|
1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2; c-file-offsets: ((substatement-open . 0)) -*- */ |
|
2 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
3 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
5 |
|
6 #include "mozilla/MathAlgorithms.h" |
|
7 #include "mozilla/MemoryReporting.h" |
|
8 #include <stdlib.h> |
|
9 |
|
10 #include "nsVoidArray.h" |
|
11 #include "nsQuickSort.h" |
|
12 #include "nsISupportsImpl.h" // for nsTraceRefcnt |
|
13 #include "nsAlgorithm.h" |
|
14 |
|
15 /** |
|
16 * Grow the array by at least this many elements at a time. |
|
17 */ |
|
18 static const int32_t kMinGrowArrayBy = 8; |
|
19 static const int32_t kMaxGrowArrayBy = 1024; |
|
20 |
|
21 /** |
|
22 * This is the threshold (in bytes) of the mImpl struct, past which |
|
23 * we'll force the array to grow geometrically |
|
24 */ |
|
25 static const int32_t kLinearThreshold = 24 * sizeof(void *); |
|
26 |
|
27 /** |
|
28 * Compute the number of bytes requires for the mImpl struct that will |
|
29 * hold |n| elements. |
|
30 */ |
|
31 #define SIZEOF_IMPL(n_) (sizeof(Impl) + sizeof(void *) * ((n_) - 1)) |
|
32 |
|
33 /** |
|
34 * Compute the number of elements that an mImpl struct of |n| bytes |
|
35 * will hold. |
|
36 */ |
|
37 #define CAPACITYOF_IMPL(n_) ((((n_) - sizeof(Impl)) / sizeof(void *)) + 1) |
|
38 |
|
39 #if DEBUG_VOIDARRAY |
|
40 #define MAXVOID 10 |
|
41 |
|
42 class VoidStats { |
|
43 public: |
|
44 VoidStats(); |
|
45 ~VoidStats(); |
|
46 |
|
47 }; |
|
48 |
|
49 static int sizesUsed; // number of the elements of the arrays used |
|
50 static int sizesAlloced[MAXVOID]; // sizes of the allocations. sorted |
|
51 static int NumberOfSize[MAXVOID]; // number of this allocation size (1 per array) |
|
52 static int AllocedOfSize[MAXVOID]; // number of this allocation size (each size for array used) |
|
53 static int MaxAuto[MAXVOID]; // AutoArrays that maxed out at this size |
|
54 static int GrowInPlace[MAXVOID]; // arrays this size that grew in-place via realloc |
|
55 |
|
56 // these are per-allocation |
|
57 static int MaxElements[2000]; // # of arrays that maxed out at each size. |
|
58 |
|
59 // statistics macros |
|
60 #define ADD_TO_STATS(x,size) do {int i; for (i = 0; i < sizesUsed; i++) \ |
|
61 { \ |
|
62 if (sizesAlloced[i] == (int)(size)) \ |
|
63 { ((x)[i])++; break; } \ |
|
64 } \ |
|
65 if (i >= sizesUsed && sizesUsed < MAXVOID) \ |
|
66 { sizesAlloced[sizesUsed] = (size); \ |
|
67 ((x)[sizesUsed++])++; break; \ |
|
68 } \ |
|
69 } while (0) |
|
70 |
|
71 #define SUB_FROM_STATS(x,size) do {int i; for (i = 0; i < sizesUsed; i++) \ |
|
72 { \ |
|
73 if (sizesAlloced[i] == (int)(size)) \ |
|
74 { ((x)[i])--; break; } \ |
|
75 } \ |
|
76 } while (0) |
|
77 |
|
78 |
|
79 VoidStats::VoidStats() |
|
80 { |
|
81 sizesUsed = 1; |
|
82 sizesAlloced[0] = 0; |
|
83 } |
|
84 |
|
85 VoidStats::~VoidStats() |
|
86 { |
|
87 int i; |
|
88 for (i = 0; i < sizesUsed; i++) |
|
89 { |
|
90 printf("Size %d:\n",sizesAlloced[i]); |
|
91 printf("\tNumber of VoidArrays this size (max): %d\n",NumberOfSize[i]-MaxAuto[i]); |
|
92 printf("\tNumber of AutoVoidArrays this size (max): %d\n",MaxAuto[i]); |
|
93 printf("\tNumber of allocations this size (total): %d\n",AllocedOfSize[i]); |
|
94 printf("\tNumber of GrowsInPlace this size (total): %d\n",GrowInPlace[i]); |
|
95 } |
|
96 printf("Max Size of VoidArray:\n"); |
|
97 for (i = 0; i < (int)(sizeof(MaxElements)/sizeof(MaxElements[0])); i++) |
|
98 { |
|
99 if (MaxElements[i]) |
|
100 printf("\t%d: %d\n",i,MaxElements[i]); |
|
101 } |
|
102 } |
|
103 |
|
104 // Just so constructor/destructor's get called |
|
105 VoidStats gVoidStats; |
|
106 #endif |
|
107 |
|
108 void |
|
109 nsVoidArray::SetArray(Impl *newImpl, int32_t aSize, int32_t aCount) |
