|
1 /* |
|
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license |
|
5 * that can be found in the LICENSE file in the root of the source |
|
6 * tree. An additional intellectual property rights grant can be found |
|
7 * in the file PATENTS. All contributing project authors may |
|
8 * be found in the AUTHORS file in the root of the source tree. |
|
9 */ |
|
10 |
|
11 #include <assert.h> |
|
12 #include <math.h> |
|
13 |
|
14 #include "./vpx_config.h" |
|
15 #include "./vp9_rtcd.h" |
|
16 |
|
17 #include "vp9/common/vp9_blockd.h" |
|
18 #include "vp9/common/vp9_idct.h" |
|
19 #include "vp9/common/vp9_systemdependent.h" |
|
20 |
|
21 #include "vp9/encoder/vp9_dct.h" |
|
22 |
|
23 static INLINE int fdct_round_shift(int input) { |
|
24 int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); |
|
25 assert(INT16_MIN <= rv && rv <= INT16_MAX); |
|
26 return rv; |
|
27 } |
|
28 |
|
29 static void fdct4(const int16_t *input, int16_t *output) { |
|
30 int16_t step[4]; |
|
31 int temp1, temp2; |
|
32 |
|
33 step[0] = input[0] + input[3]; |
|
34 step[1] = input[1] + input[2]; |
|
35 step[2] = input[1] - input[2]; |
|
36 step[3] = input[0] - input[3]; |
|
37 |
|
38 temp1 = (step[0] + step[1]) * cospi_16_64; |
|
39 temp2 = (step[0] - step[1]) * cospi_16_64; |
|
40 output[0] = fdct_round_shift(temp1); |
|
41 output[2] = fdct_round_shift(temp2); |
|
42 temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; |
|
43 temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; |
|
44 output[1] = fdct_round_shift(temp1); |
|
45 output[3] = fdct_round_shift(temp2); |
|
46 } |
|
47 |
|
48 void vp9_fdct4x4_c(const int16_t *input, int16_t *output, int stride) { |
|
49 // The 2D transform is done with two passes which are actually pretty |
|
50 // similar. In the first one, we transform the columns and transpose |
|
51 // the results. In the second one, we transform the rows. To achieve that, |
|
52 // as the first pass results are transposed, we tranpose the columns (that |
|
53 // is the transposed rows) and transpose the results (so that it goes back |
|
54 // in normal/row positions). |
|
55 int pass; |
|
56 // We need an intermediate buffer between passes. |
|
57 int16_t intermediate[4 * 4]; |
|
58 const int16_t *in = input; |
|
59 int16_t *out = intermediate; |
|
60 // Do the two transform/transpose passes |
|
61 for (pass = 0; pass < 2; ++pass) { |
|
62 /*canbe16*/ int input[4]; |
|
63 /*canbe16*/ int step[4]; |
|
64 /*needs32*/ int temp1, temp2; |
|
65 int i; |
|
66 for (i = 0; i < 4; ++i) { |
|
67 // Load inputs. |
|
68 if (0 == pass) { |
|
69 input[0] = in[0 * stride] * 16; |
|
70 input[1] = in[1 * stride] * 16; |
|
71 input[2] = in[2 * stride] * 16; |
|
72 input[3] = in[3 * stride] * 16; |
|
73 if (i == 0 && input[0]) { |
|
74 input[0] += 1; |
|
75 } |
|
76 } else { |
|
77 input[0] = in[0 * 4]; |
|
78 input[1] = in[1 * 4]; |
|
79 input[2] = in[2 * 4]; |
|
80 input[3] = in[3 * 4]; |
|
81 } |
|
82 // Transform. |
|
83 step[0] = input[0] + input[3]; |
|
84 step[1] = input[1] + input[2]; |
|
85 step[2] = input[1] - input[2]; |
|
86 step[3] = input[0] - input[3]; |
|
87 temp1 = (step[0] + step[1]) * cospi_16_64; |
|
88 temp2 = (step[0] - step[1]) * cospi_16_64; |
|
89 out[0] = fdct_round_shift(temp1); |
|
90 out[2] = fdct_round_shift(temp2); |
|
91 temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; |
|
92 temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; |
|
93 out[1] = fdct_round_shift(temp1); |
|
94 out[3] = fdct_round_shift(temp2); |
|
95 // Do next column (which is a transposed row in second/horizontal pass) |
|
96 in++; |
|
97 out += 4; |
|
98 } |
|
99 // Setup in/out for next pass. |
|
100 in = intermediate; |
|
101 out = output; |
|
102 } |
|
103 |
|
104 { |
|
105 int i, j; |
|
106 for (i = 0; i < 4; ++i) { |
|
107 for (j = 0; j < 4; ++j) |
|
108 output[j + i * 4] = (output[j + i * 4] + 1) >> 2; |
|
109 } |
|
110 } |
|
111 } |
|
112 |
|
113 static void fadst4(const int16_t *input, int16_t *output) { |
|
114 int x0, x1, x2, x3; |
|
115 int s0, s1, s2, s3, s4, s5, s6, s7; |
|
116 |
|
117 x0 = input[0]; |
|
118 x1 = input[1]; |
|
119 x2 = input[2]; |
|
120 x3 = input[3]; |
|
121 |
|
122 if (!(x0 | x1 | x2 | x3)) { |
|
123 output[0] = output[1] = output[2] = output[3] = 0; |
|
124 return; |
|
125 } |
|
126 |
|
127 s0 = sinpi_1_9 * x0; |
|
128 s1 = sinpi_4_9 * x0; |
|
129 s2 = sinpi_2_9 * x1; |
|
130 s3 = sinpi_1_9 * x1; |
|
131 s4 = sinpi_3_9 * x2; |
|
132 s5 = sinpi_4_9 * x3; |
|
133 s6 = sinpi_2_9 * x3; |
|
134 s7 = x0 + x1 - x3; |
|
135 |
|
136 x0 = s0 + s2 + s5; |
|
137 x1 = sinpi_3_9 * s7; |
|
138 x2 = s1 - s3 + s6; |
|
139 x3 = s4; |
|
140 |
|
141 s0 = x0 + x3; |
|
142 s1 = x1; |
|
143 s2 = x2 - x3; |
|
144 s3 = x2 - x0 + x3; |
|
145 |
|
146 // 1-D transform scaling factor is sqrt(2). |
