|
1 /* Copyright (c) 2002-2008 Jean-Marc Valin |
|
2 Copyright (c) 2007-2008 CSIRO |
|
3 Copyright (c) 2007-2009 Xiph.Org Foundation |
|
4 Written by Jean-Marc Valin */ |
|
5 /** |
|
6 @file mathops.h |
|
7 @brief Various math functions |
|
8 */ |
|
9 /* |
|
10 Redistribution and use in source and binary forms, with or without |
|
11 modification, are permitted provided that the following conditions |
|
12 are met: |
|
13 |
|
14 - Redistributions of source code must retain the above copyright |
|
15 notice, this list of conditions and the following disclaimer. |
|
16 |
|
17 - Redistributions in binary form must reproduce the above copyright |
|
18 notice, this list of conditions and the following disclaimer in the |
|
19 documentation and/or other materials provided with the distribution. |
|
20 |
|
21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
22 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
23 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
24 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
|
25 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|
26 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
27 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
28 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
|
29 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
|
30 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
31 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
32 */ |
|
33 |
|
34 #ifndef MATHOPS_H |
|
35 #define MATHOPS_H |
|
36 |
|
37 #include "arch.h" |
|
38 #include "entcode.h" |
|
39 #include "os_support.h" |
|
40 |
|
41 /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */ |
|
42 #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15) |
|
43 |
|
44 unsigned isqrt32(opus_uint32 _val); |
|
45 |
|
46 #ifndef OVERRIDE_CELT_MAXABS16 |
|
47 static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len) |
|
48 { |
|
49 int i; |
|
50 opus_val16 maxval = 0; |
|
51 opus_val16 minval = 0; |
|
52 for (i=0;i<len;i++) |
|
53 { |
|
54 maxval = MAX16(maxval, x[i]); |
|
55 minval = MIN16(minval, x[i]); |
|
56 } |
|
57 return MAX32(EXTEND32(maxval),-EXTEND32(minval)); |
|
58 } |
|
59 #endif |
|
60 |
|
61 #ifndef OVERRIDE_CELT_MAXABS32 |
|
62 #ifdef FIXED_POINT |
|
63 static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len) |
|
64 { |
|
65 int i; |
|
66 opus_val32 maxval = 0; |
|
67 opus_val32 minval = 0; |
|
68 for (i=0;i<len;i++) |
|
69 { |
|
70 maxval = MAX32(maxval, x[i]); |
|
71 minval = MIN32(minval, x[i]); |
|
72 } |
|
73 return MAX32(maxval, -minval); |
|
74 } |
|
75 #else |
|
76 #define celt_maxabs32(x,len) celt_maxabs16(x,len) |
|
77 #endif |
|
78 #endif |
|
79 |
|
80 |
|
81 #ifndef FIXED_POINT |
|
82 |
|
83 #define PI 3.141592653f |
|
84 #define celt_sqrt(x) ((float)sqrt(x)) |
|
85 #define celt_rsqrt(x) (1.f/celt_sqrt(x)) |
|
86 #define celt_rsqrt_norm(x) (celt_rsqrt(x)) |
|
87 #define celt_cos_norm(x) ((float)cos((.5f*PI)*(x))) |
|
88 #define celt_rcp(x) (1.f/(x)) |
|
89 #define celt_div(a,b) ((a)/(b)) |
|
90 #define frac_div32(a,b) ((float)(a)/(b)) |
|
91 |
|
92 #ifdef FLOAT_APPROX |
|
93 |
|
94 /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127 |
|
95 denorm, +/- inf and NaN are *not* handled */ |
|
96 |
|
97 /** Base-2 log approximation (log2(x)). */ |
|
98 static OPUS_INLINE float celt_log2(float x) |
|
99 { |
|
100 int integer; |
|
101 float frac; |
|
102 union { |
|
103 float f; |
|
104 opus_uint32 i; |
|
105 } in; |
|
106 in.f = x; |
|
107 integer = (in.i>>23)-127; |
|
108 in.i -= integer<<23; |
|
109 frac = in.f - 1.5f; |
|
110 frac = -0.41445418f + frac*(0.95909232f |
|
111 + frac*(-0.33951290f + frac*0.16541097f)); |
|
112 return 1+integer+frac; |
|
113 } |
|
114 |
|
115 /** Base-2 exponential approximation (2^x). */ |
|
116 static OPUS_INLINE float celt_exp2(float x) |
|
117 { |
|
118 int integer; |
|
119 float frac; |
|
120 union { |
|
121 float f; |
|
122 opus_uint32 i; |
|
123 } res; |
|
124 integer = floor(x); |
|
125 if (integer < -50) |
|
126 return 0; |
|
127 frac = x-integer; |
|
128 /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */ |
