|
1 /* |
|
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license |
|
5 * that can be found in the LICENSE file in the root of the source |
|
6 * tree. An additional intellectual property rights grant can be found |
|
7 * in the file PATENTS. All contributing project authors may |
|
8 * be found in the AUTHORS file in the root of the source tree. |
|
9 */ |
|
10 |
|
11 |
|
12 #include <stdlib.h> |
|
13 #include <stdio.h> |
|
14 #include <string.h> |
|
15 #include <limits.h> |
|
16 #include <assert.h> |
|
17 |
|
18 #include "math.h" |
|
19 #include "vp8/common/common.h" |
|
20 #include "ratectrl.h" |
|
21 #include "vp8/common/entropymode.h" |
|
22 #include "vpx_mem/vpx_mem.h" |
|
23 #include "vp8/common/systemdependent.h" |
|
24 #include "encodemv.h" |
|
25 |
|
26 |
|
27 #define MIN_BPB_FACTOR 0.01 |
|
28 #define MAX_BPB_FACTOR 50 |
|
29 |
|
30 extern const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES]; |
|
31 |
|
32 |
|
33 |
|
34 #ifdef MODE_STATS |
|
35 extern int y_modes[5]; |
|
36 extern int uv_modes[4]; |
|
37 extern int b_modes[10]; |
|
38 |
|
39 extern int inter_y_modes[10]; |
|
40 extern int inter_uv_modes[4]; |
|
41 extern int inter_b_modes[10]; |
|
42 #endif |
|
43 |
|
44 /* Bits Per MB at different Q (Multiplied by 512) */ |
|
45 #define BPER_MB_NORMBITS 9 |
|
46 |
|
47 /* Work in progress recalibration of baseline rate tables based on |
|
48 * the assumption that bits per mb is inversely proportional to the |
|
49 * quantizer value. |
|
50 */ |
|
51 const int vp8_bits_per_mb[2][QINDEX_RANGE] = |
|
52 { |
|
53 /* Intra case 450000/Qintra */ |
|
54 { |
|
55 1125000,900000, 750000, 642857, 562500, 500000, 450000, 450000, |
|
56 409090, 375000, 346153, 321428, 300000, 281250, 264705, 264705, |
|
57 250000, 236842, 225000, 225000, 214285, 214285, 204545, 204545, |
|
58 195652, 195652, 187500, 180000, 180000, 173076, 166666, 160714, |
|
59 155172, 150000, 145161, 140625, 136363, 132352, 128571, 125000, |
|
60 121621, 121621, 118421, 115384, 112500, 109756, 107142, 104651, |
|
61 102272, 100000, 97826, 97826, 95744, 93750, 91836, 90000, |
|
62 88235, 86538, 84905, 83333, 81818, 80357, 78947, 77586, |
|
63 76271, 75000, 73770, 72580, 71428, 70312, 69230, 68181, |
|
64 67164, 66176, 65217, 64285, 63380, 62500, 61643, 60810, |
|
65 60000, 59210, 59210, 58441, 57692, 56962, 56250, 55555, |
|
66 54878, 54216, 53571, 52941, 52325, 51724, 51136, 50561, |
|
67 49450, 48387, 47368, 46875, 45918, 45000, 44554, 44117, |
|
68 43269, 42452, 41666, 40909, 40178, 39473, 38793, 38135, |
|
69 36885, 36290, 35714, 35156, 34615, 34090, 33582, 33088, |
|
70 32608, 32142, 31468, 31034, 30405, 29801, 29220, 28662, |
|
71 }, |
|
72 /* Inter case 285000/Qinter */ |
|
73 { |
|
74 712500, 570000, 475000, 407142, 356250, 316666, 285000, 259090, |
|
75 237500, 219230, 203571, 190000, 178125, 167647, 158333, 150000, |
|
76 142500, 135714, 129545, 123913, 118750, 114000, 109615, 105555, |
|
77 101785, 98275, 95000, 91935, 89062, 86363, 83823, 81428, |
|
78 79166, 77027, 75000, 73076, 71250, 69512, 67857, 66279, |
|
79 64772, 63333, 61956, 60638, 59375, 58163, 57000, 55882, |
|
80 54807, 53773, 52777, 51818, 50892, 50000, 49137, 47500, |
|
81 45967, 44531, 43181, 41911, 40714, 39583, 38513, 37500, |
|
82 36538, 35625, 34756, 33928, 33139, 32386, 31666, 30978, |
|
83 30319, 29687, 29081, 28500, 27941, 27403, 26886, 26388, |
|
84 25909, 25446, 25000, 24568, 23949, 23360, 22800, 22265, |
|
85 21755, 21268, 20802, 20357, 19930, 19520, 19127, 18750, |
|
86 18387, 18037, 17701, 17378, 17065, 16764, 16473, 16101, |
|
87 15745, 15405, 15079, 14766, 14467, 14179, 13902, 13636, |
|
88 13380, 13133, 12895, 12666, 12445, 12179, 11924, 11632, |
|
89 11445, 11220, 11003, 10795, 10594, 10401, 10215, 10035, |
|
90 } |
|
91 }; |
|
92 |
|
93 static const int kf_boost_qadjustment[QINDEX_RANGE] = |
|
94 { |
|
95 128, 129, 130, 131, 132, 133, 134, 135, |
|
96 136, 137, 138, 139, 140, 141, 142, 143, |
|
97 144, 145, 146, 147, 148, 149, 150, 151, |
|
98 152, 153, 154, 155, 156, 157, 158, 159, |
|
99 160, 161, 162, 163, 164, 165, 166, 167, |
|
100 168, 169, 170, 171, 172, 173, 174, 175, |
|
101 176, 177, 178, 179, 180, 181, 182, 183, |
|
102 184, 185, 186, 187, 188, 189, 190, 191, |
|
103 192, 193, 194, 195, 196, 197, 198, 199, |
|
104 200, 200, 201, 201, 202, 203, 203, 203, |
|
105 204, 204, 205, 205, 206, 206, 207, 207, |
|
106 208, 208, 209, 209, 210, 210, 211, 211, |
|
107 212, 212, 213, 213, 214, 214, 215, 215, |
|
108 216, 216, 217, 217, 218, 218, 219, 219, |
|
109 220, 220, 220, 220, 220, 220, 220, 220, |
|
110 220, 220, 220, 220, 220, 220, 220, 220, |
|
111 }; |
|
112 |
|
113 /* #define GFQ_ADJUSTMENT (Q+100) */ |
|
114 #define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] |
|
115 const int vp8_gf_boost_qadjustment[QINDEX_RANGE] = |
|
116 { |
|
117 80, 82, 84, 86, 88, 90, 92, 94, |
|
118 96, 97, 98, 99, 100, 101, 102, 103, |
|
119 104, 105, 106, 107, 108, 109, 110, 111, |
|
120 112, 113, 114, 115, 116, 117, 118, 119, |
|
121 120, 121, 122, 123, 124, 125, 126, 127, |
|
122 128, 129, 130, 131, 132, 133, 134, 135, |
|
123 136, 137, 138, 139, 140, 141, 142, 143, |
|
124 144, 145, 146, 147, 148, 149, 150, 151, |
|
125 152, 153, 154, 155, 156, 157, 158, 159, |
|
126 160, 161, 162, 163, 164, 165, 166, 167, |
|
127 168, 169, 170, 171, 172, 173, 174, 175, |
|
128 176, 177, 178, 179, 180, 181, 182, 183, |
|
129 184, 184, 185, 185, 186, 186, 187, 187, |
|
130 188, 188, 189, 189, 190, 190, 191, 191, |
|
131 192, 192, 193, 193, 194, 194, 194, 194, |
|
132 195, 195, 196, 196, 197, 197, 198, 198 |
|
133 }; |
|
134 |
|
135 /* |
|
136 const int vp8_gf_boost_qadjustment[QINDEX_RANGE] = |
|
137 { |
|
138 100,101,102,103,104,105,105,106, |
|
139 106,107,107,108,109,109,110,111, |
|
140 112,113,114,115,116,117,118,119, |
|
141 120,121,122,123,124,125,126,127, |
|
142 128,129,130,131,132,133,134,135, |
|
143 136,137,138,139,140,141,142,143, |
|
144 144,145,146,147,148,149,150,151, |
|
145 152,153,154,155,156,157,158,159, |
|
146 160,161,162,163,164,165,166,167, |
|
147 168,169,170,170,171,171,172,172, |
|
148 173,173,173,174,174,174,175,175, |
|
149 175,176,176,176,177,177,177,177, |
|
150 178,178,179,179,180,180,181,181, |
|
151 182,182,183,183,184,184,185,185, |
|
152 186,186,187,187,188,188,189,189, |
|
153 190,190,191,191,192,192,193,193, |
|
154 }; |
|
155 */ |
|
156 |
|
157 static const int kf_gf_boost_qlimits[QINDEX_RANGE] = |
|
158 { |
|
159 150, 155, 160, 165, 170, 175, 180, 185, |
|
160 190, 195, 200, 205, 210, 215, 220, 225, |
|
161 230, 235, 240, 245, 250, 255, 260, 265, |
|
162 270, 275, 280, 285, 290, 295, 300, 305, |
|
163 310, 320, 330, 340, 350, 360, 370, 380, |
|
164 390, 400, 410, 420, 430, 440, 450, 460, |
|
165 470, 480, 490, 500, 510, 520, 530, 540, |
|
166 550, 560, 570, 580, 590, 600, 600, 600, |
|
167 600, 600, 600, 600, 600, 600, 600, 600, |
|