|
147 output[0] = fdct_round_shift(s0); |
|
148 output[1] = fdct_round_shift(s1); |
|
149 output[2] = fdct_round_shift(s2); |
|
150 output[3] = fdct_round_shift(s3); |
|
151 } |
|
152 |
|
153 static const transform_2d FHT_4[] = { |
|
154 { fdct4, fdct4 }, // DCT_DCT = 0 |
|
155 { fadst4, fdct4 }, // ADST_DCT = 1 |
|
156 { fdct4, fadst4 }, // DCT_ADST = 2 |
|
157 { fadst4, fadst4 } // ADST_ADST = 3 |
|
158 }; |
|
159 |
|
160 void vp9_short_fht4x4_c(const int16_t *input, int16_t *output, |
|
161 int stride, int tx_type) { |
|
162 int16_t out[4 * 4]; |
|
163 int16_t *outptr = &out[0]; |
|
164 int i, j; |
|
165 int16_t temp_in[4], temp_out[4]; |
|
166 const transform_2d ht = FHT_4[tx_type]; |
|
167 |
|
168 // Columns |
|
169 for (i = 0; i < 4; ++i) { |
|
170 for (j = 0; j < 4; ++j) |
|
171 temp_in[j] = input[j * stride + i] * 16; |
|
172 if (i == 0 && temp_in[0]) |
|
173 temp_in[0] += 1; |
|
174 ht.cols(temp_in, temp_out); |
|
175 for (j = 0; j < 4; ++j) |
|
176 outptr[j * 4 + i] = temp_out[j]; |
|
177 } |
|
178 |
|
179 // Rows |
|
180 for (i = 0; i < 4; ++i) { |
|
181 for (j = 0; j < 4; ++j) |
|
182 temp_in[j] = out[j + i * 4]; |
|
183 ht.rows(temp_in, temp_out); |
|
184 for (j = 0; j < 4; ++j) |
|
185 output[j + i * 4] = (temp_out[j] + 1) >> 2; |
|
186 } |
|
187 } |
|
188 |
|
189 static void fdct8(const int16_t *input, int16_t *output) { |
|
190 /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7; |
|
191 /*needs32*/ int t0, t1, t2, t3; |
|
192 /*canbe16*/ int x0, x1, x2, x3; |
|
193 |
|
194 // stage 1 |
|
195 s0 = input[0] + input[7]; |
|
196 s1 = input[1] + input[6]; |
|
197 s2 = input[2] + input[5]; |
|
198 s3 = input[3] + input[4]; |
|
199 s4 = input[3] - input[4]; |
|
200 s5 = input[2] - input[5]; |
|
201 s6 = input[1] - input[6]; |
|
202 s7 = input[0] - input[7]; |
|
203 |
|
204 // fdct4(step, step); |
|
205 x0 = s0 + s3; |
|
206 x1 = s1 + s2; |
|
207 x2 = s1 - s2; |
|
208 x3 = s0 - s3; |
|
209 t0 = (x0 + x1) * cospi_16_64; |
|
210 t1 = (x0 - x1) * cospi_16_64; |
|
211 t2 = x2 * cospi_24_64 + x3 * cospi_8_64; |
|
212 t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; |
|
213 output[0] = fdct_round_shift(t0); |
|
214 output[2] = fdct_round_shift(t2); |
|
215 output[4] = fdct_round_shift(t1); |
|
216 output[6] = fdct_round_shift(t3); |
|
217 |
|
218 // Stage 2 |
|
219 t0 = (s6 - s5) * cospi_16_64; |
|
220 t1 = (s6 + s5) * cospi_16_64; |
|
221 t2 = fdct_round_shift(t0); |
|
222 t3 = fdct_round_shift(t1); |
|
223 |
|
224 // Stage 3 |
|
225 x0 = s4 + t2; |
|
226 x1 = s4 - t2; |
|
227 x2 = s7 - t3; |
|
228 x3 = s7 + t3; |
|
229 |
|
230 // Stage 4 |
|
231 t0 = x0 * cospi_28_64 + x3 * cospi_4_64; |
|
232 t1 = x1 * cospi_12_64 + x2 * cospi_20_64; |
|
233 t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; |
|
234 t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; |
|
235 output[1] = fdct_round_shift(t0); |
|
236 output[3] = fdct_round_shift(t2); |
|
237 output[5] = fdct_round_shift(t1); |
|
238 output[7] = fdct_round_shift(t3); |
|
239 } |
|
240 |
|
241 void vp9_fdct8x8_c(const int16_t *input, int16_t *final_output, int stride) { |
|
242 int i, j; |
|
243 int16_t intermediate[64]; |
|
244 |
|
245 // Transform columns |
|
246 { |
|
247 int16_t *output = intermediate; |
|
248 /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7; |
|
249 /*needs32*/ int t0, t1, t2, t3; |
|
250 /*canbe16*/ int x0, x1, x2, x3; |
|
251 |
|
252 int i; |
|
253 for (i = 0; i < 8; i++) { |
|
254 // stage 1 |
|
255 s0 = (input[0 * stride] + input[7 * stride]) * 4; |
|
256 s1 = (input[1 * stride] + input[6 * stride]) * 4; |
|
257 s2 = (input[2 * stride] + input[5 * stride]) * 4; |
|
258 s3 = (input[3 * stride] + input[4 * stride]) * 4; |
|
259 s4 = (input[3 * stride] - input[4 * stride]) * 4; |
|
260 s5 = (input[2 * stride] - input[5 * stride]) * 4; |
|
261 s6 = (input[1 * stride] - input[6 * stride]) * 4; |
|
262 s7 = (input[0 * stride] - input[7 * stride]) * 4; |
|
263 |
|
264 // fdct4(step, step); |
|
265 x0 = s0 + s3; |
|
266 x1 = s1 + s2; |
|
267 x2 = s1 - s2; |
|
268 x3 = s0 - s3; |
|
269 t0 = (x0 + x1) * cospi_16_64; |
|
270 t1 = (x0 - x1) * cospi_16_64; |
|
271 t2 = x2 * cospi_24_64 + x3 * cospi_8_64; |
|
272 t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; |
|
273 output[0 * 8] = fdct_round_shift(t0); |
|
274 output[2 * 8] = fdct_round_shift(t2); |
|
275 output[4 * 8] = fdct_round_shift(t1); |
|
276 output[6 * 8] = fdct_round_shift(t3); |
|
277 |
|
278 // Stage 2 |
|
279 t0 = (s6 - s5) * cospi_16_64; |
|
280 t1 = (s6 + s5) * cospi_16_64; |
|
281 t2 = fdct_round_shift(t0); |
|
282 t3 = fdct_round_shift(t1); |
|
283 |
|
284 // Stage 3 |
|
285 x0 = s4 + t2; |
|
286 x1 = s4 - t2; |
|
287 x2 = s7 - t3; |
|
288 x3 = s7 + t3; |
|
289 |
|
290 // Stage 4 |
|