|
110 { |
|
111 // old mImpl has been realloced and so we don't free/delete it |
|
112 NS_PRECONDITION(newImpl, "can't set size"); |
|
113 mImpl = newImpl; |
|
114 mImpl->mCount = aCount; |
|
115 mImpl->mSize = aSize; |
|
116 } |
|
117 |
|
118 // This does all allocation/reallocation of the array. |
|
119 // It also will compact down to N - good for things that might grow a lot |
|
120 // at times, but usually are smaller, like JS deferred GC releases. |
|
121 bool nsVoidArray::SizeTo(int32_t aSize) |
|
122 { |
|
123 uint32_t oldsize = GetArraySize(); |
|
124 |
|
125 if (aSize == (int32_t) oldsize) |
|
126 return true; // no change |
|
127 |
|
128 if (aSize <= 0) |
|
129 { |
|
130 // free the array if allocated |
|
131 if (mImpl) |
|
132 { |
|
133 free(reinterpret_cast<char *>(mImpl)); |
|
134 mImpl = nullptr; |
|
135 } |
|
136 return true; |
|
137 } |
|
138 |
|
139 if (mImpl) |
|
140 { |
|
141 // We currently own an array impl. Resize it appropriately. |
|
142 if (aSize < mImpl->mCount) |
|
143 { |
|
144 // XXX Note: we could also just resize to mCount |
|
145 return true; // can't make it that small, ignore request |
|
146 } |
|
147 |
|
148 char* bytes = (char *) realloc(mImpl,SIZEOF_IMPL(aSize)); |
|
149 Impl* newImpl = reinterpret_cast<Impl*>(bytes); |
|
150 if (!newImpl) |
|
151 return false; |
|
152 |
|
153 #if DEBUG_VOIDARRAY |
|
154 if (mImpl == newImpl) |
|
155 ADD_TO_STATS(GrowInPlace,oldsize); |
|
156 ADD_TO_STATS(AllocedOfSize,SIZEOF_IMPL(aSize)); |
|
157 if (aSize > mMaxSize) |
|
158 { |
|
159 ADD_TO_STATS(NumberOfSize,SIZEOF_IMPL(aSize)); |
|
160 if (oldsize) |
|
161 SUB_FROM_STATS(NumberOfSize,oldsize); |
|
162 mMaxSize = aSize; |
|
163 if (mIsAuto) |
|
164 { |
|
165 ADD_TO_STATS(MaxAuto,SIZEOF_IMPL(aSize)); |
|
166 SUB_FROM_STATS(MaxAuto,oldsize); |
|
167 } |
|
168 } |
|
169 #endif |
|
170 SetArray(newImpl, aSize, newImpl->mCount); |
|
171 return true; |
|
172 } |
|
173 |
|
174 if ((uint32_t) aSize < oldsize) { |
|
175 // No point in allocating if it won't free the current Impl anyway. |
|
176 return true; |
|
177 } |
|
178 |
|
179 // just allocate an array |
|
180 // allocate the exact size requested |
|
181 char* bytes = (char *) malloc(SIZEOF_IMPL(aSize)); |
|
182 Impl* newImpl = reinterpret_cast<Impl*>(bytes); |
|
183 if (!newImpl) |
|
184 return false; |
|
185 |
|
186 #if DEBUG_VOIDARRAY |
|
187 ADD_TO_STATS(AllocedOfSize,SIZEOF_IMPL(aSize)); |
|
188 if (aSize > mMaxSize) |
|
189 { |
|
190 ADD_TO_STATS(NumberOfSize,SIZEOF_IMPL(aSize)); |
|
191 if (oldsize && !mImpl) |
|
192 SUB_FROM_STATS(NumberOfSize,oldsize); |
|
193 mMaxSize = aSize; |
|
194 } |
|
195 #endif |
|
196 if (mImpl) |
|
197 { |
|
198 #if DEBUG_VOIDARRAY |
|
199 ADD_TO_STATS(MaxAuto,SIZEOF_IMPL(aSize)); |
|
200 SUB_FROM_STATS(MaxAuto,0); |
|
201 SUB_FROM_STATS(NumberOfSize,0); |
|
202 mIsAuto = true; |
|
203 #endif |
|
204 // We must be growing an nsAutoVoidArray - copy since we didn't |
|
205 // realloc. |
|
206 memcpy(newImpl->mArray, mImpl->mArray, |
|
207 mImpl->mCount * sizeof(mImpl->mArray[0])); |
|
208 } |
|
209 |
|
210 SetArray(newImpl, aSize, mImpl ? mImpl->mCount : 0); |
|
211 // no memset; handled later in ReplaceElementAt if needed |
|
212 return true; |
|
213 } |
|
214 |
|
215 bool nsVoidArray::GrowArrayBy(int32_t aGrowBy) |
|
216 { |
|
217 // We have to grow the array. Grow by kMinGrowArrayBy slots if we're |
|
218 // smaller than kLinearThreshold bytes, or a power of two if we're |
|
219 // larger. This is much more efficient with most memory allocators, |
|
220 // especially if it's very large, or of the allocator is binned. |
|
221 if (aGrowBy < kMinGrowArrayBy) |
|
222 aGrowBy = kMinGrowArrayBy; |
|
223 |
|
224 uint32_t newCapacity = GetArraySize() + aGrowBy; // Minimum increase |
