|
1 /*********************************************************************** |
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
|
3 Redistribution and use in source and binary forms, with or without |
|
4 modification, are permitted provided that the following conditions |
|
5 are met: |
|
6 - Redistributions of source code must retain the above copyright notice, |
|
7 this list of conditions and the following disclaimer. |
|
8 - Redistributions in binary form must reproduce the above copyright |
|
9 notice, this list of conditions and the following disclaimer in the |
|
10 documentation and/or other materials provided with the distribution. |
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the |
|
12 names of specific contributors, may be used to endorse or promote |
|
13 products derived from this software without specific prior written |
|
14 permission. |
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
25 POSSIBILITY OF SUCH DAMAGE. |
|
26 ***********************************************************************/ |
|
27 |
|
28 #ifdef HAVE_CONFIG_H |
|
29 #include "config.h" |
|
30 #endif |
|
31 |
|
32 #include "main_FIX.h" |
|
33 #include "stack_alloc.h" |
|
34 #include "tuning_parameters.h" |
|
35 |
|
36 /* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */ |
|
37 /* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */ |
|
38 /* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */ |
|
39 /* coefficient in an array of coefficients, for monic filters. */ |
|
40 static OPUS_INLINE opus_int32 warped_gain( /* gain in Q16*/ |
|
41 const opus_int32 *coefs_Q24, |
|
42 opus_int lambda_Q16, |
|
43 opus_int order |
|
44 ) { |
|
45 opus_int i; |
|
46 opus_int32 gain_Q24; |
|
47 |
|
48 lambda_Q16 = -lambda_Q16; |
|
49 gain_Q24 = coefs_Q24[ order - 1 ]; |
|
50 for( i = order - 2; i >= 0; i-- ) { |
|
51 gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 ); |
|
52 } |
|
53 gain_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 ); |
|
54 return silk_INVERSE32_varQ( gain_Q24, 40 ); |
|
55 } |
|
56 |
|
57 /* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */ |
|
58 /* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */ |
|
59 static OPUS_INLINE void limit_warped_coefs( |
|
60 opus_int32 *coefs_syn_Q24, |
|
61 opus_int32 *coefs_ana_Q24, |
|
62 opus_int lambda_Q16, |
|
63 opus_int32 limit_Q24, |
|
64 opus_int order |
|
65 ) { |
|
66 opus_int i, iter, ind = 0; |
|
67 opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_syn_Q16, gain_ana_Q16; |
|
68 opus_int32 nom_Q16, den_Q24; |
|
69 |
|
70 /* Convert to monic coefficients */ |
|
71 lambda_Q16 = -lambda_Q16; |
|
72 for( i = order - 1; i > 0; i-- ) { |
|
73 coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 ); |
|
74 coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 ); |
|
75 } |
|
76 lambda_Q16 = -lambda_Q16; |
|
77 nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); |
|
78 den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 ); |
|
79 gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); |
|
80 den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 ); |
|
81 gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); |
|
82 for( i = 0; i < order; i++ ) { |
|
83 coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] ); |
|
84 coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] ); |
|
85 } |
|
86 |
|
87 for( iter = 0; iter < 10; iter++ ) { |
|
88 /* Find maximum absolute value */ |
|
89 maxabs_Q24 = -1; |
|
90 for( i = 0; i < order; i++ ) { |
|
91 tmp = silk_max( silk_abs_int32( coefs_syn_Q24[ i ] ), silk_abs_int32( coefs_ana_Q24[ i ] ) ); |
|
92 if( tmp > maxabs_Q24 ) { |
|
93 maxabs_Q24 = tmp; |
|
94 ind = i; |
|
95 } |
|
96 } |
|
97 if( maxabs_Q24 <= limit_Q24 ) { |
|
98 /* Coefficients are within range - done */ |
|
99 return; |
|
100 } |
|
101 |
|
102 /* Convert back to true warped coefficients */ |
|
103 for( i = 1; i < order; i++ ) { |
|
104 coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 ); |
|
105 coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 ); |
|
106 } |
|
107 gain_syn_Q16 = silk_INVERSE32_varQ( gain_syn_Q16, 32 ); |
|
108 gain_ana_Q16 = silk_INVERSE32_varQ( gain_ana_Q16, 32 ); |
|
109 for( i = 0; i < order; i++ ) { |
|
110 coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] ); |
|
111 coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] ); |
|
112 } |
|
113 |
|
114 /* Apply bandwidth expansion */ |
|
115 chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ( |
|
116 silk_SMULWB( maxabs_Q24 - limit_Q24, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ), |
|
117 silk_MUL( maxabs_Q24, ind + 1 ), 22 ); |
|
118 silk_bwexpander_32( coefs_syn_Q24, order, chirp_Q16 ); |
|
119 silk_bwexpander_32( coefs_ana_Q24, order, chirp_Q16 ); |
|
120 |
|
121 /* Convert to monic warped coefficients */ |
|
122 lambda_Q16 = -lambda_Q16; |
|
123 for( i = order - 1; i > 0; i-- ) { |
|
124 coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 ); |
|
125 coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 ); |
|
126 } |
|
127 lambda_Q16 = -lambda_Q16; |
|
128 nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); |
|