291 t0 = x0 * cospi_28_64 + x3 * cospi_4_64; |
|
292 t1 = x1 * cospi_12_64 + x2 * cospi_20_64; |
|
293 t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; |
|
294 t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; |
|
295 output[1 * 8] = fdct_round_shift(t0); |
|
296 output[3 * 8] = fdct_round_shift(t2); |
|
297 output[5 * 8] = fdct_round_shift(t1); |
|
298 output[7 * 8] = fdct_round_shift(t3); |
|
299 input++; |
|
300 output++; |
|
301 } |
|
302 } |
|
303 |
|
304 // Rows |
|
305 for (i = 0; i < 8; ++i) { |
|
306 fdct8(&intermediate[i * 8], &final_output[i * 8]); |
|
307 for (j = 0; j < 8; ++j) |
|
308 final_output[j + i * 8] /= 2; |
|
309 } |
|
310 } |
|
311 |
|
312 void vp9_fdct16x16_c(const int16_t *input, int16_t *output, int stride) { |
|
313 // The 2D transform is done with two passes which are actually pretty |
|
314 // similar. In the first one, we transform the columns and transpose |
|
315 // the results. In the second one, we transform the rows. To achieve that, |
|
316 // as the first pass results are transposed, we tranpose the columns (that |
|
317 // is the transposed rows) and transpose the results (so that it goes back |
|
318 // in normal/row positions). |
|
319 int pass; |
|
320 // We need an intermediate buffer between passes. |
|
321 int16_t intermediate[256]; |
|
322 const int16_t *in = input; |
|
323 int16_t *out = intermediate; |
|
324 // Do the two transform/transpose passes |
|
325 for (pass = 0; pass < 2; ++pass) { |
|
326 /*canbe16*/ int step1[8]; |
|
327 /*canbe16*/ int step2[8]; |
|
328 /*canbe16*/ int step3[8]; |
|
329 /*canbe16*/ int input[8]; |
|
330 /*needs32*/ int temp1, temp2; |
|
331 int i; |
|
332 for (i = 0; i < 16; i++) { |
|
333 if (0 == pass) { |
|
334 // Calculate input for the first 8 results. |
|
335 input[0] = (in[0 * stride] + in[15 * stride]) * 4; |
|
336 input[1] = (in[1 * stride] + in[14 * stride]) * 4; |
|
337 input[2] = (in[2 * stride] + in[13 * stride]) * 4; |
|
338 input[3] = (in[3 * stride] + in[12 * stride]) * 4; |
|
339 input[4] = (in[4 * stride] + in[11 * stride]) * 4; |
|
340 input[5] = (in[5 * stride] + in[10 * stride]) * 4; |
|
341 input[6] = (in[6 * stride] + in[ 9 * stride]) * 4; |
|
342 input[7] = (in[7 * stride] + in[ 8 * stride]) * 4; |
|
343 // Calculate input for the next 8 results. |
|
344 step1[0] = (in[7 * stride] - in[ 8 * stride]) * 4; |
|
345 step1[1] = (in[6 * stride] - in[ 9 * stride]) * 4; |
|
346 step1[2] = (in[5 * stride] - in[10 * stride]) * 4; |
|
347 step1[3] = (in[4 * stride] - in[11 * stride]) * 4; |
|
348 step1[4] = (in[3 * stride] - in[12 * stride]) * 4; |
|
349 step1[5] = (in[2 * stride] - in[13 * stride]) * 4; |
|
350 step1[6] = (in[1 * stride] - in[14 * stride]) * 4; |
|
351 step1[7] = (in[0 * stride] - in[15 * stride]) * 4; |
|
352 } else { |
|
353 // Calculate input for the first 8 results. |
|
354 input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2); |
|
355 input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2); |
|
356 input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2); |
|
357 input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2); |
|
358 input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2); |
|
359 input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2); |
|
360 input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2); |
|
361 input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2); |
|
362 // Calculate input for the next 8 results. |
|
363 step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2); |
|
364 step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2); |
|
365 step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2); |
|
366 step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2); |
|
367 step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2); |
|
368 step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2); |
|
369 step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2); |
|
370 step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2); |
|
371 } |
|
372 // Work on the first eight values; fdct8(input, even_results); |
|
373 { |
|
374 /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7; |
|
375 /*needs32*/ int t0, t1, t2, t3; |
|
376 /*canbe16*/ int x0, x1, x2, x3; |
|
377 |
|
378 // stage 1 |
|
379 s0 = input[0] + input[7]; |
|
380 s1 = input[1] + input[6]; |
|
381 s2 = input[2] + input[5]; |
|
382 s3 = input[3] + input[4]; |
|
383 s4 = input[3] - input[4]; |
|
384 s5 = input[2] - input[5]; |
|
385 s6 = input[1] - input[6]; |
|
386 s7 = input[0] - input[7]; |
|
387 |
|
388 // fdct4(step, step); |
|
389 x0 = s0 + s3; |
|
390 x1 = s1 + s2; |
|
391 x2 = s1 - s2; |
|
392 x3 = s0 - s3; |
|
393 t0 = (x0 + x1) * cospi_16_64; |
|
394 t1 = (x0 - x1) * cospi_16_64; |
|