|
225 uint32_t newSize = SIZEOF_IMPL(newCapacity); |
|
226 |
|
227 if (newSize >= (uint32_t) kLinearThreshold) |
|
228 { |
|
229 // newCount includes enough space for at least kMinGrowArrayBy new |
|
230 // slots. Select the next power-of-two size in bytes above or |
|
231 // equal to that. |
|
232 // Also, limit the increase in size to about a VM page or two. |
|
233 if (GetArraySize() >= kMaxGrowArrayBy) |
|
234 { |
|
235 newCapacity = GetArraySize() + XPCOM_MAX(kMaxGrowArrayBy,aGrowBy); |
|
236 newSize = SIZEOF_IMPL(newCapacity); |
|
237 } |
|
238 else |
|
239 { |
|
240 newSize = mozilla::CeilingLog2(newSize); |
|
241 newCapacity = CAPACITYOF_IMPL(1u << newSize); |
|
242 } |
|
243 } |
|
244 // frees old mImpl IF this succeeds |
|
245 if (!SizeTo(newCapacity)) |
|
246 return false; |
|
247 |
|
248 return true; |
|
249 } |
|
250 |
|
251 nsVoidArray::nsVoidArray() |
|
252 : mImpl(nullptr) |
|
253 { |
|
254 MOZ_COUNT_CTOR(nsVoidArray); |
|
255 #if DEBUG_VOIDARRAY |
|
256 mMaxCount = 0; |
|
257 mMaxSize = 0; |
|
258 mIsAuto = false; |
|
259 ADD_TO_STATS(NumberOfSize,0); |
|
260 MaxElements[0]++; |
|
261 #endif |
|
262 } |
|
263 |
|
264 nsVoidArray::nsVoidArray(int32_t aCount) |
|
265 : mImpl(nullptr) |
|
266 { |
|
267 MOZ_COUNT_CTOR(nsVoidArray); |
|
268 #if DEBUG_VOIDARRAY |
|
269 mMaxCount = 0; |
|
270 mMaxSize = 0; |
|
271 mIsAuto = false; |
|
272 MaxElements[0]++; |
|
273 #endif |
|
274 SizeTo(aCount); |
|
275 } |
|
276 |
|
277 nsVoidArray& nsVoidArray::operator=(const nsVoidArray& other) |
|
278 { |
|
279 int32_t otherCount = other.Count(); |
|
280 int32_t maxCount = GetArraySize(); |
|
281 if (otherCount) |
|
282 { |
|
283 if (otherCount > maxCount) |
|
284 { |
|
285 // frees old mImpl IF this succeeds |
|
286 if (!GrowArrayBy(otherCount-maxCount)) |
|
287 return *this; // XXX The allocation failed - don't do anything |
|
288 |
|
289 memcpy(mImpl->mArray, other.mImpl->mArray, otherCount * sizeof(mImpl->mArray[0])); |
|
290 mImpl->mCount = otherCount; |
|
291 } |
|
292 else |
|
293 { |
|
294 // the old array can hold the new array |
|
295 memcpy(mImpl->mArray, other.mImpl->mArray, otherCount * sizeof(mImpl->mArray[0])); |
|
296 mImpl->mCount = otherCount; |
|
297 // if it shrank a lot, compact it anyways |
|
298 if ((otherCount*2) < maxCount && maxCount > 100) |
|
299 { |
|
300 Compact(); // shrank by at least 50 entries |
|
301 } |
|
302 } |
|
303 #if DEBUG_VOIDARRAY |
|
304 if (mImpl->mCount > mMaxCount && |
|
305 mImpl->mCount < (int32_t)(sizeof(MaxElements)/sizeof(MaxElements[0]))) |
|
306 { |
|
307 MaxElements[mImpl->mCount]++; |
|
308 MaxElements[mMaxCount]--; |
|
309 mMaxCount = mImpl->mCount; |
|
310 } |
|
311 #endif |
|
312 } |
|
313 else |
|
314 { |
|
315 // Why do we drop the buffer here when we don't in Clear()? |
|
316 SizeTo(0); |
|
317 } |
|
318 |
|
319 return *this; |
|
320 } |
|
321 |
|
322 nsVoidArray::~nsVoidArray() |
|
323 { |
|
324 MOZ_COUNT_DTOR(nsVoidArray); |
|
325 if (mImpl) |
|
326 free(reinterpret_cast<char*>(mImpl)); |
|
327 } |
|
328 |
|
329 bool nsVoidArray::SetCount(int32_t aNewCount) |
|
330 { |
|
331 NS_ASSERTION(aNewCount >= 0,"SetCount(negative index)"); |
|
332 if (aNewCount < 0) |
|
333 return false; |
|
334 |
|
335 if (aNewCount == 0) |
|
336 { |
|
337 Clear(); |
|
338 return true; |
|
339 } |
|
340 |
|
341 if (uint32_t(aNewCount) > uint32_t(GetArraySize())) |
|
342 { |
|
343 int32_t oldCount = Count(); |
|
344 int32_t growDelta = aNewCount - oldCount; |
|
345 |
|
346 // frees old mImpl IF this succeeds |
|
347 if (!GrowArrayBy(growDelta)) |
|
348 return false; |
|
349 } |
|
350 |
|
351 if (aNewCount > mImpl->mCount) |
|
352 { |
|
353 // Make sure that new entries added to the array by this |
|