129 den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 ); |
|
130 gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); |
|
131 den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 ); |
|
132 gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); |
|
133 for( i = 0; i < order; i++ ) { |
|
134 coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] ); |
|
135 coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] ); |
|
136 } |
|
137 } |
|
138 silk_assert( 0 ); |
|
139 } |
|
140 |
|
141 /**************************************************************/ |
|
142 /* Compute noise shaping coefficients and initial gain values */ |
|
143 /**************************************************************/ |
|
144 void silk_noise_shape_analysis_FIX( |
|
145 silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */ |
|
146 silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */ |
|
147 const opus_int16 *pitch_res, /* I LPC residual from pitch analysis */ |
|
148 const opus_int16 *x, /* I Input signal [ frame_length + la_shape ] */ |
|
149 int arch /* I Run-time architecture */ |
|
150 ) |
|
151 { |
|
152 silk_shape_state_FIX *psShapeSt = &psEnc->sShape; |
|
153 opus_int k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0; |
|
154 opus_int32 SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32; |
|
155 opus_int32 nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7; |
|
156 opus_int32 delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8; |
|
157 opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ]; |
|
158 opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ]; |
|
159 opus_int32 AR1_Q24[ MAX_SHAPE_LPC_ORDER ]; |
|
160 opus_int32 AR2_Q24[ MAX_SHAPE_LPC_ORDER ]; |
|
161 VARDECL( opus_int16, x_windowed ); |
|
162 const opus_int16 *x_ptr, *pitch_res_ptr; |
|
163 SAVE_STACK; |
|
164 |
|
165 /* Point to start of first LPC analysis block */ |
|
166 x_ptr = x - psEnc->sCmn.la_shape; |
|
167 |
|
168 /****************/ |
|
169 /* GAIN CONTROL */ |
|
170 /****************/ |
|
171 SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7; |
|
172 |
|
173 /* Input quality is the average of the quality in the lowest two VAD bands */ |
|
174 psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ] |
|
175 + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 ); |
|
176 |
|
177 /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */ |
|
178 psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 - |
|
179 SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 ); |
|
180 |
|
181 /* Reduce coding SNR during low speech activity */ |
|
182 if( psEnc->sCmn.useCBR == 0 ) { |
|
183 b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8; |
|
184 b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 ); |
|
185 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, |
|
186 silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ), /* Q11*/ |
|
187 silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/ |
|
188 } |
|
189 |
|
190 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
|
191 /* Reduce gains for periodic signals */ |
|
192 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 ); |
|
193 } else { |
|
194 /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */ |
|
195 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, |
|
196 silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ), |
|
197 SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 ); |
|
198 } |
|
199 |
|
200 /*************************/ |
|
201 /* SPARSENESS PROCESSING */ |
|
202 /*************************/ |
|
203 /* Set quantizer offset */ |
|
204 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
|
205 /* Initially set to 0; may be overruled in process_gains(..) */ |
|
206 psEnc->sCmn.indices.quantOffsetType = 0; |
|
207 psEncCtrl->sparseness_Q8 = 0; |
|
208 } else { |
|
209 /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */ |
|
210 nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 ); |
|
211 energy_variation_Q7 = 0; |
|
212 log_energy_prev_Q7 = 0; |
|
213 pitch_res_ptr = pitch_res; |
|
214 for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) { |
|
215 silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples ); |
|
216 nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/ |
|
217 |
|
218 log_energy_Q7 = silk_lin2log( nrg ); |
|
219 if( k > 0 ) { |
|
220 energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 ); |
|
221 } |
|
222 log_energy_prev_Q7 = log_energy_Q7; |
|
223 pitch_res_ptr += nSamples; |
|
224 } |
|
225 |
|
226 psEncCtrl->sparseness_Q8 = silk_RSHIFT( silk_sigm_Q15( silk_SMULWB( energy_variation_Q7 - |
|
227 SILK_FIX_CONST( 5.0, 7 ), SILK_FIX_CONST( 0.1, 16 ) ) ), 7 ); |
|
228 |
|
229 /* Set quantization offset depending on sparseness measure */ |
|
230 if( psEncCtrl->sparseness_Q8 > SILK_FIX_CONST( SPARSENESS_THRESHOLD_QNT_OFFSET, 8 ) ) { |
|
231 psEnc->sCmn.indices.quantOffsetType = 0; |
|
232 } else { |
|
233 psEnc->sCmn.indices.quantOffsetType = 1; |
|
234 } |
|
235 |
|
236 /* Increase coding SNR for sparse signals */ |
|
237 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( SPARSE_SNR_INCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SILK_FIX_CONST( 0.5, 8 ) ); |