395 t2 = x3 * cospi_8_64 + x2 * cospi_24_64; |
|
396 t3 = x3 * cospi_24_64 - x2 * cospi_8_64; |
|
397 out[0] = fdct_round_shift(t0); |
|
398 out[4] = fdct_round_shift(t2); |
|
399 out[8] = fdct_round_shift(t1); |
|
400 out[12] = fdct_round_shift(t3); |
|
401 |
|
402 // Stage 2 |
|
403 t0 = (s6 - s5) * cospi_16_64; |
|
404 t1 = (s6 + s5) * cospi_16_64; |
|
405 t2 = fdct_round_shift(t0); |
|
406 t3 = fdct_round_shift(t1); |
|
407 |
|
408 // Stage 3 |
|
409 x0 = s4 + t2; |
|
410 x1 = s4 - t2; |
|
411 x2 = s7 - t3; |
|
412 x3 = s7 + t3; |
|
413 |
|
414 // Stage 4 |
|
415 t0 = x0 * cospi_28_64 + x3 * cospi_4_64; |
|
416 t1 = x1 * cospi_12_64 + x2 * cospi_20_64; |
|
417 t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; |
|
418 t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; |
|
419 out[2] = fdct_round_shift(t0); |
|
420 out[6] = fdct_round_shift(t2); |
|
421 out[10] = fdct_round_shift(t1); |
|
422 out[14] = fdct_round_shift(t3); |
|
423 } |
|
424 // Work on the next eight values; step1 -> odd_results |
|
425 { |
|
426 // step 2 |
|
427 temp1 = (step1[5] - step1[2]) * cospi_16_64; |
|
428 temp2 = (step1[4] - step1[3]) * cospi_16_64; |
|
429 step2[2] = fdct_round_shift(temp1); |
|
430 step2[3] = fdct_round_shift(temp2); |
|
431 temp1 = (step1[4] + step1[3]) * cospi_16_64; |
|
432 temp2 = (step1[5] + step1[2]) * cospi_16_64; |
|
433 step2[4] = fdct_round_shift(temp1); |
|
434 step2[5] = fdct_round_shift(temp2); |
|
435 // step 3 |
|
436 step3[0] = step1[0] + step2[3]; |
|
437 step3[1] = step1[1] + step2[2]; |
|
438 step3[2] = step1[1] - step2[2]; |
|
439 step3[3] = step1[0] - step2[3]; |
|
440 step3[4] = step1[7] - step2[4]; |
|
441 step3[5] = step1[6] - step2[5]; |
|
442 step3[6] = step1[6] + step2[5]; |
|
443 step3[7] = step1[7] + step2[4]; |
|
444 // step 4 |
|
445 temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64; |
|
446 temp2 = step3[2] * -cospi_24_64 - step3[5] * cospi_8_64; |
|
447 step2[1] = fdct_round_shift(temp1); |
|
448 step2[2] = fdct_round_shift(temp2); |
|
449 temp1 = step3[2] * -cospi_8_64 + step3[5] * cospi_24_64; |
|
450 temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64; |
|
451 step2[5] = fdct_round_shift(temp1); |
|
452 step2[6] = fdct_round_shift(temp2); |
|
453 // step 5 |
|
454 step1[0] = step3[0] + step2[1]; |
|
455 step1[1] = step3[0] - step2[1]; |
|
456 step1[2] = step3[3] - step2[2]; |
|
457 step1[3] = step3[3] + step2[2]; |
|
458 step1[4] = step3[4] + step2[5]; |
|
459 step1[5] = step3[4] - step2[5]; |
|
460 step1[6] = step3[7] - step2[6]; |
|
461 step1[7] = step3[7] + step2[6]; |
|
462 // step 6 |
|
463 temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64; |
|
464 temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; |
|
465 out[1] = fdct_round_shift(temp1); |
|
466 out[9] = fdct_round_shift(temp2); |
|
467 temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; |
|
468 temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64; |
|
469 out[5] = fdct_round_shift(temp1); |
|
470 out[13] = fdct_round_shift(temp2); |
|
471 temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64; |
|
472 temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; |
|
473 out[3] = fdct_round_shift(temp1); |
|
474 out[11] = fdct_round_shift(temp2); |
|
475 temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; |
|
476 temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64; |
|
477 out[7] = fdct_round_shift(temp1); |
|
478 out[15] = fdct_round_shift(temp2); |
|
479 } |
|
480 // Do next column (which is a transposed row in second/horizontal pass) |
|
481 in++; |
|
482 out += 16; |
|
483 } |
|
484 // Setup in/out for next pass. |
|
485 in = intermediate; |
|
486 out = output; |
|
487 } |
|
488 } |
|
489 |
|
490 static void fadst8(const int16_t *input, int16_t *output) { |
|
491 int s0, s1, s2, s3, s4, s5, s6, s7; |
|
492 |
|
493 int x0 = input[7]; |
|
494 int x1 = input[0]; |
|
495 int x2 = input[5]; |
|
496 int x3 = input[2]; |
|
497 int x4 = input[3]; |
|
498 int x5 = input[4]; |
|
499 int x6 = input[1]; |
|
500 int x7 = input[6]; |
|
501 |
|
502 // stage 1 |
|
503 s0 = cospi_2_64 * x0 + cospi_30_64 * x1; |
|
504 s1 = cospi_30_64 * x0 - cospi_2_64 * x1; |
|
505 s2 = cospi_10_64 * x2 + cospi_22_64 * x3; |
|
506 s3 = cospi_22_64 * x2 - cospi_10_64 * x3; |
|
507 s4 = cospi_18_64 * x4 + cospi_14_64 * x5; |
|
508 s5 = cospi_14_64 * x4 - cospi_18_64 * x5; |
|
509 s6 = cospi_26_64 * x6 + cospi_6_64 * x7; |
|
510 s7 = cospi_6_64 * x6 - cospi_26_64 * x7; |
|
511 |
|
512 x0 = fdct_round_shift(s0 + s4); |
|
513 x1 = fdct_round_shift(s1 + s5); |
|
514 x2 = fdct_round_shift(s2 + s6); |
|
515 x3 = fdct_round_shift(s3 + s7); |
|
516 x4 = fdct_round_shift(s0 - s4); |
|
517 x5 = fdct_round_shift(s1 - s5); |
|
518 x6 = fdct_round_shift(s2 - s6); |
|
519 x7 = fdct_round_shift(s3 - s7); |