354 // SetCount are cleared to 0. Some users of this assume that. |
|
355 // This code means we don't have to memset when we allocate an array. |
|
356 memset(&mImpl->mArray[mImpl->mCount], 0, |
|
357 (aNewCount - mImpl->mCount) * sizeof(mImpl->mArray[0])); |
|
358 } |
|
359 |
|
360 mImpl->mCount = aNewCount; |
|
361 |
|
362 #if DEBUG_VOIDARRAY |
|
363 if (mImpl->mCount > mMaxCount && |
|
364 mImpl->mCount < (int32_t)(sizeof(MaxElements)/sizeof(MaxElements[0]))) |
|
365 { |
|
366 MaxElements[mImpl->mCount]++; |
|
367 MaxElements[mMaxCount]--; |
|
368 mMaxCount = mImpl->mCount; |
|
369 } |
|
370 #endif |
|
371 |
|
372 return true; |
|
373 } |
|
374 |
|
375 int32_t nsVoidArray::IndexOf(void* aPossibleElement) const |
|
376 { |
|
377 if (mImpl) |
|
378 { |
|
379 void** ap = mImpl->mArray; |
|
380 void** end = ap + mImpl->mCount; |
|
381 while (ap < end) |
|
382 { |
|
383 if (*ap == aPossibleElement) |
|
384 { |
|
385 return ap - mImpl->mArray; |
|
386 } |
|
387 ap++; |
|
388 } |
|
389 } |
|
390 return -1; |
|
391 } |
|
392 |
|
393 bool nsVoidArray::InsertElementAt(void* aElement, int32_t aIndex) |
|
394 { |
|
395 int32_t oldCount = Count(); |
|
396 NS_ASSERTION(aIndex >= 0,"InsertElementAt(negative index)"); |
|
397 if (uint32_t(aIndex) > uint32_t(oldCount)) |
|
398 { |
|
399 // An invalid index causes the insertion to fail |
|
400 // Invalid indexes are ones that add more than one entry to the |
|
401 // array (i.e., they can append). |
|
402 return false; |
|
403 } |
|
404 |
|
405 if (oldCount >= GetArraySize()) |
|
406 { |
|
407 if (!GrowArrayBy(1)) |
|
408 return false; |
|
409 } |
|
410 // else the array is already large enough |
|
411 |
|
412 int32_t slide = oldCount - aIndex; |
|
413 if (0 != slide) |
|
414 { |
|
415 // Slide data over to make room for the insertion |
|
416 memmove(mImpl->mArray + aIndex + 1, mImpl->mArray + aIndex, |
|
417 slide * sizeof(mImpl->mArray[0])); |
|
418 } |
|
419 |
|
420 mImpl->mArray[aIndex] = aElement; |
|
421 mImpl->mCount++; |
|
422 |
|
423 #if DEBUG_VOIDARRAY |
|
424 if (mImpl->mCount > mMaxCount && |
|
425 mImpl->mCount < (int32_t)(sizeof(MaxElements)/sizeof(MaxElements[0]))) |
|
426 { |
|
427 MaxElements[mImpl->mCount]++; |
|
428 MaxElements[mMaxCount]--; |
|
429 mMaxCount = mImpl->mCount; |
|
430 } |
|
431 #endif |
|
432 |
|
433 return true; |
|
434 } |
|
435 |
|
436 bool nsVoidArray::InsertElementsAt(const nsVoidArray& other, int32_t aIndex) |
|
437 { |
|
438 int32_t oldCount = Count(); |
|
439 int32_t otherCount = other.Count(); |
|
440 |
|
441 NS_ASSERTION(aIndex >= 0,"InsertElementsAt(negative index)"); |
|
442 if (uint32_t(aIndex) > uint32_t(oldCount)) |
|
443 { |
|
444 // An invalid index causes the insertion to fail |
|
445 // Invalid indexes are ones that are more than one entry past the end of |
|
446 // the array (i.e., they can append). |
|
447 return false; |
|
448 } |
|
449 |
|
450 if (oldCount + otherCount > GetArraySize()) |
|
451 { |
|
452 if (!GrowArrayBy(otherCount)) |
|
453 return false;; |
|
454 } |
|
455 // else the array is already large enough |
|
456 |
|
457 int32_t slide = oldCount - aIndex; |
|
458 if (0 != slide) |
|
459 { |
|
460 // Slide data over to make room for the insertion |
|
461 memmove(mImpl->mArray + aIndex + otherCount, mImpl->mArray + aIndex, |
|
462 slide * sizeof(mImpl->mArray[0])); |
|
463 } |
|
464 |
|
465 for (int32_t i = 0; i < otherCount; i++) |
|
466 { |
|
467 // copy all the elements (destroys aIndex) |
|
468 mImpl->mArray[aIndex++] = other.mImpl->mArray[i]; |
|
469 mImpl->mCount++; |
|
470 } |
|
471 |
|
472 #if DEBUG_VOIDARRAY |
|
473 if (mImpl->mCount > mMaxCount && |
|
474 mImpl->mCount < (int32_t)(sizeof(MaxElements)/sizeof(MaxElements[0]))) |
|
475 { |
|
476 MaxElements[mImpl->mCount]++; |
|