|
238 } |
|
239 |
|
240 /*******************************/ |
|
241 /* Control bandwidth expansion */ |
|
242 /*******************************/ |
|
243 /* More BWE for signals with high prediction gain */ |
|
244 strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) ); |
|
245 BWExp1_Q16 = BWExp2_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ), |
|
246 silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 ); |
|
247 delta_Q16 = silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - silk_SMULBB( 3, psEncCtrl->coding_quality_Q14 ), |
|
248 SILK_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) ); |
|
249 BWExp1_Q16 = silk_SUB32( BWExp1_Q16, delta_Q16 ); |
|
250 BWExp2_Q16 = silk_ADD32( BWExp2_Q16, delta_Q16 ); |
|
251 /* BWExp1 will be applied after BWExp2, so make it relative */ |
|
252 BWExp1_Q16 = silk_DIV32_16( silk_LSHIFT( BWExp1_Q16, 14 ), silk_RSHIFT( BWExp2_Q16, 2 ) ); |
|
253 |
|
254 if( psEnc->sCmn.warping_Q16 > 0 ) { |
|
255 /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ |
|
256 warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) ); |
|
257 } else { |
|
258 warping_Q16 = 0; |
|
259 } |
|
260 |
|
261 /********************************************/ |
|
262 /* Compute noise shaping AR coefs and gains */ |
|
263 /********************************************/ |
|
264 ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 ); |
|
265 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
|
266 /* Apply window: sine slope followed by flat part followed by cosine slope */ |
|
267 opus_int shift, slope_part, flat_part; |
|
268 flat_part = psEnc->sCmn.fs_kHz * 3; |
|
269 slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 ); |
|
270 |
|
271 silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part ); |
|
272 shift = slope_part; |
|
273 silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) ); |
|
274 shift += flat_part; |
|
275 silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part ); |
|
276 |
|
277 /* Update pointer: next LPC analysis block */ |
|
278 x_ptr += psEnc->sCmn.subfr_length; |
|
279 |
|
280 if( psEnc->sCmn.warping_Q16 > 0 ) { |
|
281 /* Calculate warped auto correlation */ |
|
282 silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder ); |
|
283 } else { |
|
284 /* Calculate regular auto correlation */ |
|
285 silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch ); |
|
286 } |
|
287 |
|
288 /* Add white noise, as a fraction of energy */ |
|
289 auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ), |
|
290 SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) ); |
|
291 |
|
292 /* Calculate the reflection coefficients using schur */ |
|
293 nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder ); |
|
294 silk_assert( nrg >= 0 ); |
|
295 |
|
296 /* Convert reflection coefficients to prediction coefficients */ |
|
297 silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder ); |
|
298 |
|
299 Qnrg = -scale; /* range: -12...30*/ |
|
300 silk_assert( Qnrg >= -12 ); |
|
301 silk_assert( Qnrg <= 30 ); |
|
302 |
|
303 /* Make sure that Qnrg is an even number */ |
|
304 if( Qnrg & 1 ) { |
|
305 Qnrg -= 1; |
|
306 nrg >>= 1; |
|
307 } |
|
308 |
|
309 tmp32 = silk_SQRT_APPROX( nrg ); |
|
310 Qnrg >>= 1; /* range: -6...15*/ |
|
311 |
|
312 psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg ); |
|
313 |
|
314 if( psEnc->sCmn.warping_Q16 > 0 ) { |
|
315 /* Adjust gain for warping */ |
|
316 gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder ); |
|
317 silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 ); |
|
318 if ( silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ) >= ( silk_int32_MAX >> 1 ) ) { |
|
319 psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX; |
|
320 } else { |
|
321 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); |
|
322 } |
|
323 } |
|
324 |
|
325 /* Bandwidth expansion for synthesis filter shaping */ |
|
326 silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 ); |
|
327 |
|
328 /* Compute noise shaping filter coefficients */ |
|
329 silk_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( opus_int32 ) ); |
|
330 |
|
331 /* Bandwidth expansion for analysis filter shaping */ |
|
332 silk_assert( BWExp1_Q16 <= SILK_FIX_CONST( 1.0, 16 ) ); |
|
333 silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 ); |
|
334 |
|
335 /* Ratio of prediction gains, in energy domain */ |
|
336 pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapingLPCOrder ); |
|
337 nrg = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapingLPCOrder ); |
|
338 |
|
339 /*psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;*/ |
|
340 pre_nrg_Q30 = silk_LSHIFT32( silk_SMULWB( pre_nrg_Q30, SILK_FIX_CONST( 0.7, 15 ) ), 1 ); |
|
341 psEncCtrl->GainsPre_Q14[ k ] = ( opus_int ) SILK_FIX_CONST( 0.3, 14 ) + silk_DIV32_varQ( pre_nrg_Q30, nrg, 14 ); |
|
342 |
|
343 /* Convert to monic warped prediction coefficients and limit absolute values */ |
|
344 limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder ); |
|
345 |
|
346 /* Convert from Q24 to Q13 and store in int16 */ |
|
347 for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) { |