|
520 |
|
521 // stage 2 |
|
522 s0 = x0; |
|
523 s1 = x1; |
|
524 s2 = x2; |
|
525 s3 = x3; |
|
526 s4 = cospi_8_64 * x4 + cospi_24_64 * x5; |
|
527 s5 = cospi_24_64 * x4 - cospi_8_64 * x5; |
|
528 s6 = - cospi_24_64 * x6 + cospi_8_64 * x7; |
|
529 s7 = cospi_8_64 * x6 + cospi_24_64 * x7; |
|
530 |
|
531 x0 = s0 + s2; |
|
532 x1 = s1 + s3; |
|
533 x2 = s0 - s2; |
|
534 x3 = s1 - s3; |
|
535 x4 = fdct_round_shift(s4 + s6); |
|
536 x5 = fdct_round_shift(s5 + s7); |
|
537 x6 = fdct_round_shift(s4 - s6); |
|
538 x7 = fdct_round_shift(s5 - s7); |
|
539 |
|
540 // stage 3 |
|
541 s2 = cospi_16_64 * (x2 + x3); |
|
542 s3 = cospi_16_64 * (x2 - x3); |
|
543 s6 = cospi_16_64 * (x6 + x7); |
|
544 s7 = cospi_16_64 * (x6 - x7); |
|
545 |
|
546 x2 = fdct_round_shift(s2); |
|
547 x3 = fdct_round_shift(s3); |
|
548 x6 = fdct_round_shift(s6); |
|
549 x7 = fdct_round_shift(s7); |
|
550 |
|
551 output[0] = x0; |
|
552 output[1] = - x4; |
|
553 output[2] = x6; |
|
554 output[3] = - x2; |
|
555 output[4] = x3; |
|
556 output[5] = - x7; |
|
557 output[6] = x5; |
|
558 output[7] = - x1; |
|
559 } |
|
560 |
|
561 static const transform_2d FHT_8[] = { |
|
562 { fdct8, fdct8 }, // DCT_DCT = 0 |
|
563 { fadst8, fdct8 }, // ADST_DCT = 1 |
|
564 { fdct8, fadst8 }, // DCT_ADST = 2 |
|
565 { fadst8, fadst8 } // ADST_ADST = 3 |
|
566 }; |
|
567 |
|
568 void vp9_short_fht8x8_c(const int16_t *input, int16_t *output, |
|
569 int stride, int tx_type) { |
|
570 int16_t out[64]; |
|
571 int16_t *outptr = &out[0]; |
|
572 int i, j; |
|
573 int16_t temp_in[8], temp_out[8]; |
|
574 const transform_2d ht = FHT_8[tx_type]; |
|
575 |
|
576 // Columns |
|
577 for (i = 0; i < 8; ++i) { |
|
578 for (j = 0; j < 8; ++j) |
|
579 temp_in[j] = input[j * stride + i] * 4; |
|
580 ht.cols(temp_in, temp_out); |
|
581 for (j = 0; j < 8; ++j) |
|
582 outptr[j * 8 + i] = temp_out[j]; |
|
583 } |
|
584 |
|
585 // Rows |
|
586 for (i = 0; i < 8; ++i) { |
|
587 for (j = 0; j < 8; ++j) |
|
588 temp_in[j] = out[j + i * 8]; |
|
589 ht.rows(temp_in, temp_out); |
|
590 for (j = 0; j < 8; ++j) |
|
591 output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
|
592 } |
|
593 } |
|
594 |
|
595 /* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per |
|
596 pixel. */ |
|
597 void vp9_fwht4x4_c(const int16_t *input, int16_t *output, int stride) { |
|
598 int i; |
|
599 int a1, b1, c1, d1, e1; |
|
600 const int16_t *ip = input; |
|
601 int16_t *op = output; |
|
602 |
|
603 for (i = 0; i < 4; i++) { |
|
604 a1 = ip[0 * stride]; |
|
605 b1 = ip[1 * stride]; |
|
606 c1 = ip[2 * stride]; |
|
607 d1 = ip[3 * stride]; |
|
608 |
|
609 a1 += b1; |
|
610 d1 = d1 - c1; |
|
611 e1 = (a1 - d1) >> 1; |
|
612 b1 = e1 - b1; |
|
613 c1 = e1 - c1; |
|
614 a1 -= c1; |
|
615 d1 += b1; |
|
616 op[0] = a1; |
|
617 op[4] = c1; |
|
618 op[8] = d1; |
|
619 op[12] = b1; |
|
620 |
|
621 ip++; |
|
622 op++; |
|
623 } |
|
624 ip = output; |
|
625 op = output; |
|
626 |
|
627 for (i = 0; i < 4; i++) { |
|
628 a1 = ip[0]; |
|
629 b1 = ip[1]; |
|
630 c1 = ip[2]; |
|
631 d1 = ip[3]; |
|
632 |
|
633 a1 += b1; |
|
634 d1 -= c1; |
|
635 e1 = (a1 - d1) >> 1; |
|
636 b1 = e1 - b1; |
|
637 c1 = e1 - c1; |
|
638 a1 -= c1; |
|
639 d1 += b1; |
|
640 op[0] = a1 * UNIT_QUANT_FACTOR; |
|
641 op[1] = c1 * UNIT_QUANT_FACTOR; |
|
642 op[2] = d1 * UNIT_QUANT_FACTOR; |
|
643 op[3] = b1 * UNIT_QUANT_FACTOR; |
|
644 |
|
645 ip += 4; |
|
646 op += 4; |
|
647 } |
|
648 } |
|
649 |
|
650 // Rewrote to use same algorithm as others. |
|
651 static void fdct16(const int16_t in[16], int16_t out[16]) { |
|
652 /*canbe16*/ int step1[8]; |
|
653 /*canbe16*/ int step2[8]; |
|
654 /*canbe16*/ int step3[8]; |
|
655 /*canbe16*/ int input[8]; |
|
656 /*needs32*/ int temp1, temp2; |
|
657 |
|
658 // step 1 |
|
659 input[0] = in[0] + in[15]; |
|
660 input[1] = in[1] + in[14]; |
|
661 input[2] = in[2] + in[13]; |
|
662 input[3] = in[3] + in[12]; |
|
663 input[4] = in[4] + in[11]; |
|
664 input[5] = in[5] + in[10]; |
|
665 input[6] = in[6] + in[ 9]; |
|
666 input[7] = in[7] + in[ 8]; |
|
667 |
|
668 step1[0] = in[7] - in[ 8]; |
|
669 step1[1] = in[6] - in[ 9]; |
|
670 step1[2] = in[5] - in[10]; |
|
671 step1[3] = in[4] - in[11]; |
|
672 step1[4] = in[3] - in[12]; |
|
673 step1[5] = in[2] - in[13]; |
|
674 step1[6] = in[1] - in[14]; |
|
675 step1[7] = in[0] - in[15]; |
|
676 |
|
677 // fdct8(step, step); |
|
678 { |
|
679 /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7; |
|
680 /*needs32*/ int t0, t1, t2, t3; |
|
681 /*canbe16*/ int x0, x1, x2, x3; |
|
682 |
|
683 // stage 1 |
|
684 s0 = input[0] + input[7]; |
|
685 s1 = input[1] + input[6]; |
|
686 s2 = input[2] + input[5]; |
|
687 s3 = input[3] + input[4]; |
|
688 s4 = input[3] - input[4]; |
|
689 s5 = input[2] - input[5]; |
|