477 MaxElements[mMaxCount]--; |
|
478 mMaxCount = mImpl->mCount; |
|
479 } |
|
480 #endif |
|
481 |
|
482 return true; |
|
483 } |
|
484 |
|
485 bool nsVoidArray::ReplaceElementAt(void* aElement, int32_t aIndex) |
|
486 { |
|
487 NS_ASSERTION(aIndex >= 0,"ReplaceElementAt(negative index)"); |
|
488 if (aIndex < 0) |
|
489 return false; |
|
490 |
|
491 // Unlike InsertElementAt, ReplaceElementAt can implicitly add more |
|
492 // than just the one element to the array. |
|
493 if (uint32_t(aIndex) >= uint32_t(GetArraySize())) |
|
494 { |
|
495 int32_t oldCount = Count(); |
|
496 int32_t requestedCount = aIndex + 1; |
|
497 int32_t growDelta = requestedCount - oldCount; |
|
498 |
|
499 // frees old mImpl IF this succeeds |
|
500 if (!GrowArrayBy(growDelta)) |
|
501 return false; |
|
502 } |
|
503 |
|
504 mImpl->mArray[aIndex] = aElement; |
|
505 if (aIndex >= mImpl->mCount) |
|
506 { |
|
507 // Make sure that any entries implicitly added to the array by this |
|
508 // ReplaceElementAt are cleared to 0. Some users of this assume that. |
|
509 // This code means we don't have to memset when we allocate an array. |
|
510 if (aIndex > mImpl->mCount) // note: not >= |
|
511 { |
|
512 // For example, if mCount is 2, and we do a ReplaceElementAt for |
|
513 // element[5], then we need to set three entries ([2], [3], and [4]) |
|
514 // to 0. |
|
515 memset(&mImpl->mArray[mImpl->mCount], 0, |
|
516 (aIndex - mImpl->mCount) * sizeof(mImpl->mArray[0])); |
|
517 } |
|
518 |
|
519 mImpl->mCount = aIndex + 1; |
|
520 |
|
521 #if DEBUG_VOIDARRAY |
|
522 if (mImpl->mCount > mMaxCount && |
|
523 mImpl->mCount < (int32_t)(sizeof(MaxElements)/sizeof(MaxElements[0]))) |
|
524 { |
|
525 MaxElements[mImpl->mCount]++; |
|
526 MaxElements[mMaxCount]--; |
|
527 mMaxCount = mImpl->mCount; |
|
528 } |
|
529 #endif |
|
530 } |
|
531 |
|
532 return true; |
|
533 } |
|
534 |
|
535 // useful for doing LRU arrays |
|
536 bool nsVoidArray::MoveElement(int32_t aFrom, int32_t aTo) |
|
537 { |
|
538 void *tempElement; |
|
539 |
|
540 if (aTo == aFrom) |
|
541 return true; |
|
542 |
|
543 NS_ASSERTION(aTo >= 0 && aFrom >= 0,"MoveElement(negative index)"); |
|
544 if (aTo >= Count() || aFrom >= Count()) |
|
545 { |
|
546 // can't extend the array when moving an element. Also catches mImpl = null |
|
547 return false; |
|
548 } |
|
549 tempElement = mImpl->mArray[aFrom]; |
|
550 |
|
551 if (aTo < aFrom) |
|
552 { |
|
553 // Moving one element closer to the head; the elements inbetween move down |
|
554 memmove(mImpl->mArray + aTo + 1, mImpl->mArray + aTo, |
|
555 (aFrom-aTo) * sizeof(mImpl->mArray[0])); |
|
556 mImpl->mArray[aTo] = tempElement; |
|
557 } |
|
558 else // already handled aFrom == aTo |
|
559 { |
|
560 // Moving one element closer to the tail; the elements inbetween move up |
|
561 memmove(mImpl->mArray + aFrom, mImpl->mArray + aFrom + 1, |
|
562 (aTo-aFrom) * sizeof(mImpl->mArray[0])); |
|
563 mImpl->mArray[aTo] = tempElement; |
|
564 } |
|
565 |
|
566 return true; |
|
567 } |
|
568 |
|
569 void nsVoidArray::RemoveElementsAt(int32_t aIndex, int32_t aCount) |
|
570 { |
|
571 int32_t oldCount = Count(); |
|
572 NS_ASSERTION(aIndex >= 0,"RemoveElementsAt(negative index)"); |
|
573 if (uint32_t(aIndex) >= uint32_t(oldCount)) |
|
574 { |
|
575 return; |
|
576 } |
|
577 // Limit to available entries starting at aIndex |
|
578 if (aCount + aIndex > oldCount) |
|
579 aCount = oldCount - aIndex; |
|
580 |
|
581 // We don't need to move any elements if we're removing the |
|
582 // last element in the array |
|
583 if (aIndex < (oldCount - aCount)) |
|
584 { |
|
585 memmove(mImpl->mArray + aIndex, mImpl->mArray + aIndex + aCount, |
|
586 (oldCount - (aIndex + aCount)) * sizeof(mImpl->mArray[0])); |
|
587 } |
|
