
|
1105 * specifiable with an argument to this function. |
|
1106 */ |
|
1107 mBegin = static_cast<T*>(storage.addr()); |
|
1108 mLength = aLength; |
|
1109 mCapacity = sInlineCapacity; |
|
1110 Impl::moveConstruct(mBegin, p, p + aLength); |
|
1111 Impl::destroy(p, p + aLength); |
|
1112 this->free_(p); |
|
1113 } else { |
|
1114 mBegin = p; |
|
1115 mLength = aLength; |
|
1116 mCapacity = aLength; |
|
1117 } |
|
1118 #ifdef DEBUG |
|
1119 mReserved = aLength; |
|
1120 #endif |
|
1121 } |
|
1122 |
|
1123 template<typename T, size_t N, class AP, class TV> |
|
1124 inline size_t |
|
1125 VectorBase<T, N, AP, TV>::sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const |
|
1126 { |
|
1127 return usingInlineStorage() ? 0 : mallocSizeOf(beginNoCheck()); |
|
1128 } |
|
1129 |
|
1130 template<typename T, size_t N, class AP, class TV> |
|
1131 inline size_t |
|
1132 VectorBase<T, N, AP, TV>::sizeOfIncludingThis(MallocSizeOf mallocSizeOf) const |
|
1133 { |
|
1134 return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf); |
|
1135 } |
|
1136 |
|
1137 template<typename T, size_t N, class AP, class TV> |
|
1138 inline void |
|
1139 VectorBase<T, N, AP, TV>::swap(TV& other) |
|
1140 { |
|
1141 static_assert(N == 0, |
|
1142 "still need to implement this for N != 0"); |
|
1143 |
|
1144 // This only works when inline storage is always empty. |
|
1145 if (!usingInlineStorage() && other.usingInlineStorage()) { |
|
1146 other.mBegin = mBegin; |
|
1147 mBegin = inlineStorage(); |
|
1148 } else if (usingInlineStorage() && !other.usingInlineStorage()) { |
|
1149 mBegin = other.mBegin; |
|
1150 other.mBegin = other.inlineStorage(); |
|
1151 } else if (!usingInlineStorage() && !other.usingInlineStorage()) { |
|
1152 Swap(mBegin, other.mBegin); |
|
1153 } else { |
|
1154 // This case is a no-op, since we'd set both to use their inline storage. |
|
1155 } |
|
1156 |
|
1157 Swap(mLength, other.mLength); |
|
1158 Swap(mCapacity, other.mCapacity); |
|
1159 #ifdef DEBUG |
|
1160 Swap(mReserved, other.mReserved); |
|
1161 #endif |
|
1162 } |
|
1163 |
|
1164 /* |
|
1165 * STL-like container providing a short-lived, dynamic buffer. Vector calls the |
|
1166 * constructors/destructors of all elements stored in its internal buffer, so |
|
1167 * non-PODs may be safely used. Additionally, Vector will store the first N |
|
1168 * elements in-place before resorting to dynamic allocation. |
|
1169 * |
|
1170 * T requirements: |
|
1171 * - default and copy constructible, assignable, destructible |
|
1172 * - operations do not throw |
|
1173 * N requirements: |
|
1174 * - any value, however, N is clamped to min/max values |
|
1175 * AllocPolicy: |
|
1176 * - see "Allocation policies" in AllocPolicy.h (defaults to |
|
1177 * mozilla::MallocAllocPolicy) |
|
1178 * |
|
1179 * Vector is not reentrant: T member functions called during Vector member |
|
1180 * functions must not call back into the same object! |
|
1181 */ |
|
1182 template<typename T, |
|
1183 size_t MinInlineCapacity = 0, |
|
1184 class AllocPolicy = MallocAllocPolicy> |
|
1185 class Vector |
|
1186 : public VectorBase<T, |
|
1187 MinInlineCapacity, |
|
1188 AllocPolicy, |
|
1189 Vector<T, MinInlineCapacity, AllocPolicy> > |
|
1190 { |
|
1191 typedef VectorBase<T, MinInlineCapacity, AllocPolicy, Vector> Base; |
|
1192 |
|
1193 public: |
|
1194 Vector(AllocPolicy alloc = AllocPolicy()) : Base(alloc) {} |
|
1195 Vector(Vector&& vec) : Base(Move(vec)) {} |
|
1196 Vector& operator=(Vector&& vec) { |
|
1197 return Base::operator=(Move(vec)); |
|
1198 } |
|
1199 }; |
|
1200 |
|
1201 } // namespace mozilla |
|
1202 |
|
1203 #ifdef _MSC_VER |
|
1204 #pragma warning(pop) |
|
1205 #endif |
|
1206 |
|
1207 #endif /* mozilla_Vector_h */ |