690 s6 = input[1] - input[6]; |
|
691 s7 = input[0] - input[7]; |
|
692 |
|
693 // fdct4(step, step); |
|
694 x0 = s0 + s3; |
|
695 x1 = s1 + s2; |
|
696 x2 = s1 - s2; |
|
697 x3 = s0 - s3; |
|
698 t0 = (x0 + x1) * cospi_16_64; |
|
699 t1 = (x0 - x1) * cospi_16_64; |
|
700 t2 = x3 * cospi_8_64 + x2 * cospi_24_64; |
|
701 t3 = x3 * cospi_24_64 - x2 * cospi_8_64; |
|
702 out[0] = fdct_round_shift(t0); |
|
703 out[4] = fdct_round_shift(t2); |
|
704 out[8] = fdct_round_shift(t1); |
|
705 out[12] = fdct_round_shift(t3); |
|
706 |
|
707 // Stage 2 |
|
708 t0 = (s6 - s5) * cospi_16_64; |
|
709 t1 = (s6 + s5) * cospi_16_64; |
|
710 t2 = fdct_round_shift(t0); |
|
711 t3 = fdct_round_shift(t1); |
|
712 |
|
713 // Stage 3 |
|
714 x0 = s4 + t2; |
|
715 x1 = s4 - t2; |
|
716 x2 = s7 - t3; |
|
717 x3 = s7 + t3; |
|
718 |
|
719 // Stage 4 |
|
720 t0 = x0 * cospi_28_64 + x3 * cospi_4_64; |
|
721 t1 = x1 * cospi_12_64 + x2 * cospi_20_64; |
|
722 t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; |
|
723 t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; |
|
724 out[2] = fdct_round_shift(t0); |
|
725 out[6] = fdct_round_shift(t2); |
|
726 out[10] = fdct_round_shift(t1); |
|
727 out[14] = fdct_round_shift(t3); |
|
728 } |
|
729 |
|
730 // step 2 |
|
731 temp1 = (step1[5] - step1[2]) * cospi_16_64; |
|
732 temp2 = (step1[4] - step1[3]) * cospi_16_64; |
|
733 step2[2] = fdct_round_shift(temp1); |
|
734 step2[3] = fdct_round_shift(temp2); |
|
735 temp1 = (step1[4] + step1[3]) * cospi_16_64; |
|
736 temp2 = (step1[5] + step1[2]) * cospi_16_64; |
|
737 step2[4] = fdct_round_shift(temp1); |
|
738 step2[5] = fdct_round_shift(temp2); |
|
739 |
|
740 // step 3 |
|
741 step3[0] = step1[0] + step2[3]; |
|
742 step3[1] = step1[1] + step2[2]; |
|
743 step3[2] = step1[1] - step2[2]; |
|
744 step3[3] = step1[0] - step2[3]; |
|
745 step3[4] = step1[7] - step2[4]; |
|
746 step3[5] = step1[6] - step2[5]; |
|
747 step3[6] = step1[6] + step2[5]; |
|
748 step3[7] = step1[7] + step2[4]; |
|
749 |
|
750 // step 4 |
|
751 temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64; |
|
752 temp2 = step3[2] * -cospi_24_64 - step3[5] * cospi_8_64; |
|
753 step2[1] = fdct_round_shift(temp1); |
|
754 step2[2] = fdct_round_shift(temp2); |
|
755 temp1 = step3[2] * -cospi_8_64 + step3[5] * cospi_24_64; |
|
756 temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64; |
|
757 step2[5] = fdct_round_shift(temp1); |
|
758 step2[6] = fdct_round_shift(temp2); |
|
759 |
|
760 // step 5 |
|
761 step1[0] = step3[0] + step2[1]; |
|
762 step1[1] = step3[0] - step2[1]; |
|
763 step1[2] = step3[3] - step2[2]; |
|
764 step1[3] = step3[3] + step2[2]; |
|
765 step1[4] = step3[4] + step2[5]; |
|
766 step1[5] = step3[4] - step2[5]; |
|
767 step1[6] = step3[7] - step2[6]; |
|
768 step1[7] = step3[7] + step2[6]; |
|
769 |
|
770 // step 6 |
|
771 temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64; |
|
772 temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; |
|
773 out[1] = fdct_round_shift(temp1); |
|
774 out[9] = fdct_round_shift(temp2); |
|
775 |
|
776 temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; |
|
777 temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64; |
|
778 out[5] = fdct_round_shift(temp1); |
|
779 out[13] = fdct_round_shift(temp2); |
|
780 |
|
781 temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64; |
|
782 temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; |
|
783 out[3] = fdct_round_shift(temp1); |
|
784 out[11] = fdct_round_shift(temp2); |
|
785 |
|
786 temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; |
|
787 temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64; |
|
788 out[7] = fdct_round_shift(temp1); |
|
789 out[15] = fdct_round_shift(temp2); |
|
790 } |
|
791 |
|
792 static void fadst16(const int16_t *input, int16_t *output) { |
|
793 int s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15; |
|
794 |
|
795 int x0 = input[15]; |
|
796 int x1 = input[0]; |
|
797 int x2 = input[13]; |
|
798 int x3 = input[2]; |
|
799 int x4 = input[11]; |
|
800 int x5 = input[4]; |
|
801 int x6 = input[9]; |
|
802 int x7 = input[6]; |
|
803 int x8 = input[7]; |
|
804 int x9 = input[8]; |
|
805 int x10 = input[5]; |
|
806 int x11 = input[10]; |
|
807 int x12 = input[3]; |
|
808 int x13 = input[12]; |
|
809 int x14 = input[1]; |
|
810 int x15 = input[14]; |
|
811 |
|
812 // stage 1 |
|
813 s0 = x0 * cospi_1_64 + x1 * cospi_31_64; |
|
814 s1 = x0 * cospi_31_64 - x1 * cospi_1_64; |
|
815 s2 = x2 * cospi_5_64 + x3 * cospi_27_64; |
|
816 s3 = x2 * cospi_27_64 - x3 * cospi_5_64; |
|
817 s4 = x4 * cospi_9_64 + x5 * cospi_23_64; |
|
818 s5 = x4 * cospi_23_64 - x5 * cospi_9_64; |
|
819 s6 = x6 * cospi_13_64 + x7 * cospi_19_64; |
|
820 s7 = x6 * cospi_19_64 - x7 * cospi_13_64; |
|