588 |
|
589 mImpl->mCount -= aCount; |
|
590 return; |
|
591 } |
|
592 |
|
593 bool nsVoidArray::RemoveElement(void* aElement) |
|
594 { |
|
595 int32_t theIndex = IndexOf(aElement); |
|
596 if (theIndex != -1) |
|
597 { |
|
598 RemoveElementAt(theIndex); |
|
599 return true; |
|
600 } |
|
601 |
|
602 return false; |
|
603 } |
|
604 |
|
605 void nsVoidArray::Clear() |
|
606 { |
|
607 if (mImpl) |
|
608 { |
|
609 mImpl->mCount = 0; |
|
610 } |
|
611 } |
|
612 |
|
613 void nsVoidArray::Compact() |
|
614 { |
|
615 if (mImpl) |
|
616 { |
|
617 // XXX NOTE: this is quite inefficient in many cases if we're only |
|
618 // compacting by a little, but some callers care more about memory use. |
|
619 int32_t count = Count(); |
|
620 if (GetArraySize() > count) |
|
621 { |
|
622 SizeTo(Count()); |
|
623 } |
|
624 } |
|
625 } |
|
626 |
|
627 // Needed because we want to pass the pointer to the item in the array |
|
628 // to the comparator function, not a pointer to the pointer in the array. |
|
629 struct VoidArrayComparatorContext { |
|
630 nsVoidArrayComparatorFunc mComparatorFunc; |
|
631 void* mData; |
|
632 }; |
|
633 |
|
634 static int |
|
635 VoidArrayComparator(const void* aElement1, const void* aElement2, void* aData) |
|
636 { |
|
637 VoidArrayComparatorContext* ctx = static_cast<VoidArrayComparatorContext*>(aData); |
|
638 return (*ctx->mComparatorFunc)(*static_cast<void* const*>(aElement1), |
|
639 *static_cast<void* const*>(aElement2), |
|
640 ctx->mData); |
|
641 } |
|
642 |
|
643 void nsVoidArray::Sort(nsVoidArrayComparatorFunc aFunc, void* aData) |
|
644 { |
|
645 if (mImpl && mImpl->mCount > 1) |
|
646 { |
|
647 VoidArrayComparatorContext ctx = {aFunc, aData}; |
|
648 NS_QuickSort(mImpl->mArray, mImpl->mCount, sizeof(mImpl->mArray[0]), |
|
649 VoidArrayComparator, &ctx); |
|
650 } |
|
651 } |
|
652 |
|
653 bool nsVoidArray::EnumerateForwards(nsVoidArrayEnumFunc aFunc, void* aData) |
|
654 { |
|
655 int32_t index = -1; |
|
656 bool running = true; |
|
657 |
|
658 if (mImpl) { |
|
659 while (running && (++index < mImpl->mCount)) { |
|
660 running = (*aFunc)(mImpl->mArray[index], aData); |
|
661 } |
|
662 } |
|
663 return running; |
|
664 } |
|
665 |
|
666 bool nsVoidArray::EnumerateForwards(nsVoidArrayEnumFuncConst aFunc, |
|
667 void* aData) const |
|
668 { |
|
669 int32_t index = -1; |
|
670 bool running = true; |
|
671 |
|
672 if (mImpl) { |
|
673 while (running && (++index < mImpl->mCount)) { |
|
674 running = (*aFunc)(mImpl->mArray[index], aData); |
|
675 } |
|
676 } |
|
677 return running; |
|
678 } |
|
679 |
|
680 bool nsVoidArray::EnumerateBackwards(nsVoidArrayEnumFunc aFunc, void* aData) |
|
681 { |
|
682 bool running = true; |
|
683 |
|
684 if (mImpl) |
|
685 { |
|
686 int32_t index = Count(); |
|
687 while (running && (0 <= --index)) |
|
688 { |
|
689 running = (*aFunc)(mImpl->mArray[index], aData); |
|
690 } |
|
691 } |
|
692 return running; |
|
693 } |
|
694 |
|
695 struct SizeOfElementIncludingThisData |
|
696 { |
|
697 size_t mSize; |
|
698 nsVoidArraySizeOfElementIncludingThisFunc mSizeOfElementIncludingThis; |
|
699 mozilla::MallocSizeOf mMallocSizeOf; |
|
700 void *mData; // the arg passed by the user |
|
701 }; |
|
702 |
|
703 static bool |
|
704 SizeOfElementIncludingThisEnumerator(const void *aElement, void *aData) |
|
705 { |
|
706 SizeOfElementIncludingThisData *d = (SizeOfElementIncludingThisData *)aData; |
|
707 d->mSize += d->mSizeOfElementIncludingThis(aElement, d->mMallocSizeOf, d->mData); |
|
708 return true; |
|
709 } |
|
710 |
|
711 size_t |
|
712 nsVoidArray::SizeOfExcludingThis( |
|
713 nsVoidArraySizeOfElementIncludingThisFunc aSizeOfElementIncludingThis, |
|
714 mozilla::MallocSizeOf aMallocSizeOf, void* aData) const |
|
715 { |
|