168 600, 600, 600, 600, 600, 600, 600, 600, |
|
169 600, 600, 600, 600, 600, 600, 600, 600, |
|
170 600, 600, 600, 600, 600, 600, 600, 600, |
|
171 600, 600, 600, 600, 600, 600, 600, 600, |
|
172 600, 600, 600, 600, 600, 600, 600, 600, |
|
173 600, 600, 600, 600, 600, 600, 600, 600, |
|
174 600, 600, 600, 600, 600, 600, 600, 600, |
|
175 }; |
|
176 |
|
177 /* % adjustment to target kf size based on seperation from previous frame */ |
|
178 static const int kf_boost_seperation_adjustment[16] = |
|
179 { |
|
180 30, 40, 50, 55, 60, 65, 70, 75, |
|
181 80, 85, 90, 95, 100, 100, 100, 100, |
|
182 }; |
|
183 |
|
184 |
|
185 static const int gf_adjust_table[101] = |
|
186 { |
|
187 100, |
|
188 115, 130, 145, 160, 175, 190, 200, 210, 220, 230, |
|
189 240, 260, 270, 280, 290, 300, 310, 320, 330, 340, |
|
190 350, 360, 370, 380, 390, 400, 400, 400, 400, 400, |
|
191 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
|
192 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
|
193 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
|
194 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
|
195 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
|
196 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
|
197 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
|
198 }; |
|
199 |
|
200 static const int gf_intra_usage_adjustment[20] = |
|
201 { |
|
202 125, 120, 115, 110, 105, 100, 95, 85, 80, 75, |
|
203 70, 65, 60, 55, 50, 50, 50, 50, 50, 50, |
|
204 }; |
|
205 |
|
206 static const int gf_interval_table[101] = |
|
207 { |
|
208 7, |
|
209 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
|
210 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
|
211 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
|
212 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
213 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
214 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
|
215 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
|
216 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, |
|
217 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, |
|
218 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, |
|
219 }; |
|
220 |
|
221 static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, 4, 5 }; |
|
222 |
|
223 |
|
224 void vp8_save_coding_context(VP8_COMP *cpi) |
|
225 { |
|
226 CODING_CONTEXT *const cc = & cpi->coding_context; |
|
227 |
|
228 /* Stores a snapshot of key state variables which can subsequently be |
|
229 * restored with a call to vp8_restore_coding_context. These functions are |
|
230 * intended for use in a re-code loop in vp8_compress_frame where the |
|
231 * quantizer value is adjusted between loop iterations. |
|
232 */ |
|
233 |
|
234 cc->frames_since_key = cpi->frames_since_key; |
|
235 cc->filter_level = cpi->common.filter_level; |
|
236 cc->frames_till_gf_update_due = cpi->frames_till_gf_update_due; |
|
237 cc->frames_since_golden = cpi->frames_since_golden; |
|
238 |
|
239 vp8_copy(cc->mvc, cpi->common.fc.mvc); |
|
240 vp8_copy(cc->mvcosts, cpi->rd_costs.mvcosts); |
|
241 |
|
242 vp8_copy(cc->ymode_prob, cpi->common.fc.ymode_prob); |
|
243 vp8_copy(cc->uv_mode_prob, cpi->common.fc.uv_mode_prob); |
|
244 |
|
245 vp8_copy(cc->ymode_count, cpi->mb.ymode_count); |
|
246 vp8_copy(cc->uv_mode_count, cpi->mb.uv_mode_count); |
|
247 |
|
248 |
|
249 /* Stats */ |
|
250 #ifdef MODE_STATS |
|
251 vp8_copy(cc->y_modes, y_modes); |
|
252 vp8_copy(cc->uv_modes, uv_modes); |
|
253 vp8_copy(cc->b_modes, b_modes); |
|
254 vp8_copy(cc->inter_y_modes, inter_y_modes); |
|
255 vp8_copy(cc->inter_uv_modes, inter_uv_modes); |
|
256 vp8_copy(cc->inter_b_modes, inter_b_modes); |
|
257 #endif |
|
258 |
|
259 cc->this_frame_percent_intra = cpi->this_frame_percent_intra; |
|
260 } |
|
261 |
|
262 |
|
263 void vp8_restore_coding_context(VP8_COMP *cpi) |
|
264 { |
|
265 CODING_CONTEXT *const cc = & cpi->coding_context; |
|
266 |
|
267 /* Restore key state variables to the snapshot state stored in the |
|
268 * previous call to vp8_save_coding_context. |
|
269 */ |
|
270 |
|
271 cpi->frames_since_key = cc->frames_since_key; |
|
272 cpi->common.filter_level = cc->filter_level; |
|
273 cpi->frames_till_gf_update_due = cc->frames_till_gf_update_due; |
|
274 cpi->frames_since_golden = cc->frames_since_golden; |
|
275 |
|
276 vp8_copy(cpi->common.fc.mvc, cc->mvc); |
|
277 |
|
278 vp8_copy(cpi->rd_costs.mvcosts, cc->mvcosts); |
|
279 |
|
280 vp8_copy(cpi->common.fc.ymode_prob, cc->ymode_prob); |
|
281 vp8_copy(cpi->common.fc.uv_mode_prob, cc->uv_mode_prob); |
|
282 |
|
283 vp8_copy(cpi->mb.ymode_count, cc->ymode_count); |
|
284 vp8_copy(cpi->mb.uv_mode_count, cc->uv_mode_count); |
|
285 |
|
286 /* Stats */ |
|
287 #ifdef MODE_STATS |
|
288 vp8_copy(y_modes, cc->y_modes); |
|
289 vp8_copy(uv_modes, cc->uv_modes); |
|
290 vp8_copy(b_modes, cc->b_modes); |
|
291 vp8_copy(inter_y_modes, cc->inter_y_modes); |
|
292 vp8_copy(inter_uv_modes, cc->inter_uv_modes); |
|
293 vp8_copy(inter_b_modes, cc->inter_b_modes); |
|
294 #endif |
|
295 |
|
296 |
|
297 cpi->this_frame_percent_intra = cc->this_frame_percent_intra; |
|
298 } |
|
299 |
|
300 |
|
301 void vp8_setup_key_frame(VP8_COMP *cpi) |
|
302 { |
|
303 /* Setup for Key frame: */ |
|
304 |
|
305 vp8_default_coef_probs(& cpi->common); |
|
306 |
|
307 vpx_memcpy(cpi->common.fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); |
|
308 { |
|
309 int flag[2] = {1, 1}; |
|
310 vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cpi->common.fc.mvc, flag); |
|
311 } |
|
312 |
|
313 /* Make sure we initialize separate contexts for altref,gold, and normal. |
|
314 * TODO shouldn't need 3 different copies of structure to do this! |
|
315 */ |
|
316 vpx_memcpy(&cpi->lfc_a, &cpi->common.fc, sizeof(cpi->common.fc)); |
|
317 vpx_memcpy(&cpi->lfc_g, &cpi->common.fc, sizeof(cpi->common.fc)); |
|
318 vpx_memcpy(&cpi->lfc_n, &cpi->common.fc, sizeof(cpi->common.fc)); |
|
319 |
|
320 cpi->common.filter_level = cpi->common.base_qindex * 3 / 8 ; |
|
321 |
|
322 /* Provisional interval before next GF */ |
|
323 if (cpi->auto_gold) |
|
324 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
|
325 else |
|
326 cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL; |
|
327 |
|
328 cpi->common.refresh_golden_frame = 1; |
|
329 cpi->common.refresh_alt_ref_frame = 1; |
|
330 } |
|
331 |
|
332 |
|
333 static int estimate_bits_at_q(int frame_kind, int Q, int MBs, |
|
334 double correction_factor) |
|
335 { |
|
336 int Bpm = (int)(.5 + correction_factor * vp8_bits_per_mb[frame_kind][Q]); |
|
337 |
|
338 /* Attempt to retain reasonable accuracy without overflow. The cutoff is |
|
339 * chosen such that the maximum product of Bpm and MBs fits 31 bits. The |
|
340 * largest Bpm takes 20 bits. |
|
341 */ |
|
342 if (MBs > (1 << 11)) |
|
343 return (Bpm >> BPER_MB_NORMBITS) * MBs; |
|
344 else |
|