|
129 res.f = 0.99992522f + frac * (0.69583354f |
|
130 + frac * (0.22606716f + 0.078024523f*frac)); |
|
131 res.i = (res.i + (integer<<23)) & 0x7fffffff; |
|
132 return res.f; |
|
133 } |
|
134 |
|
135 #else |
|
136 #define celt_log2(x) ((float)(1.442695040888963387*log(x))) |
|
137 #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x))) |
|
138 #endif |
|
139 |
|
140 #endif |
|
141 |
|
142 #ifdef FIXED_POINT |
|
143 |
|
144 #include "os_support.h" |
|
145 |
|
146 #ifndef OVERRIDE_CELT_ILOG2 |
|
147 /** Integer log in base2. Undefined for zero and negative numbers */ |
|
148 static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x) |
|
149 { |
|
150 celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers"); |
|
151 return EC_ILOG(x)-1; |
|
152 } |
|
153 #endif |
|
154 |
|
155 |
|
156 /** Integer log in base2. Defined for zero, but not for negative numbers */ |
|
157 static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x) |
|
158 { |
|
159 return x <= 0 ? 0 : celt_ilog2(x); |
|
160 } |
|
161 |
|
162 opus_val16 celt_rsqrt_norm(opus_val32 x); |
|
163 |
|
164 opus_val32 celt_sqrt(opus_val32 x); |
|
165 |
|
166 opus_val16 celt_cos_norm(opus_val32 x); |
|
167 |
|
168 /** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */ |
|
169 static OPUS_INLINE opus_val16 celt_log2(opus_val32 x) |
|
170 { |
|
171 int i; |
|
172 opus_val16 n, frac; |
|
173 /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605, |
|
174 0.15530808010959576, -0.08556153059057618 */ |
|
175 static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401}; |
|
176 if (x==0) |
|
177 return -32767; |
|
178 i = celt_ilog2(x); |
|
179 n = VSHR32(x,i-15)-32768-16384; |
|
180 frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4])))))))); |
|
181 return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT); |
|
182 } |
|
183 |
|
184 /* |
|
185 K0 = 1 |
|
186 K1 = log(2) |
|
187 K2 = 3-4*log(2) |
|
188 K3 = 3*log(2) - 2 |
|
189 */ |
|
190 #define D0 16383 |
|
191 #define D1 22804 |
|
192 #define D2 14819 |
|
193 #define D3 10204 |
|
194 |
|
195 static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x) |
|
196 { |
|
197 opus_val16 frac; |
|
198 frac = SHL16(x, 4); |
|
199 return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac)))))); |
|
200 } |
|
201 /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */ |
|
202 static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x) |
|
203 { |
|
204 int integer; |
|
205 opus_val16 frac; |
|
206 integer = SHR16(x,10); |
|
207 if (integer>14) |
|
208 return 0x7f000000; |
|
209 else if (integer < -15) |
|
210 return 0; |
|
211 frac = celt_exp2_frac(x-SHL16(integer,10)); |
|
212 return VSHR32(EXTEND32(frac), -integer-2); |
|
213 } |
|
214 |
|
215 opus_val32 celt_rcp(opus_val32 x); |
|
216 |
|
217 #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b)) |
|
218 |
|
219 opus_val32 frac_div32(opus_val32 a, opus_val32 b); |
|
220 |
|
221 #define M1 32767 |
|
222 #define M2 -21 |
|
223 #define M3 -11943 |
|
224 #define M4 4936 |
|
225 |
|
226 /* Atan approximation using a 4th order polynomial. Input is in Q15 format |
|
227 and normalized by pi/4. Output is in Q15 format */ |
|
228 static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x) |
|
229 { |
|
230 return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x))))))); |
|
231 } |
|
232 |
|
233 #undef M1 |
|
234 #undef M2 |
|
235 #undef M3 |
|
236 #undef M4 |
|
237 |
|
238 /* atan2() approximation valid for positive input values */ |
|
239 static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x) |
|
240 { |
|
241 if (y < x) |
|
242 { |
|
243 opus_val32 arg; |
|
244 arg = celt_div(SHL32(EXTEND32(y),15),x); |
|
245 if (arg >= 32767) |
|
246 arg = 32767; |
|
247 return SHR16(celt_atan01(EXTRACT16(arg)),1); |
|
248 } else { |
|
249 opus_val32 arg; |
|
250 arg = celt_div(SHL32(EXTEND32(x),15),y); |
|
251 if (arg >= 32767) |
|
252 arg = 32767; |
|
253 return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1); |
|
254 } |
|
255 } |
|
256 |
|
257 #endif /* FIXED_POINT */ |
|
258 #endif /* MATHOPS_H */ |