716 size_t n = 0; |
|
717 // Measure the element storage. |
|
718 if (mImpl) { |
|
719 n += aMallocSizeOf(mImpl); |
|
720 } |
|
721 // Measure things pointed to by the elements. |
|
722 if (aSizeOfElementIncludingThis) { |
|
723 SizeOfElementIncludingThisData data2 = |
|
724 { 0, aSizeOfElementIncludingThis, aMallocSizeOf, aData }; |
|
725 EnumerateForwards(SizeOfElementIncludingThisEnumerator, &data2); |
|
726 n += data2.mSize; |
|
727 } |
|
728 return n; |
|
729 } |
|
730 |
|
731 //---------------------------------------------------------------------- |
|
732 // NOTE: nsSmallVoidArray elements MUST all have the low bit as 0. |
|
733 // This means that normally it's only used for pointers, and in particular |
|
734 // structures or objects. |
|
735 nsSmallVoidArray::~nsSmallVoidArray() |
|
736 { |
|
737 if (HasSingle()) |
|
738 { |
|
739 // Have to null out mImpl before the nsVoidArray dtor runs. |
|
740 mImpl = nullptr; |
|
741 } |
|
742 } |
|
743 |
|
744 nsSmallVoidArray& |
|
745 nsSmallVoidArray::operator=(nsSmallVoidArray& other) |
|
746 { |
|
747 int32_t count = other.Count(); |
|
748 switch (count) { |
|
749 case 0: |
|
750 Clear(); |
|
751 break; |
|
752 case 1: |
|
753 Clear(); |
|
754 AppendElement(other.ElementAt(0)); |
|
755 break; |
|
756 default: |
|
757 if (GetArraySize() >= count || SizeTo(count)) { |
|
758 *AsArray() = *other.AsArray(); |
|
759 } |
|
760 } |
|
761 |
|
762 return *this; |
|
763 } |
|
764 |
|
765 int32_t |
|
766 nsSmallVoidArray::GetArraySize() const |
|
767 { |
|
768 if (HasSingle()) { |
|
769 return 1; |
|
770 } |
|
771 |
|
772 return AsArray()->GetArraySize(); |
|
773 } |
|
774 |
|
775 int32_t |
|
776 nsSmallVoidArray::Count() const |
|
777 { |
|
778 if (HasSingle()) { |
|
779 return 1; |
|
780 } |
|
781 |
|
782 return AsArray()->Count(); |
|
783 } |
|
784 |
|
785 void* |
|
786 nsSmallVoidArray::FastElementAt(int32_t aIndex) const |
|
787 { |
|
788 NS_ASSERTION(0 <= aIndex && aIndex < Count(), "nsSmallVoidArray::FastElementAt: index out of range"); |
|
789 |
|
790 if (HasSingle()) { |
|
791 return GetSingle(); |
|
792 } |
|
793 |
|
794 return AsArray()->FastElementAt(aIndex); |
|
795 } |
|
796 |
|
797 int32_t |
|
798 nsSmallVoidArray::IndexOf(void* aPossibleElement) const |
|
799 { |
|
800 if (HasSingle()) { |
|
801 return aPossibleElement == GetSingle() ? 0 : -1; |
|
802 } |
|
803 |
|
804 return AsArray()->IndexOf(aPossibleElement); |
|
805 } |
|
806 |
|
807 bool |
|
808 nsSmallVoidArray::InsertElementAt(void* aElement, int32_t aIndex) |
|
809 { |
|
810 NS_ASSERTION(!(NS_PTR_TO_INT32(aElement) & 0x1), |
|
811 "Attempt to add element with 0x1 bit set to nsSmallVoidArray"); |
|
812 |
|
813 if (aIndex == 0 && IsEmpty()) { |
|
814 SetSingle(aElement); |
|
815 |
|
816 return true; |
|
817 } |
|
818 |
|
819 if (!EnsureArray()) { |
|
820 return false; |
|
821 } |
|
822 |
|
823 return AsArray()->InsertElementAt(aElement, aIndex); |
|
824 } |
|
825 |
|
826 bool nsSmallVoidArray::InsertElementsAt(const nsVoidArray &aOther, int32_t aIndex) |
|
827 { |
|
828 #ifdef DEBUG |
|
829 for (int i = 0; i < aOther.Count(); i++) { |
|
830 NS_ASSERTION(!(NS_PTR_TO_INT32(aOther.ElementAt(i)) & 0x1), |
|
831 "Attempt to add element with 0x1 bit set to nsSmallVoidArray"); |
|
832 } |
|
833 #endif |
|
834 |
|
835 if (aIndex == 0 && IsEmpty() && aOther.Count() == 1) { |
|
836 SetSingle(aOther.FastElementAt(0)); |
|
837 |
|
838 return true; |
|
839 } |
|
840 |
|
841 if (!EnsureArray()) { |
|
842 return false; |
|
843 } |
|
844 |
|
845 return AsArray()->InsertElementsAt(aOther, aIndex); |
|
846 } |
|
847 |
|
848 bool |
|
849 nsSmallVoidArray::ReplaceElementAt(void* aElement, int32_t aIndex) |
|
850 { |
|
851 NS_ASSERTION(!(NS_PTR_TO_INT32(aElement) & 0x1), |
|