345 return (Bpm * MBs) >> BPER_MB_NORMBITS; |
|
346 } |
|
347 |
|
348 |
|
349 static void calc_iframe_target_size(VP8_COMP *cpi) |
|
350 { |
|
351 /* boost defaults to half second */ |
|
352 int kf_boost; |
|
353 uint64_t target; |
|
354 |
|
355 /* Clear down mmx registers to allow floating point in what follows */ |
|
356 vp8_clear_system_state(); |
|
357 |
|
358 if (cpi->oxcf.fixed_q >= 0) |
|
359 { |
|
360 int Q = cpi->oxcf.key_q; |
|
361 |
|
362 target = estimate_bits_at_q(INTRA_FRAME, Q, cpi->common.MBs, |
|
363 cpi->key_frame_rate_correction_factor); |
|
364 } |
|
365 else if (cpi->pass == 2) |
|
366 { |
|
367 /* New Two pass RC */ |
|
368 target = cpi->per_frame_bandwidth; |
|
369 } |
|
370 /* First Frame is a special case */ |
|
371 else if (cpi->common.current_video_frame == 0) |
|
372 { |
|
373 /* 1 Pass there is no information on which to base size so use |
|
374 * bandwidth per second * fraction of the initial buffer |
|
375 * level |
|
376 */ |
|
377 target = cpi->oxcf.starting_buffer_level / 2; |
|
378 |
|
379 if(target > cpi->oxcf.target_bandwidth * 3 / 2) |
|
380 target = cpi->oxcf.target_bandwidth * 3 / 2; |
|
381 } |
|
382 else |
|
383 { |
|
384 /* if this keyframe was forced, use a more recent Q estimate */ |
|
385 int Q = (cpi->common.frame_flags & FRAMEFLAGS_KEY) |
|
386 ? cpi->avg_frame_qindex : cpi->ni_av_qi; |
|
387 |
|
388 int initial_boost = 32; /* |3.0 * per_frame_bandwidth| */ |
|
389 /* Boost depends somewhat on frame rate: only used for 1 layer case. */ |
|
390 if (cpi->oxcf.number_of_layers == 1) { |
|
391 kf_boost = MAX(initial_boost, (int)(2 * cpi->output_framerate - 16)); |
|
392 } |
|
393 else { |
|
394 /* Initial factor: set target size to: |3.0 * per_frame_bandwidth|. */ |
|
395 kf_boost = initial_boost; |
|
396 } |
|
397 |
|
398 /* adjustment up based on q: this factor ranges from ~1.2 to 2.2. */ |
|
399 kf_boost = kf_boost * kf_boost_qadjustment[Q] / 100; |
|
400 |
|
401 /* frame separation adjustment ( down) */ |
|
402 if (cpi->frames_since_key < cpi->output_framerate / 2) |
|
403 kf_boost = (int)(kf_boost |
|
404 * cpi->frames_since_key / (cpi->output_framerate / 2)); |
|
405 |
|
406 /* Minimal target size is |2* per_frame_bandwidth|. */ |
|
407 if (kf_boost < 16) |
|
408 kf_boost = 16; |
|
409 |
|
410 target = ((16 + kf_boost) * cpi->per_frame_bandwidth) >> 4; |
|
411 } |
|
412 |
|
413 |
|
414 if (cpi->oxcf.rc_max_intra_bitrate_pct) |
|
415 { |
|
416 unsigned int max_rate = cpi->per_frame_bandwidth |
|
417 * cpi->oxcf.rc_max_intra_bitrate_pct / 100; |
|
418 |
|
419 if (target > max_rate) |
|
420 target = max_rate; |
|
421 } |
|
422 |
|
423 cpi->this_frame_target = (int)target; |
|
424 |
|
425 /* TODO: if we separate rate targeting from Q targetting, move this. |
|
426 * Reset the active worst quality to the baseline value for key frames. |
|
427 */ |
|
428 if (cpi->pass != 2) |
|
429 cpi->active_worst_quality = cpi->worst_quality; |
|
430 |
|
431 #if 0 |
|
432 { |
|
433 FILE *f; |
|
434 |
|
435 f = fopen("kf_boost.stt", "a"); |
|
436 fprintf(f, " %8u %10d %10d %10d\n", |
|
437 cpi->common.current_video_frame, cpi->gfu_boost, cpi->baseline_gf_interval, cpi->source_alt_ref_pending); |
|
438 |
|
439 fclose(f); |
|
440 } |
|
441 #endif |
|
442 } |
|
443 |
|
444 |
|
445 /* Do the best we can to define the parameters for the next GF based on what |
|
446 * information we have available. |
|
447 */ |
|
448 static void calc_gf_params(VP8_COMP *cpi) |
|
449 { |
|
450 int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
|
451 int Boost = 0; |
|
452 |
|
453 int gf_frame_useage = 0; /* Golden frame useage since last GF */ |
|
454 int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME] + |
|
455 cpi->recent_ref_frame_usage[LAST_FRAME] + |
|
456 cpi->recent_ref_frame_usage[GOLDEN_FRAME] + |
|
457 cpi->recent_ref_frame_usage[ALTREF_FRAME]; |
|
458 |
|
459 int pct_gf_active = (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols); |
|
460 |
|
461 if (tot_mbs) |
|
462 gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] + cpi->recent_ref_frame_usage[ALTREF_FRAME]) * 100 / tot_mbs; |
|
463 |
|
464 if (pct_gf_active > gf_frame_useage) |
|
465 gf_frame_useage = pct_gf_active; |
|
466 |
|
467 /* Not two pass */ |
|
468 if (cpi->pass != 2) |
|
469 { |
|
470 /* Single Pass lagged mode: TBD */ |
|
471 if (0) |
|
472 { |
|
473 } |
|
474 |
|
475 /* Single Pass compression: Has to use current and historical data */ |
|
476 else |
|
477 { |
|
478 #if 0 |
|
479 /* Experimental code */ |
|
480 int index = cpi->one_pass_frame_index; |
|
481 int frames_to_scan = (cpi->max_gf_interval <= MAX_LAG_BUFFERS) ? cpi->max_gf_interval : MAX_LAG_BUFFERS; |
|
482 |
|
483 /* ************** Experimental code - incomplete */ |
|
484 /* |
|
485 double decay_val = 1.0; |
|
486 double IIAccumulator = 0.0; |
|
487 double last_iiaccumulator = 0.0; |
|
488 double IIRatio; |
|
489 |
|
490 cpi->one_pass_frame_index = cpi->common.current_video_frame%MAX_LAG_BUFFERS; |
|
491 |
|
492 for ( i = 0; i < (frames_to_scan - 1); i++ ) |
|
493 { |
|
494 if ( index < 0 ) |
|
495 index = MAX_LAG_BUFFERS; |
|
496 index --; |
|
497 |
|
498 if ( cpi->one_pass_frame_stats[index].frame_coded_error > 0.0 ) |
|
499 { |
|
500 IIRatio = cpi->one_pass_frame_stats[index].frame_intra_error / cpi->one_pass_frame_stats[index].frame_coded_error; |
|
501 |
|
502 if ( IIRatio > 30.0 ) |
|
503 IIRatio = 30.0; |
|
504 } |
|
505 else |
|
506 IIRatio = 30.0; |
|
507 |
|
508 IIAccumulator += IIRatio * decay_val; |
|
509 |
|
510 decay_val = decay_val * cpi->one_pass_frame_stats[index].frame_pcnt_inter; |
|
511 |
|
512 if ( (i > MIN_GF_INTERVAL) && |
|
513 ((IIAccumulator - last_iiaccumulator) < 2.0) ) |
|
514 { |
|
515 break; |
|
516 } |
|
517 last_iiaccumulator = IIAccumulator; |
|
518 } |
|
519 |
|
520 Boost = IIAccumulator*100.0/16.0; |
|
521 cpi->baseline_gf_interval = i; |
|
522 |
|
523 */ |
|
524 #else |
|
525 |
|
526 /*************************************************************/ |
|
527 /* OLD code */ |
|
528 |
|
529 /* Adjust boost based upon ambient Q */ |
|
530 Boost = GFQ_ADJUSTMENT; |
|
531 |
|
532 /* Adjust based upon most recently measure intra useage */ |
|
533 Boost = Boost * gf_intra_usage_adjustment[(cpi->this_frame_percent_intra < 15) ? cpi->this_frame_percent_intra : 14] / 100; |
|
534 |
|
535 /* Adjust gf boost based upon GF usage since last GF */ |
|
536 Boost = Boost * gf_adjust_table[gf_frame_useage] / 100; |
|
537 #endif |
|
538 } |
|
539 |
|
540 /* golden frame boost without recode loop often goes awry. be |
|
541 * safe by keeping numbers down. |
|
542 */ |
|
543 if (!cpi->sf.recode_loop) |
|
544 { |
|
545 if (cpi->compressor_speed == 2) |
|
546 Boost = Boost / 2; |
|
547 } |
|
548 |
|
549 /* Apply an upper limit based on Q for 1 pass encodes */ |
|
550 if (Boost > kf_gf_boost_qlimits[Q] && (cpi->pass == 0)) |
|
551 Boost = kf_gf_boost_qlimits[Q]; |