821 s8 = x8 * cospi_17_64 + x9 * cospi_15_64; |
|
822 s9 = x8 * cospi_15_64 - x9 * cospi_17_64; |
|
823 s10 = x10 * cospi_21_64 + x11 * cospi_11_64; |
|
824 s11 = x10 * cospi_11_64 - x11 * cospi_21_64; |
|
825 s12 = x12 * cospi_25_64 + x13 * cospi_7_64; |
|
826 s13 = x12 * cospi_7_64 - x13 * cospi_25_64; |
|
827 s14 = x14 * cospi_29_64 + x15 * cospi_3_64; |
|
828 s15 = x14 * cospi_3_64 - x15 * cospi_29_64; |
|
829 |
|
830 x0 = fdct_round_shift(s0 + s8); |
|
831 x1 = fdct_round_shift(s1 + s9); |
|
832 x2 = fdct_round_shift(s2 + s10); |
|
833 x3 = fdct_round_shift(s3 + s11); |
|
834 x4 = fdct_round_shift(s4 + s12); |
|
835 x5 = fdct_round_shift(s5 + s13); |
|
836 x6 = fdct_round_shift(s6 + s14); |
|
837 x7 = fdct_round_shift(s7 + s15); |
|
838 x8 = fdct_round_shift(s0 - s8); |
|
839 x9 = fdct_round_shift(s1 - s9); |
|
840 x10 = fdct_round_shift(s2 - s10); |
|
841 x11 = fdct_round_shift(s3 - s11); |
|
842 x12 = fdct_round_shift(s4 - s12); |
|
843 x13 = fdct_round_shift(s5 - s13); |
|
844 x14 = fdct_round_shift(s6 - s14); |
|
845 x15 = fdct_round_shift(s7 - s15); |
|
846 |
|
847 // stage 2 |
|
848 s0 = x0; |
|
849 s1 = x1; |
|
850 s2 = x2; |
|
851 s3 = x3; |
|
852 s4 = x4; |
|
853 s5 = x5; |
|
854 s6 = x6; |
|
855 s7 = x7; |
|
856 s8 = x8 * cospi_4_64 + x9 * cospi_28_64; |
|
857 s9 = x8 * cospi_28_64 - x9 * cospi_4_64; |
|
858 s10 = x10 * cospi_20_64 + x11 * cospi_12_64; |
|
859 s11 = x10 * cospi_12_64 - x11 * cospi_20_64; |
|
860 s12 = - x12 * cospi_28_64 + x13 * cospi_4_64; |
|
861 s13 = x12 * cospi_4_64 + x13 * cospi_28_64; |
|
862 s14 = - x14 * cospi_12_64 + x15 * cospi_20_64; |
|
863 s15 = x14 * cospi_20_64 + x15 * cospi_12_64; |
|
864 |
|
865 x0 = s0 + s4; |
|
866 x1 = s1 + s5; |
|
867 x2 = s2 + s6; |
|
868 x3 = s3 + s7; |
|
869 x4 = s0 - s4; |
|
870 x5 = s1 - s5; |
|
871 x6 = s2 - s6; |
|
872 x7 = s3 - s7; |
|
873 x8 = fdct_round_shift(s8 + s12); |
|
874 x9 = fdct_round_shift(s9 + s13); |
|
875 x10 = fdct_round_shift(s10 + s14); |
|
876 x11 = fdct_round_shift(s11 + s15); |
|
877 x12 = fdct_round_shift(s8 - s12); |
|
878 x13 = fdct_round_shift(s9 - s13); |
|
879 x14 = fdct_round_shift(s10 - s14); |
|
880 x15 = fdct_round_shift(s11 - s15); |
|
881 |
|
882 // stage 3 |
|
883 s0 = x0; |
|
884 s1 = x1; |
|
885 s2 = x2; |
|
886 s3 = x3; |
|
887 s4 = x4 * cospi_8_64 + x5 * cospi_24_64; |
|
888 s5 = x4 * cospi_24_64 - x5 * cospi_8_64; |
|
889 s6 = - x6 * cospi_24_64 + x7 * cospi_8_64; |
|
890 s7 = x6 * cospi_8_64 + x7 * cospi_24_64; |
|
891 s8 = x8; |
|
892 s9 = x9; |
|
893 s10 = x10; |
|
894 s11 = x11; |
|
895 s12 = x12 * cospi_8_64 + x13 * cospi_24_64; |
|
896 s13 = x12 * cospi_24_64 - x13 * cospi_8_64; |
|
897 s14 = - x14 * cospi_24_64 + x15 * cospi_8_64; |
|
898 s15 = x14 * cospi_8_64 + x15 * cospi_24_64; |
|
899 |
|
900 x0 = s0 + s2; |
|
901 x1 = s1 + s3; |
|
902 x2 = s0 - s2; |
|
903 x3 = s1 - s3; |
|
904 x4 = fdct_round_shift(s4 + s6); |
|
905 x5 = fdct_round_shift(s5 + s7); |
|
906 x6 = fdct_round_shift(s4 - s6); |
|
907 x7 = fdct_round_shift(s5 - s7); |
|
908 x8 = s8 + s10; |
|
909 x9 = s9 + s11; |
|
910 x10 = s8 - s10; |
|
911 x11 = s9 - s11; |
|
912 x12 = fdct_round_shift(s12 + s14); |
|
913 x13 = fdct_round_shift(s13 + s15); |
|
914 x14 = fdct_round_shift(s12 - s14); |
|
915 x15 = fdct_round_shift(s13 - s15); |
|
916 |
|
917 // stage 4 |
|
918 s2 = (- cospi_16_64) * (x2 + x3); |
|
919 s3 = cospi_16_64 * (x2 - x3); |
|
920 s6 = cospi_16_64 * (x6 + x7); |
|
921 s7 = cospi_16_64 * (- x6 + x7); |
|
922 s10 = cospi_16_64 * (x10 + x11); |
|
923 s11 = cospi_16_64 * (- x10 + x11); |
|
924 s14 = (- cospi_16_64) * (x14 + x15); |
|
925 s15 = cospi_16_64 * (x14 - x15); |
|
926 |
|
927 x2 = fdct_round_shift(s2); |
|
928 x3 = fdct_round_shift(s3); |
|
929 x6 = fdct_round_shift(s6); |
|
930 x7 = fdct_round_shift(s7); |
|
931 x10 = fdct_round_shift(s10); |
|
932 x11 = fdct_round_shift(s11); |
|
933 x14 = fdct_round_shift(s14); |
|
934 x15 = fdct_round_shift(s15); |
|
935 |
|
936 output[0] = x0; |
|
937 output[1] = - x8; |
|
938 output[2] = x12; |
|
939 output[3] = - x4; |
|
940 output[4] = x6; |
|
941 output[5] = x14; |
|
942 output[6] = x10; |
|
943 output[7] = x2; |
|
944 output[8] = x3; |
|
945 output[9] = x11; |
|
946 output[10] = x15; |
|
947 output[11] = x7; |
|
948 output[12] = x5; |
|
949 output[13] = - x13; |
|
950 output[14] = x9; |
|
951 output[15] = - x1; |
|
952 } |
|
953 |
|
954 static const transform_2d FHT_16[] = { |
|
955 { fdct16, fdct16 }, // DCT_DCT = 0 |
|
956 { fadst16, fdct16 }, // ADST_DCT = 1 |
|
957 { fdct16, fadst16 }, // DCT_ADST = 2 |
|
958 { fadst16, fadst16 } // ADST_ADST = 3 |
|
959 }; |
|
960 |
|
961 void vp9_short_fht16x16_c(const int16_t *input, int16_t *output, |
|
962 int stride, int tx_type) { |
|
963 int16_t out[256]; |
|
964 int16_t *outptr = &out[0]; |
|