852 "Attempt to add element with 0x1 bit set to nsSmallVoidArray"); |
|
853 |
|
854 if (aIndex == 0 && (IsEmpty() || HasSingle())) { |
|
855 SetSingle(aElement); |
|
856 |
|
857 return true; |
|
858 } |
|
859 |
|
860 if (!EnsureArray()) { |
|
861 return false; |
|
862 } |
|
863 |
|
864 return AsArray()->ReplaceElementAt(aElement, aIndex); |
|
865 } |
|
866 |
|
867 bool |
|
868 nsSmallVoidArray::AppendElement(void* aElement) |
|
869 { |
|
870 NS_ASSERTION(!(NS_PTR_TO_INT32(aElement) & 0x1), |
|
871 "Attempt to add element with 0x1 bit set to nsSmallVoidArray"); |
|
872 |
|
873 if (IsEmpty()) { |
|
874 SetSingle(aElement); |
|
875 |
|
876 return true; |
|
877 } |
|
878 |
|
879 if (!EnsureArray()) { |
|
880 return false; |
|
881 } |
|
882 |
|
883 return AsArray()->AppendElement(aElement); |
|
884 } |
|
885 |
|
886 bool |
|
887 nsSmallVoidArray::RemoveElement(void* aElement) |
|
888 { |
|
889 if (HasSingle()) { |
|
890 if (aElement == GetSingle()) { |
|
891 mImpl = nullptr; |
|
892 return true; |
|
893 } |
|
894 |
|
895 return false; |
|
896 } |
|
897 |
|
898 return AsArray()->RemoveElement(aElement); |
|
899 } |
|
900 |
|
901 void |
|
902 nsSmallVoidArray::RemoveElementAt(int32_t aIndex) |
|
903 { |
|
904 if (HasSingle()) { |
|
905 if (aIndex == 0) { |
|
906 mImpl = nullptr; |
|
907 } |
|
908 |
|
909 return; |
|
910 } |
|
911 |
|
912 AsArray()->RemoveElementAt(aIndex); |
|
913 } |
|
914 |
|
915 void |
|
916 nsSmallVoidArray::RemoveElementsAt(int32_t aIndex, int32_t aCount) |
|
917 { |
|
918 if (HasSingle()) { |
|
919 if (aIndex == 0) { |
|
920 if (aCount > 0) { |
|
921 mImpl = nullptr; |
|
922 } |
|
923 } |
|
924 |
|
925 return; |
|
926 } |
|
927 |
|
928 AsArray()->RemoveElementsAt(aIndex, aCount); |
|
929 } |
|
930 |
|
931 void |
|
932 nsSmallVoidArray::Clear() |
|
933 { |
|
934 if (HasSingle()) { |
|
935 mImpl = nullptr; |
|
936 } |
|
937 else { |
|
938 AsArray()->Clear(); |
|
939 } |
|
940 } |
|
941 |
|
942 bool |
|
943 nsSmallVoidArray::SizeTo(int32_t aMin) |
|
944 { |
|
945 if (!HasSingle()) { |
|
946 return AsArray()->SizeTo(aMin); |
|
947 } |
|
948 |
|
949 if (aMin <= 0) { |
|
950 mImpl = nullptr; |
|
951 |
|
952 return true; |
|
953 } |
|
954 |
|
955 if (aMin == 1) { |
|
956 return true; |
|
957 } |
|
958 |
|
959 void* single = GetSingle(); |
|
960 mImpl = nullptr; |
|
961 if (!AsArray()->SizeTo(aMin)) { |
|
962 SetSingle(single); |
|
963 |
|
964 return false; |
|
965 } |
|
966 |
|
967 AsArray()->AppendElement(single); |
|
968 |
|
969 return true; |
|
970 } |
|
971 |
|
972 void |
|
973 nsSmallVoidArray::Compact() |
|
974 { |
|
975 if (!HasSingle()) { |
|
976 AsArray()->Compact(); |
|
977 } |
|
978 } |
|
979 |
|
980 void |
|
981 nsSmallVoidArray::Sort(nsVoidArrayComparatorFunc aFunc, void* aData) |
|
982 { |
|
983 if (!HasSingle()) { |
|
984 AsArray()->Sort(aFunc,aData); |
|
985 } |
|
986 } |
|
987 |
|
988 bool |
|
989 nsSmallVoidArray::EnumerateForwards(nsVoidArrayEnumFunc aFunc, void* aData) |
|
990 { |
|
991 if (HasSingle()) { |
|
992 return (*aFunc)(GetSingle(), aData); |
|
993 } |
|
994 return AsArray()->EnumerateForwards(aFunc,aData); |
|
995 } |
|
996 |
|
997 bool |
|
998 nsSmallVoidArray::EnumerateBackwards(nsVoidArrayEnumFunc aFunc, void* aData) |
|
999 { |
|
1000 if (HasSingle()) { |
|
1001 return (*aFunc)(GetSingle(), aData); |
|
1002 } |
|
1003 return AsArray()->EnumerateBackwards(aFunc,aData); |
|
1004 } |
|
1005 |
|
1006 bool |
|
1007 nsSmallVoidArray::EnsureArray() |
|
1008 { |
|
1009 if (!HasSingle()) { |
|
1010 return true; |
|
1011 } |
|
1012 |
|
1013 void* single = GetSingle(); |
|
1014 mImpl = nullptr; |
|
1015 if (!AsArray()->AppendElement(single)) { |
|
1016 SetSingle(single); |
|
1017 |
|
1018 return false; |
|
1019 } |
|
1020 |
|
1021 return true; |
|
1022 } |