|
552 |
|
553 /* Apply lower limits to boost. */ |
|
554 else if (Boost < 110) |
|
555 Boost = 110; |
|
556 |
|
557 /* Note the boost used */ |
|
558 cpi->last_boost = Boost; |
|
559 |
|
560 } |
|
561 |
|
562 /* Estimate next interval |
|
563 * This is updated once the real frame size/boost is known. |
|
564 */ |
|
565 if (cpi->oxcf.fixed_q == -1) |
|
566 { |
|
567 if (cpi->pass == 2) /* 2 Pass */ |
|
568 { |
|
569 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
|
570 } |
|
571 else /* 1 Pass */ |
|
572 { |
|
573 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
|
574 |
|
575 if (cpi->last_boost > 750) |
|
576 cpi->frames_till_gf_update_due++; |
|
577 |
|
578 if (cpi->last_boost > 1000) |
|
579 cpi->frames_till_gf_update_due++; |
|
580 |
|
581 if (cpi->last_boost > 1250) |
|
582 cpi->frames_till_gf_update_due++; |
|
583 |
|
584 if (cpi->last_boost >= 1500) |
|
585 cpi->frames_till_gf_update_due ++; |
|
586 |
|
587 if (gf_interval_table[gf_frame_useage] > cpi->frames_till_gf_update_due) |
|
588 cpi->frames_till_gf_update_due = gf_interval_table[gf_frame_useage]; |
|
589 |
|
590 if (cpi->frames_till_gf_update_due > cpi->max_gf_interval) |
|
591 cpi->frames_till_gf_update_due = cpi->max_gf_interval; |
|
592 } |
|
593 } |
|
594 else |
|
595 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
|
596 |
|
597 /* ARF on or off */ |
|
598 if (cpi->pass != 2) |
|
599 { |
|
600 /* For now Alt ref is not allowed except in 2 pass modes. */ |
|
601 cpi->source_alt_ref_pending = 0; |
|
602 |
|
603 /*if ( cpi->oxcf.fixed_q == -1) |
|
604 { |
|
605 if ( cpi->oxcf.play_alternate && (cpi->last_boost > (100 + (AF_THRESH*cpi->frames_till_gf_update_due)) ) ) |
|
606 cpi->source_alt_ref_pending = 1; |
|
607 else |
|
608 cpi->source_alt_ref_pending = 0; |
|
609 }*/ |
|
610 } |
|
611 } |
|
612 |
|
613 |
|
614 static void calc_pframe_target_size(VP8_COMP *cpi) |
|
615 { |
|
616 int min_frame_target; |
|
617 int old_per_frame_bandwidth = cpi->per_frame_bandwidth; |
|
618 |
|
619 if ( cpi->current_layer > 0) |
|
620 cpi->per_frame_bandwidth = |
|
621 cpi->layer_context[cpi->current_layer].avg_frame_size_for_layer; |
|
622 |
|
623 min_frame_target = 0; |
|
624 |
|
625 if (cpi->pass == 2) |
|
626 { |
|
627 min_frame_target = cpi->min_frame_bandwidth; |
|
628 |
|
629 if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5)) |
|
630 min_frame_target = cpi->av_per_frame_bandwidth >> 5; |
|
631 } |
|
632 else if (min_frame_target < cpi->per_frame_bandwidth / 4) |
|
633 min_frame_target = cpi->per_frame_bandwidth / 4; |
|
634 |
|
635 |
|
636 /* Special alt reference frame case */ |
|
637 if((cpi->common.refresh_alt_ref_frame) && (cpi->oxcf.number_of_layers == 1)) |
|
638 { |
|
639 if (cpi->pass == 2) |
|
640 { |
|
641 /* Per frame bit target for the alt ref frame */ |
|
642 cpi->per_frame_bandwidth = cpi->twopass.gf_bits; |
|
643 cpi->this_frame_target = cpi->per_frame_bandwidth; |
|
644 } |
|
645 |
|
646 /* One Pass ??? TBD */ |
|
647 } |
|
648 |
|
649 /* Normal frames (gf,and inter) */ |
|
650 else |
|
651 { |
|
652 /* 2 pass */ |
|
653 if (cpi->pass == 2) |
|
654 { |
|
655 cpi->this_frame_target = cpi->per_frame_bandwidth; |
|
656 } |
|
657 /* 1 pass */ |
|
658 else |
|
659 { |
|
660 int Adjustment; |
|
661 /* Make rate adjustment to recover bits spent in key frame |
|
662 * Test to see if the key frame inter data rate correction |
|
663 * should still be in force |
|
664 */ |
|
665 if (cpi->kf_overspend_bits > 0) |
|
666 { |
|
667 Adjustment = (cpi->kf_bitrate_adjustment <= cpi->kf_overspend_bits) ? cpi->kf_bitrate_adjustment : cpi->kf_overspend_bits; |
|
668 |
|
669 if (Adjustment > (cpi->per_frame_bandwidth - min_frame_target)) |
|
670 Adjustment = (cpi->per_frame_bandwidth - min_frame_target); |
|
671 |
|
672 cpi->kf_overspend_bits -= Adjustment; |
|
673 |
|
674 /* Calculate an inter frame bandwidth target for the next |
|
675 * few frames designed to recover any extra bits spent on |
|
676 * the key frame. |
|
677 */ |
|
678 cpi->this_frame_target = cpi->per_frame_bandwidth - Adjustment; |
|
679 |
|
680 if (cpi->this_frame_target < min_frame_target) |
|
681 cpi->this_frame_target = min_frame_target; |
|
682 } |
|
683 else |
|
684 cpi->this_frame_target = cpi->per_frame_bandwidth; |
|
685 |
|
686 /* If appropriate make an adjustment to recover bits spent on a |
|
687 * recent GF |
|
688 */ |
|
689 if ((cpi->gf_overspend_bits > 0) && (cpi->this_frame_target > min_frame_target)) |
|
690 { |
|
691 Adjustment = (cpi->non_gf_bitrate_adjustment <= cpi->gf_overspend_bits) ? cpi->non_gf_bitrate_adjustment : cpi->gf_overspend_bits; |
|
692 |
|
693 if (Adjustment > (cpi->this_frame_target - min_frame_target)) |
|
694 Adjustment = (cpi->this_frame_target - min_frame_target); |
|
695 |
|
696 cpi->gf_overspend_bits -= Adjustment; |
|
697 cpi->this_frame_target -= Adjustment; |
|
698 } |
|
699 |
|
700 /* Apply small + and - boosts for non gf frames */ |
|
701 if ((cpi->last_boost > 150) && (cpi->frames_till_gf_update_due > 0) && |
|
702 (cpi->current_gf_interval >= (MIN_GF_INTERVAL << 1))) |
|
703 { |
|
704 /* % Adjustment limited to the range 1% to 10% */ |
|
705 Adjustment = (cpi->last_boost - 100) >> 5; |
|
706 |
|
707 if (Adjustment < 1) |
|
708 Adjustment = 1; |
|
709 else if (Adjustment > 10) |
|
710 Adjustment = 10; |
|
711 |
|
712 /* Convert to bits */ |
|
713 Adjustment = (cpi->this_frame_target * Adjustment) / 100; |
|
714 |
|
715 if (Adjustment > (cpi->this_frame_target - min_frame_target)) |
|
716 Adjustment = (cpi->this_frame_target - min_frame_target); |
|
717 |
|
718 if (cpi->frames_since_golden == (cpi->current_gf_interval >> 1)) |
|
719 cpi->this_frame_target += ((cpi->current_gf_interval - 1) * Adjustment); |
|
720 else |
|
721 cpi->this_frame_target -= Adjustment; |
|
722 } |
|
723 } |
|
724 } |
|
725 |
|
726 /* Sanity check that the total sum of adjustments is not above the |
|
727 * maximum allowed That is that having allowed for KF and GF penalties |
|
728 * we have not pushed the current interframe target to low. If the |
|
729 * adjustment we apply here is not capable of recovering all the extra |
|
730 * bits we have spent in the KF or GF then the remainder will have to |
|
731 * be recovered over a longer time span via other buffer / rate control |
|
732 * mechanisms. |
|
733 */ |
|
734 if (cpi->this_frame_target < min_frame_target) |
|
735 cpi->this_frame_target = min_frame_target; |
|
736 |
|
737 if (!cpi->common.refresh_alt_ref_frame) |
|
738 /* Note the baseline target data rate for this inter frame. */ |
|
739 cpi->inter_frame_target = cpi->this_frame_target; |
|
740 |
|
741 /* One Pass specific code */ |
|
742 if (cpi->pass == 0) |
|
743 { |
|
744 /* Adapt target frame size with respect to any buffering constraints: */ |
|
745 if (cpi->buffered_mode) |
|
746 { |
|
747 int one_percent_bits = (int) |
|