|
348 psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) ); |
|
349 psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) ); |
|
350 } |
|
351 } |
|
352 |
|
353 /*****************/ |
|
354 /* Gain tweaking */ |
|
355 /*****************/ |
|
356 /* Increase gains during low speech activity and put lower limit on gains */ |
|
357 gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) ); |
|
358 gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) ); |
|
359 silk_assert( gain_mult_Q16 > 0 ); |
|
360 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
|
361 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); |
|
362 silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 ); |
|
363 psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 ); |
|
364 } |
|
365 |
|
366 gain_mult_Q16 = SILK_FIX_CONST( 1.0, 16 ) + silk_RSHIFT_ROUND( silk_MLA( SILK_FIX_CONST( INPUT_TILT, 26 ), |
|
367 psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( HIGH_RATE_INPUT_TILT, 12 ) ), 10 ); |
|
368 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
|
369 psEncCtrl->GainsPre_Q14[ k ] = silk_SMULWB( gain_mult_Q16, psEncCtrl->GainsPre_Q14[ k ] ); |
|
370 } |
|
371 |
|
372 /************************************************/ |
|
373 /* Control low-frequency shaping and noise tilt */ |
|
374 /************************************************/ |
|
375 /* Less low frequency shaping for noisy inputs */ |
|
376 strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ), |
|
377 SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) ); |
|
378 strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 ); |
|
379 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
|
380 /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */ |
|
381 /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/ |
|
382 opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz ); |
|
383 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
|
384 b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] ); |
|
385 /* Pack two coefficients in one int32 */ |
|
386 psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 ); |
|
387 psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) ); |
|
388 } |
|
389 silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/ |
|
390 Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) - |
|
391 silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ), |
|
392 silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) ); |
|
393 } else { |
|
394 b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/ |
|
395 /* Pack two coefficients in one int32 */ |
|
396 psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - |
|
397 silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 ); |
|
398 psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) ); |
|
399 for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) { |
|
400 psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ]; |
|
401 } |
|
402 Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 ); |
|
403 } |
|
404 |
|
405 /****************************/ |
|
406 /* HARMONIC SHAPING CONTROL */ |
|
407 /****************************/ |
|
408 /* Control boosting of harmonic frequencies */ |
|
409 HarmBoost_Q16 = silk_SMULWB( silk_SMULWB( SILK_FIX_CONST( 1.0, 17 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 3 ), |
|
410 psEnc->LTPCorr_Q15 ), SILK_FIX_CONST( LOW_RATE_HARMONIC_BOOST, 16 ) ); |
|
411 |
|
412 /* More harmonic boost for noisy input signals */ |
|
413 HarmBoost_Q16 = silk_SMLAWB( HarmBoost_Q16, |
|
414 SILK_FIX_CONST( 1.0, 16 ) - silk_LSHIFT( psEncCtrl->input_quality_Q14, 2 ), SILK_FIX_CONST( LOW_INPUT_QUALITY_HARMONIC_BOOST, 16 ) ); |
|
415 |
|
416 if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
|
417 /* More harmonic noise shaping for high bitrates or noisy input */ |
|
418 HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ), |
|
419 SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ), |
|
420 psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) ); |
|
421 |
|
422 /* Less harmonic noise shaping for less periodic signals */ |
|
423 HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ), |
|
424 silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) ); |
|
425 } else { |
|
426 HarmShapeGain_Q16 = 0; |
|
427 } |
|
428 |
|
429 /*************************/ |
|
430 /* Smooth over subframes */ |
|
431 /*************************/ |
|
432 for( k = 0; k < MAX_NB_SUBFR; k++ ) { |
|
433 psShapeSt->HarmBoost_smth_Q16 = |
|
434 silk_SMLAWB( psShapeSt->HarmBoost_smth_Q16, HarmBoost_Q16 - psShapeSt->HarmBoost_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); |
|
435 psShapeSt->HarmShapeGain_smth_Q16 = |
|
436 silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); |
|
437 psShapeSt->Tilt_smth_Q16 = |
|
438 silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); |
|
439 |
|
440 psEncCtrl->HarmBoost_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmBoost_smth_Q16, 2 ); |
|
441 psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 ); |
|
442 psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 ); |
|
443 } |
|
444 RESTORE_STACK; |
|
445 } |