748 (1 + cpi->oxcf.optimal_buffer_level / 100); |
|
749 |
|
750 if ((cpi->buffer_level < cpi->oxcf.optimal_buffer_level) || |
|
751 (cpi->bits_off_target < cpi->oxcf.optimal_buffer_level)) |
|
752 { |
|
753 int percent_low = 0; |
|
754 |
|
755 /* Decide whether or not we need to adjust the frame data |
|
756 * rate target. |
|
757 * |
|
758 * If we are are below the optimal buffer fullness level |
|
759 * and adherence to buffering constraints is important to |
|
760 * the end usage then adjust the per frame target. |
|
761 */ |
|
762 if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && |
|
763 (cpi->buffer_level < cpi->oxcf.optimal_buffer_level)) |
|
764 { |
|
765 percent_low = (int) |
|
766 ((cpi->oxcf.optimal_buffer_level - cpi->buffer_level) / |
|
767 one_percent_bits); |
|
768 } |
|
769 /* Are we overshooting the long term clip data rate... */ |
|
770 else if (cpi->bits_off_target < 0) |
|
771 { |
|
772 /* Adjust per frame data target downwards to compensate. */ |
|
773 percent_low = (int)(100 * -cpi->bits_off_target / |
|
774 (cpi->total_byte_count * 8)); |
|
775 } |
|
776 |
|
777 if (percent_low > cpi->oxcf.under_shoot_pct) |
|
778 percent_low = cpi->oxcf.under_shoot_pct; |
|
779 else if (percent_low < 0) |
|
780 percent_low = 0; |
|
781 |
|
782 /* lower the target bandwidth for this frame. */ |
|
783 cpi->this_frame_target -= |
|
784 (cpi->this_frame_target * percent_low) / 200; |
|
785 |
|
786 /* Are we using allowing control of active_worst_allowed_q |
|
787 * according to buffer level. |
|
788 */ |
|
789 if (cpi->auto_worst_q && cpi->ni_frames > 150) |
|
790 { |
|
791 int64_t critical_buffer_level; |
|
792 |
|
793 /* For streaming applications the most important factor is |
|
794 * cpi->buffer_level as this takes into account the |
|
795 * specified short term buffering constraints. However, |
|
796 * hitting the long term clip data rate target is also |
|
797 * important. |
|
798 */ |
|
799 if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
|
800 { |
|
801 /* Take the smaller of cpi->buffer_level and |
|
802 * cpi->bits_off_target |
|
803 */ |
|
804 critical_buffer_level = |
|
805 (cpi->buffer_level < cpi->bits_off_target) |
|
806 ? cpi->buffer_level : cpi->bits_off_target; |
|
807 } |
|
808 /* For local file playback short term buffering constraints |
|
809 * are less of an issue |
|
810 */ |
|
811 else |
|
812 { |
|
813 /* Consider only how we are doing for the clip as a |
|
814 * whole |
|
815 */ |
|
816 critical_buffer_level = cpi->bits_off_target; |
|
817 } |
|
818 |
|
819 /* Set the active worst quality based upon the selected |
|
820 * buffer fullness number. |
|
821 */ |
|
822 if (critical_buffer_level < cpi->oxcf.optimal_buffer_level) |
|
823 { |
|
824 if ( critical_buffer_level > |
|
825 (cpi->oxcf.optimal_buffer_level >> 2) ) |
|
826 { |
|
827 int64_t qadjustment_range = |
|
828 cpi->worst_quality - cpi->ni_av_qi; |
|
829 int64_t above_base = |
|
830 (critical_buffer_level - |
|
831 (cpi->oxcf.optimal_buffer_level >> 2)); |
|
832 |
|
833 /* Step active worst quality down from |
|
834 * cpi->ni_av_qi when (critical_buffer_level == |
|
835 * cpi->optimal_buffer_level) to |
|
836 * cpi->worst_quality when |
|
837 * (critical_buffer_level == |
|
838 * cpi->optimal_buffer_level >> 2) |
|
839 */ |
|
840 cpi->active_worst_quality = |
|
841 cpi->worst_quality - |
|
842 (int)((qadjustment_range * above_base) / |
|
843 (cpi->oxcf.optimal_buffer_level*3>>2)); |
|
844 } |
|
845 else |
|
846 { |
|
847 cpi->active_worst_quality = cpi->worst_quality; |
|
848 } |
|
849 } |
|
850 else |
|
851 { |
|
852 cpi->active_worst_quality = cpi->ni_av_qi; |
|
853 } |
|
854 } |
|
855 else |
|
856 { |
|
857 cpi->active_worst_quality = cpi->worst_quality; |
|
858 } |
|
859 } |
|
860 else |
|
861 { |
|
862 int percent_high = 0; |
|
863 |
|
864 if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
|
865 && (cpi->buffer_level > cpi->oxcf.optimal_buffer_level)) |
|
866 { |
|
867 percent_high = (int)((cpi->buffer_level |
|
868 - cpi->oxcf.optimal_buffer_level) |
|
869 / one_percent_bits); |
|
870 } |
|
871 else if (cpi->bits_off_target > cpi->oxcf.optimal_buffer_level) |
|
872 { |
|
873 percent_high = (int)((100 * cpi->bits_off_target) |
|
874 / (cpi->total_byte_count * 8)); |
|
875 } |
|
876 |
|
877 if (percent_high > cpi->oxcf.over_shoot_pct) |
|
878 percent_high = cpi->oxcf.over_shoot_pct; |
|
879 else if (percent_high < 0) |
|
880 percent_high = 0; |
|
881 |
|
882 cpi->this_frame_target += (cpi->this_frame_target * |
|
883 percent_high) / 200; |
|
884 |
|
885 /* Are we allowing control of active_worst_allowed_q according |
|
886 * to buffer level. |
|
887 */ |
|
888 if (cpi->auto_worst_q && cpi->ni_frames > 150) |
|
889 { |
|
890 /* When using the relaxed buffer model stick to the |
|
891 * user specified value |
|
892 */ |
|
893 cpi->active_worst_quality = cpi->ni_av_qi; |
|
894 } |
|
895 else |
|
896 { |
|
897 cpi->active_worst_quality = cpi->worst_quality; |
|
898 } |
|
899 } |
|
900 |
|
901 /* Set active_best_quality to prevent quality rising too high */ |
|
902 cpi->active_best_quality = cpi->best_quality; |
|
903 |
|
904 /* Worst quality obviously must not be better than best quality */ |
|
905 if (cpi->active_worst_quality <= cpi->active_best_quality) |
|
906 cpi->active_worst_quality = cpi->active_best_quality + 1; |
|
907 |
|
908 if(cpi->active_worst_quality > 127) |
|
909 cpi->active_worst_quality = 127; |
|
910 } |
|
911 /* Unbuffered mode (eg. video conferencing) */ |
|
912 else |
|
913 { |
|
914 /* Set the active worst quality */ |
|
915 cpi->active_worst_quality = cpi->worst_quality; |
|
916 } |
|
917 |
|
918 /* Special trap for constrained quality mode |
|
919 * "active_worst_quality" may never drop below cq level |
|
920 * for any frame type. |
|
921 */ |
|
922 if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && |
|
923 cpi->active_worst_quality < cpi->cq_target_quality) |
|
924 { |
|
925 cpi->active_worst_quality = cpi->cq_target_quality; |
|
926 } |
|
927 } |
|
928 |
|
929 /* Test to see if we have to drop a frame |
|
930 * The auto-drop frame code is only used in buffered mode. |
|
931 * In unbufferd mode (eg vide conferencing) the descision to |
|
932 * code or drop a frame is made outside the codec in response to real |
|
933 * world comms or buffer considerations. |
|
934 */ |
|
935 if (cpi->drop_frames_allowed && |
|
936 (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && |
|
937 ((cpi->common.frame_type != KEY_FRAME))) |
|
938 { |
|
939 /* Check for a buffer underun-crisis in which case we have to drop |
|
940 * a frame |
|
941 */ |
|
942 if ((cpi->buffer_level < 0)) |
|
943 { |
|
944 #if 0 |
|
945 FILE *f = fopen("dec.stt", "a"); |
|
946 fprintf(f, "%10d %10d %10d %10d ***** BUFFER EMPTY\n", |
|
947 (int) cpi->common.current_video_frame, |
|
948 cpi->decimation_factor, cpi->common.horiz_scale, |
|
949 (cpi->buffer_level * 100) / cpi->oxcf.optimal_buffer_level); |
|
950 fclose(f); |
|
951 #endif |
|
952 cpi->drop_frame = 1; |
|
953 |
|
954 /* Update the buffer level variable. */ |
|
955 cpi->bits_off_target += cpi->av_per_frame_bandwidth; |
|
956 if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) |
|
957 cpi->bits_off_target = (int)cpi->oxcf.maximum_buffer_size; |
|
958 cpi->buffer_level = cpi->bits_off_target; |
|
959 |
|
960 if (cpi->oxcf.number_of_layers > 1) { |
|
961 unsigned int i; |
|
962 |
|
963 // Propagate bits saved by dropping the frame to higher layers. |
|
964 for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; |
|
965 i++) { |
|
966 LAYER_CONTEXT *lc = &cpi->layer_context[i]; |
|
967 lc->bits_off_target += (int)(lc->target_bandwidth / |
|
968 lc->framerate); |
|
969 if (lc->bits_off_target > lc->maximum_buffer_size) |
|
970 lc->bits_off_target = lc->maximum_buffer_size; |
|
971 lc->buffer_level = lc->bits_off_target; |
|
972 } |
|
973 } |
|
974 } |
|
975 } |
|
976 |
|
977 /* Adjust target frame size for Golden Frames: */ |
|
978 if (cpi->oxcf.error_resilient_mode == 0 && |
|
979 (cpi->frames_till_gf_update_due == 0) && !cpi->drop_frame) |
|
980 { |
|
981 int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
|
982 |
|
983 int gf_frame_useage = 0; /* Golden frame useage since last GF */ |
|
984 int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME] + |
|
985 cpi->recent_ref_frame_usage[LAST_FRAME] + |
|
986 cpi->recent_ref_frame_usage[GOLDEN_FRAME] + |
|
987 cpi->recent_ref_frame_usage[ALTREF_FRAME]; |
|
988 |
|
989 int pct_gf_active = (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols); |
|
990 |
|
991 if (tot_mbs) |
|
992 gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] + cpi->recent_ref_frame_usage[ALTREF_FRAME]) * 100 / tot_mbs; |
|
993 |
|
994 if (pct_gf_active > gf_frame_useage) |
|
995 gf_frame_useage = pct_gf_active; |
|
996 |
|
997 /* Is a fixed manual GF frequency being used */ |
|
998 if (cpi->auto_gold) |
|
999 { |
|
1000 /* For one pass throw a GF if recent frame intra useage is |
|
1001 * low or the GF useage is high |
|
1002 */ |
|
1003 if ((cpi->pass == 0) && (cpi->this_frame_percent_intra < 15 || gf_frame_useage >= 5)) |
|
1004 cpi->common.refresh_golden_frame = 1; |
|
1005 |
|
1006 /* Two pass GF descision */ |
|
1007 else if (cpi->pass == 2) |
|
1008 cpi->common.refresh_golden_frame = 1; |
|
1009 } |
|
1010 |
|
1011 #if 0 |
|
1012 |
|
1013 /* Debug stats */ |
|
1014 if (0) |
|
1015 { |
|
1016 FILE *f; |
|
1017 |
|
1018 f = fopen("gf_useaget.stt", "a"); |
|
1019 fprintf(f, " %8ld %10ld %10ld %10ld %10ld\n", |
|
1020 cpi->common.current_video_frame, cpi->gfu_boost, GFQ_ADJUSTMENT, cpi->gfu_boost, gf_frame_useage); |
|
1021 fclose(f); |
|
1022 } |
|
1023 |
|
1024 #endif |
|
1025 |
|
1026 if (cpi->common.refresh_golden_frame == 1) |
|
1027 { |
|
1028 #if 0 |
|
1029 |
|
1030 if (0) |
|
1031 { |
|
1032 FILE *f; |
|
1033 |
|
1034 f = fopen("GFexit.stt", "a"); |
|
1035 fprintf(f, "%8ld GF coded\n", cpi->common.current_video_frame); |
|
1036 fclose(f); |
|
1037 } |
|
1038 |
|
1039 #endif |
|
1040 |
|
1041 if (cpi->auto_adjust_gold_quantizer) |
|
1042 { |
|
1043 calc_gf_params(cpi); |
|
1044 } |
|
1045 |
|
1046 /* If we are using alternate ref instead of gf then do not apply the |
|
1047 * boost It will instead be applied to the altref update Jims |
|
1048 * modified boost |
|
1049 */ |
|
1050 if (!cpi->source_alt_ref_active) |
|
1051 { |
|
1052 if (cpi->oxcf.fixed_q < 0) |
|
1053 { |
|
1054 if (cpi->pass == 2) |
|
1055 { |
|
1056 /* The spend on the GF is defined in the two pass |
|
1057 * code for two pass encodes |
|
1058 */ |
|
1059 cpi->this_frame_target = cpi->per_frame_bandwidth; |
|
1060 } |
|
1061 else |
|
1062 { |
|
1063 int Boost = cpi->last_boost; |
|
1064 int frames_in_section = cpi->frames_till_gf_update_due + 1; |
|
1065 int allocation_chunks = (frames_in_section * 100) + (Boost - 100); |
|
1066 int bits_in_section = cpi->inter_frame_target * frames_in_section; |
|
1067 |
|
1068 /* Normalize Altboost and allocations chunck down to |
|
1069 * prevent overflow |
|
1070 */ |
|
1071 while (Boost > 1000) |
|
1072 { |
|
1073 Boost /= 2; |
|
1074 allocation_chunks /= 2; |
|
1075 } |
|
1076 |
|
1077 /* Avoid loss of precision but avoid overflow */ |
|
1078 if ((bits_in_section >> 7) > allocation_chunks) |
|
1079 cpi->this_frame_target = Boost * (bits_in_section / allocation_chunks); |
|
1080 else |
|
1081 cpi->this_frame_target = (Boost * bits_in_section) / allocation_chunks; |
|
1082 } |
|
1083 } |
|
1084 else |
|
1085 cpi->this_frame_target = |
|
1086 (estimate_bits_at_q(1, Q, cpi->common.MBs, 1.0) |
|
1087 * cpi->last_boost) / 100; |
|
1088 |
|
1089 } |
|
1090 /* If there is an active ARF at this location use the minimum |
|
1091 * bits on this frame even if it is a contructed arf. |
|
1092 * The active maximum quantizer insures that an appropriate |
|
1093 * number of bits will be spent if needed for contstructed ARFs. |
|
1094 */ |
|
1095 else |
|
1096 { |
|
1097 cpi->this_frame_target = 0; |
|
1098 } |
|
1099 |
|
1100 cpi->current_gf_interval = cpi->frames_till_gf_update_due; |
|
1101 |
|
1102 } |
|
1103 } |
|
1104 |
|
1105 cpi->per_frame_bandwidth = old_per_frame_bandwidth; |
|
1106 } |
|
1107 |
|
1108 |
|
1109 void vp8_update_rate_correction_factors(VP8_COMP *cpi, int damp_var) |
|
1110 { |
|
1111 int Q = cpi->common.base_qindex; |
|
1112 int correction_factor = 100; |
|
1113 double rate_correction_factor; |
|
1114 double adjustment_limit; |
|
1115 |
|
1116 int projected_size_based_on_q = 0; |
|
1117 |
|
1118 /* Clear down mmx registers to allow floating point in what follows */ |
|
1119 vp8_clear_system_state(); |
|
1120 |
|
1121 if (cpi->common.frame_type == KEY_FRAME) |
|
1122 { |
|
1123 rate_correction_factor = cpi->key_frame_rate_correction_factor; |
|
1124 } |
|
1125 else |
|
1126 { |
|
1127 if (cpi->oxcf.number_of_layers == 1 && |
|
1128 (cpi->common.refresh_alt_ref_frame || |
|
1129 cpi->common.refresh_golden_frame)) |
|
1130 rate_correction_factor = cpi->gf_rate_correction_factor; |
|
1131 else |
|
1132 rate_correction_factor = cpi->rate_correction_factor; |
|
1133 } |
|
1134 |
|
1135 /* Work out how big we would have expected the frame to be at this Q |
|
1136 * given the current correction factor. Stay in double to avoid int |
|
1137 * overflow when values are large |
|
1138 */ |
|
1139 projected_size_based_on_q = (int)(((.5 + rate_correction_factor * vp8_bits_per_mb[cpi->common.frame_type][Q]) * cpi->common.MBs) / (1 << BPER_MB_NORMBITS)); |
|
1140 |
|
1141 /* Make some allowance for cpi->zbin_over_quant */ |
|
1142 if (cpi->mb.zbin_over_quant > 0) |
|
1143 { |
|
1144 int Z = cpi->mb.zbin_over_quant; |
|
1145 double Factor = 0.99; |
|
1146 double factor_adjustment = 0.01 / 256.0; |
|
1147 |
|
1148 while (Z > 0) |
|
1149 { |
|
1150 Z --; |
|
1151 projected_size_based_on_q = |
|
1152 (int)(Factor * projected_size_based_on_q); |
|
1153 Factor += factor_adjustment; |
|
1154 |
|
1155 if (Factor >= 0.999) |
|
1156 Factor = 0.999; |
|
1157 } |
|
1158 } |
|
1159 |
|
1160 /* Work out a size correction factor. */ |
|
1161 if (projected_size_based_on_q > 0) |
|
1162 correction_factor = (100 * cpi->projected_frame_size) / projected_size_based_on_q; |
|
1163 |
|
1164 /* More heavily damped adjustment used if we have been oscillating |
|
1165 * either side of target |
|
1166 */ |
|
1167 switch (damp_var) |
|
1168 { |
|
1169 case 0: |
|
1170 adjustment_limit = 0.75; |
|
1171 break; |
|
1172 case 1: |
|
1173 adjustment_limit = 0.375; |
|
1174 break; |
|
1175 case 2: |
|
1176 default: |
|
1177 adjustment_limit = 0.25; |
|
1178 break; |
|
1179 } |
|
1180 |
|
1181 if (correction_factor > 102) |
|
1182 { |
|
1183 /* We are not already at the worst allowable quality */ |
|
1184 correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_limit)); |
|
1185 rate_correction_factor = ((rate_correction_factor * correction_factor) / 100); |
|
1186 |
|
1187 /* Keep rate_correction_factor within limits */ |
|
1188 if (rate_correction_factor > MAX_BPB_FACTOR) |
|
1189 rate_correction_factor = MAX_BPB_FACTOR; |
|
1190 } |
|
1191 else if (correction_factor < 99) |
|
1192 { |
|
1193 /* We are not already at the best allowable quality */ |
|
1194 correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_limit)); |
|
1195 rate_correction_factor = ((rate_correction_factor * correction_factor) / 100); |
|
1196 |
|
1197 /* Keep rate_correction_factor within limits */ |
|
1198 if (rate_correction_factor < MIN_BPB_FACTOR) |
|
1199 rate_correction_factor = MIN_BPB_FACTOR; |
|
1200 } |
|
1201 |
|
1202 if (cpi->common.frame_type == KEY_FRAME) |
|
1203 cpi->key_frame_rate_correction_factor = rate_correction_factor; |
|
1204 else |
|
1205 { |
|
1206 if (cpi->oxcf.number_of_layers == 1 && |
|
1207 (cpi->common.refresh_alt_ref_frame || |
|
1208 cpi->common.refresh_golden_frame)) |
|
1209 cpi->gf_rate_correction_factor = rate_correction_factor; |
|
1210 else |
|
1211 cpi->rate_correction_factor = rate_correction_factor; |
|
1212 } |
|
1213 } |
|
1214 |
|
1215 |
|
1216 int vp8_regulate_q(VP8_COMP *cpi, int target_bits_per_frame) |
|
1217 { |
|
1218 int Q = cpi->active_worst_quality; |
|
1219 |
|
1220 /* Reset Zbin OQ value */ |
|
1221 cpi->mb.zbin_over_quant = 0; |
|
1222 |
|
1223 if (cpi->oxcf.fixed_q >= 0) |
|
1224 { |
|
1225 Q = cpi->oxcf.fixed_q; |
|
1226 |
|
1227 if (cpi->common.frame_type == KEY_FRAME) |
|
1228 { |
|
1229 Q = cpi->oxcf.key_q; |
|
1230 } |
|
1231 else if (cpi->oxcf.number_of_layers == 1 && |
|
1232 cpi->common.refresh_alt_ref_frame) |
|
1233 { |
|
1234 Q = cpi->oxcf.alt_q; |
|
1235 } |
|
1236 else if (cpi->oxcf.number_of_layers == 1 && |
|
1237 cpi->common.refresh_golden_frame) |
|
1238 { |
|
1239 Q = cpi->oxcf.gold_q; |
|
1240 } |
|
1241 |
|
1242 } |
|
1243 else |
|
1244 { |
|
1245 int i; |
|
1246 int last_error = INT_MAX; |
|
1247 int target_bits_per_mb; |
|
1248 int bits_per_mb_at_this_q; |
|
1249 double correction_factor; |
|
1250 |
|
1251 /* Select the appropriate correction factor based upon type of frame. */ |
|
1252 if (cpi->common.frame_type == KEY_FRAME) |
|
1253 correction_factor = cpi->key_frame_rate_correction_factor; |
|
1254 else |
|
1255 { |
|
1256 if (cpi->oxcf.number_of_layers == 1 && |
|
1257 (cpi->common.refresh_alt_ref_frame || |
|
1258 cpi->common.refresh_golden_frame)) |
|
1259 correction_factor = cpi->gf_rate_correction_factor; |
|
1260 else |
|
1261 correction_factor = cpi->rate_correction_factor; |
|
1262 } |
|
1263 |
|
1264 /* Calculate required scaling factor based on target frame size and |
|
1265 * size of frame produced using previous Q |
|
1266 */ |
|
1267 if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) |
|
1268 /* Case where we would overflow int */ |
|
1269 target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS; |
|
1270 else |
|
1271 target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs; |
|
1272 |
|
1273 i = cpi->active_best_quality; |
|
1274 |
|
1275 do |
|
1276 { |
|
1277 bits_per_mb_at_this_q = (int)(.5 + correction_factor * vp8_bits_per_mb[cpi->common.frame_type][i]); |
|
1278 |
|
1279 if (bits_per_mb_at_this_q <= target_bits_per_mb) |
|
1280 { |
|
1281 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) |
|
1282 Q = i; |
|
1283 else |
|
1284 Q = i - 1; |
|
1285 |
|
1286 break; |
|
1287 } |
|
1288 else |
|
1289 last_error = bits_per_mb_at_this_q - target_bits_per_mb; |
|
1290 } |
|
1291 while (++i <= cpi->active_worst_quality); |
|
1292 |
|
1293 |
|
1294 /* If we are at MAXQ then enable Q over-run which seeks to claw |
|
1295 * back additional bits through things like the RD multiplier |
|
1296 * and zero bin size. |
|
1297 */ |
|
1298 if (Q >= MAXQ) |
|
1299 { |
|
1300 int zbin_oqmax; |
|
1301 |
|
1302 double Factor = 0.99; |
|
1303 double factor_adjustment = 0.01 / 256.0; |
|
1304 |
|
1305 if (cpi->common.frame_type == KEY_FRAME) |
|
1306 zbin_oqmax = 0; |
|
1307 else if (cpi->oxcf.number_of_layers == 1 && |
|
1308 (cpi->common.refresh_alt_ref_frame || |
|
1309 (cpi->common.refresh_golden_frame && |
|
1310 !cpi->source_alt_ref_active))) |
|
1311 zbin_oqmax = 16; |
|
1312 else |
|
1313 zbin_oqmax = ZBIN_OQ_MAX; |
|
1314 |
|
1315 /*{ |
|
1316 double Factor = (double)target_bits_per_mb/(double)bits_per_mb_at_this_q; |
|
1317 double Oq; |
|
1318 |
|
1319 Factor = Factor/1.2683; |
|
1320 |
|
1321 Oq = pow( Factor, (1.0/-0.165) ); |
|
1322 |
|
1323 if ( Oq > zbin_oqmax ) |
|
1324 Oq = zbin_oqmax; |
|
1325 |
|
1326 cpi->zbin_over_quant = (int)Oq; |
|
1327 }*/ |
|
1328 |
|
1329 /* Each incrment in the zbin is assumed to have a fixed effect |
|
1330 * on bitrate. This is not of course true. The effect will be |
|
1331 * highly clip dependent and may well have sudden steps. The |
|
1332 * idea here is to acheive higher effective quantizers than the |
|
1333 * normal maximum by expanding the zero bin and hence |
|
1334 * decreasing the number of low magnitude non zero coefficients. |
|
1335 */ |
|
1336 while (cpi->mb.zbin_over_quant < zbin_oqmax) |
|
1337 { |
|
1338 cpi->mb.zbin_over_quant ++; |
|
1339 |
|
1340 if (cpi->mb.zbin_over_quant > zbin_oqmax) |
|
1341 cpi->mb.zbin_over_quant = zbin_oqmax; |
|
1342 |
|
1343 /* Adjust bits_per_mb_at_this_q estimate */ |
|
1344 bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q); |
|
1345 Factor += factor_adjustment; |
|
1346 |
|
1347 if (Factor >= 0.999) |
|
1348 Factor = 0.999; |
|
1349 |
|
1350 /* Break out if we get down to the target rate */ |
|
1351 if (bits_per_mb_at_this_q <= target_bits_per_mb) |
|
1352 break; |
|
1353 } |
|
1354 |
|
1355 } |
|
1356 } |
|
1357 |
|
1358 return Q; |
|
1359 } |
|
1360 |
|
1361 |
|
1362 static int estimate_keyframe_frequency(VP8_COMP *cpi) |
|
1363 { |
|
1364 int i; |
|
1365 |
|
1366 /* Average key frame frequency */ |
|
1367 int av_key_frame_frequency = 0; |
|
1368 |
|
1369 /* First key frame at start of sequence is a special case. We have no |
|
1370 * frequency data. |
|
1371 */ |
|
1372 if (cpi->key_frame_count == 1) |
|
1373 { |
|
1374 /* Assume a default of 1 kf every 2 seconds, or the max kf interval, |
|
1375 * whichever is smaller. |
|
1376 */ |
|
1377 int key_freq = cpi->oxcf.key_freq>0 ? cpi->oxcf.key_freq : 1; |
|
1378 av_key_frame_frequency = 1 + (int)cpi->output_framerate * 2; |
|
1379 |
|
1380 if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq) |
|
1381 av_key_frame_frequency = key_freq; |
|
1382 |
|
1383 cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1] |
|
1384 = av_key_frame_frequency; |
|
1385 } |
|
1386 else |
|
1387 { |
|
1388 unsigned int total_weight = 0; |
|
1389 int last_kf_interval = |
|
1390 (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1; |
|
1391 |
|
1392 /* reset keyframe context and calculate weighted average of last |
|
1393 * KEY_FRAME_CONTEXT keyframes |
|
1394 */ |
|
1395 for (i = 0; i < KEY_FRAME_CONTEXT; i++) |
|
1396 { |
|
1397 if (i < KEY_FRAME_CONTEXT - 1) |
|
1398 cpi->prior_key_frame_distance[i] |
|
1399 = cpi->prior_key_frame_distance[i+1]; |
|
1400 else |
|
1401 cpi->prior_key_frame_distance[i] = last_kf_interval; |
|
1402 |
|
1403 av_key_frame_frequency += prior_key_frame_weight[i] |
|
1404 * cpi->prior_key_frame_distance[i]; |
|
1405 total_weight += prior_key_frame_weight[i]; |
|
1406 } |
|
1407 |
|
1408 av_key_frame_frequency /= total_weight; |
|
1409 |
|
1410 } |
|
1411 // TODO (marpan): Given the checks above, |av_key_frame_frequency| |
|
1412 // should always be above 0. But for now we keep the sanity check in. |
|
1413 if (av_key_frame_frequency == 0) |
|
1414 av_key_frame_frequency = 1; |
|
1415 return av_key_frame_frequency; |
|
1416 } |
|
1417 |
|
1418 |
|
1419 void vp8_adjust_key_frame_context(VP8_COMP *cpi) |
|
1420 { |
|
1421 /* Clear down mmx registers to allow floating point in what follows */ |
|
1422 vp8_clear_system_state(); |
|
1423 |
|
1424 /* Do we have any key frame overspend to recover? */ |
|
1425 /* Two-pass overspend handled elsewhere. */ |
|
1426 if ((cpi->pass != 2) |
|
1427 && (cpi->projected_frame_size > cpi->per_frame_bandwidth)) |
|
1428 { |
|
1429 int overspend; |
|
1430 |
|
1431 /* Update the count of key frame overspend to be recovered in |
|
1432 * subsequent frames. A portion of the KF overspend is treated as gf |
|
1433 * overspend (and hence recovered more quickly) as the kf is also a |
|
1434 * gf. Otherwise the few frames following each kf tend to get more |
|
1435 * bits allocated than those following other gfs. |
|
1436 */ |
|
1437 overspend = (cpi->projected_frame_size - cpi->per_frame_bandwidth); |
|
1438 |
|
1439 if (cpi->oxcf.number_of_layers > 1) |
|
1440 cpi->kf_overspend_bits += overspend; |
|
1441 else |
|
1442 { |
|
1443 cpi->kf_overspend_bits += overspend * 7 / 8; |
|
1444 cpi->gf_overspend_bits += overspend * 1 / 8; |
|
1445 } |
|
1446 |
|
1447 /* Work out how much to try and recover per frame. */ |
|
1448 cpi->kf_bitrate_adjustment = cpi->kf_overspend_bits |
|
1449 / estimate_keyframe_frequency(cpi); |
|
1450 } |
|
1451 |
|
1452 cpi->frames_since_key = 0; |
|
1453 cpi->key_frame_count++; |
|
1454 } |
|
1455 |
|
1456 |
|
1457 void vp8_compute_frame_size_bounds(VP8_COMP *cpi, int *frame_under_shoot_limit, int *frame_over_shoot_limit) |
|
1458 { |
|
1459 /* Set-up bounds on acceptable frame size: */ |
|
1460 if (cpi->oxcf.fixed_q >= 0) |
|
1461 { |
|
1462 /* Fixed Q scenario: frame size never outranges target |
|
1463 * (there is no target!) |
|
1464 */ |
|
1465 *frame_under_shoot_limit = 0; |
|
1466 *frame_over_shoot_limit = INT_MAX; |
|
1467 } |
|
1468 else |
|
1469 { |
|
1470 if (cpi->common.frame_type == KEY_FRAME) |
|
1471 { |
|
1472 *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; |
|
1473 *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; |
|
1474 } |
|
1475 else |
|
1476 { |
|
1477 if (cpi->oxcf.number_of_layers > 1 || |
|
1478 cpi->common.refresh_alt_ref_frame || |
|
1479 cpi->common.refresh_golden_frame) |
|
1480 { |
|
1481 *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; |
|
1482 *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; |
|
1483 } |
|
1484 else |
|
1485 { |
|
1486 /* For CBR take buffer fullness into account */ |
|
1487 if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
|
1488 { |
|
1489 if (cpi->buffer_level >= ((cpi->oxcf.optimal_buffer_level + cpi->oxcf.maximum_buffer_size) >> 1)) |
|
1490 { |
|
1491 /* Buffer is too full so relax overshoot and tighten |
|
1492 * undershoot |
|
1493 */ |
|
1494 *frame_over_shoot_limit = cpi->this_frame_target * 12 / 8; |
|
1495 *frame_under_shoot_limit = cpi->this_frame_target * 6 / 8; |
|
1496 } |
|
1497 else if (cpi->buffer_level <= (cpi->oxcf.optimal_buffer_level >> 1)) |
|
1498 { |
|
1499 /* Buffer is too low so relax undershoot and tighten |
|
1500 * overshoot |
|
1501 */ |
|
1502 *frame_over_shoot_limit = cpi->this_frame_target * 10 / 8; |
|
1503 *frame_under_shoot_limit = cpi->this_frame_target * 4 / 8; |
|
1504 } |
|
1505 else |
|
1506 { |
|
1507 *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; |
|
1508 *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8; |
|
1509 } |
|
1510 } |
|
1511 /* VBR and CQ mode */ |
|
1512 /* Note that tighter restrictions here can help quality |
|
1513 * but hurt encode speed |
|
1514 */ |
|
1515 else |
|
1516 { |
|
1517 /* Stron overshoot limit for constrained quality */ |
|
1518 if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) |
|
1519 { |
|
1520 *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; |
|
1521 *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8; |
|
1522 } |
|
1523 else |
|
1524 { |
|
1525 *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; |
|
1526 *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8; |
|
1527 } |
|
1528 } |
|
1529 } |
|
1530 } |
|
1531 |
|
1532 /* For very small rate targets where the fractional adjustment |
|
1533 * (eg * 7/8) may be tiny make sure there is at least a minimum |
|
1534 * range. |
|
1535 */ |
|
1536 *frame_over_shoot_limit += 200; |
|
1537 *frame_under_shoot_limit -= 200; |
|
1538 if ( *frame_under_shoot_limit < 0 ) |
|
1539 *frame_under_shoot_limit = 0; |
|
1540 |
|
1541 } |
|
1542 } |
|
1543 |
|
1544 |
|
1545 /* return of 0 means drop frame */ |
|
1546 int vp8_pick_frame_size(VP8_COMP *cpi) |
|
1547 { |
|
1548 VP8_COMMON *cm = &cpi->common; |
|
1549 |
|
1550 if (cm->frame_type == KEY_FRAME) |
|
1551 calc_iframe_target_size(cpi); |
|
1552 else |
|
1553 { |
|
1554 calc_pframe_target_size(cpi); |
|
1555 |
|
1556 /* Check if we're dropping the frame: */ |
|
1557 if (cpi->drop_frame) |
|
1558 { |
|
1559 cpi->drop_frame = 0; |
|
1560 return 0; |
|
1561 } |
|
1562 } |
|
1563 return 1; |
|
1564 } |