965 int i, j; |
|
966 int16_t temp_in[16], temp_out[16]; |
|
967 const transform_2d ht = FHT_16[tx_type]; |
|
968 |
|
969 // Columns |
|
970 for (i = 0; i < 16; ++i) { |
|
971 for (j = 0; j < 16; ++j) |
|
972 temp_in[j] = input[j * stride + i] * 4; |
|
973 ht.cols(temp_in, temp_out); |
|
974 for (j = 0; j < 16; ++j) |
|
975 outptr[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2; |
|
976 // outptr[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; |
|
977 } |
|
978 |
|
979 // Rows |
|
980 for (i = 0; i < 16; ++i) { |
|
981 for (j = 0; j < 16; ++j) |
|
982 temp_in[j] = out[j + i * 16]; |
|
983 ht.rows(temp_in, temp_out); |
|
984 for (j = 0; j < 16; ++j) |
|
985 output[j + i * 16] = temp_out[j]; |
|
986 } |
|
987 } |
|
988 |
|
989 static INLINE int dct_32_round(int input) { |
|
990 int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); |
|
991 assert(-131072 <= rv && rv <= 131071); |
|
992 return rv; |
|
993 } |
|
994 |
|
995 static INLINE int half_round_shift(int input) { |
|
996 int rv = (input + 1 + (input < 0)) >> 2; |
|
997 return rv; |
|
998 } |
|
999 |
|
1000 static void dct32_1d(const int *input, int *output, int round) { |
|
1001 int step[32]; |
|
1002 // Stage 1 |
|
1003 step[0] = input[0] + input[(32 - 1)]; |
|
1004 step[1] = input[1] + input[(32 - 2)]; |
|
1005 step[2] = input[2] + input[(32 - 3)]; |
|
1006 step[3] = input[3] + input[(32 - 4)]; |
|
1007 step[4] = input[4] + input[(32 - 5)]; |
|
1008 step[5] = input[5] + input[(32 - 6)]; |
|
1009 step[6] = input[6] + input[(32 - 7)]; |
|
1010 step[7] = input[7] + input[(32 - 8)]; |
|
1011 step[8] = input[8] + input[(32 - 9)]; |
|
1012 step[9] = input[9] + input[(32 - 10)]; |
|
1013 step[10] = input[10] + input[(32 - 11)]; |
|
1014 step[11] = input[11] + input[(32 - 12)]; |
|
1015 step[12] = input[12] + input[(32 - 13)]; |
|
1016 step[13] = input[13] + input[(32 - 14)]; |
|
1017 step[14] = input[14] + input[(32 - 15)]; |
|
1018 step[15] = input[15] + input[(32 - 16)]; |
|
1019 step[16] = -input[16] + input[(32 - 17)]; |
|
1020 step[17] = -input[17] + input[(32 - 18)]; |
|
1021 step[18] = -input[18] + input[(32 - 19)]; |
|
1022 step[19] = -input[19] + input[(32 - 20)]; |
|
1023 step[20] = -input[20] + input[(32 - 21)]; |
|
1024 step[21] = -input[21] + input[(32 - 22)]; |
|
1025 step[22] = -input[22] + input[(32 - 23)]; |
|
1026 step[23] = -input[23] + input[(32 - 24)]; |
|
1027 step[24] = -input[24] + input[(32 - 25)]; |
|
1028 step[25] = -input[25] + input[(32 - 26)]; |
|
1029 step[26] = -input[26] + input[(32 - 27)]; |
|
1030 step[27] = -input[27] + input[(32 - 28)]; |
|
1031 step[28] = -input[28] + input[(32 - 29)]; |
|
1032 step[29] = -input[29] + input[(32 - 30)]; |
|
1033 step[30] = -input[30] + input[(32 - 31)]; |
|
1034 step[31] = -input[31] + input[(32 - 32)]; |
|
1035 |
|
1036 // Stage 2 |
|
1037 output[0] = step[0] + step[16 - 1]; |
|
1038 output[1] = step[1] + step[16 - 2]; |
|
1039 output[2] = step[2] + step[16 - 3]; |
|
1040 output[3] = step[3] + step[16 - 4]; |
|
1041 output[4] = step[4] + step[16 - 5]; |
|
1042 output[5] = step[5] + step[16 - 6]; |
|
1043 output[6] = step[6] + step[16 - 7]; |
|
1044 output[7] = step[7] + step[16 - 8]; |
|
1045 output[8] = -step[8] + step[16 - 9]; |
|
1046 output[9] = -step[9] + step[16 - 10]; |
|
1047 output[10] = -step[10] + step[16 - 11]; |
|
1048 output[11] = -step[11] + step[16 - 12]; |
|
1049 output[12] = -step[12] + step[16 - 13]; |
|
1050 output[13] = -step[13] + step[16 - 14]; |
|
1051 output[14] = -step[14] + step[16 - 15]; |
|
1052 output[15] = -step[15] + step[16 - 16]; |
|
1053 |
|
1054 output[16] = step[16]; |
|
1055 output[17] = step[17]; |
|
1056 output[18] = step[18]; |
|
1057 output[19] = step[19]; |
|
1058 |
|
1059 output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64); |
|
1060 output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64); |
|
1061 output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64); |
|
1062 output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64); |
|
1063 |
|
1064 output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64); |
|
1065 output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64); |
|
1066 output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64); |
|
1067 output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64); |
|
1068 |
|
1069 output[28] = step[28]; |
|
1070 output[29] = step[29]; |
|
1071 output[30] = step[30]; |
|
1072 output[31] = step[31]; |
|
1073 |
|
1074 // dump the magnitude by 4, hence the intermediate values are within |
|
1075 // the range of 16 bits. |
|
1076 if (round) { |
|
1077 output[0] = half_round_shift(output[0]); |
|
1078 output[1] = half_round_shift(output[1]); |
|
1079 output[2] = half_round_shift(output[2]); |
|
1080 output[3] = half_round_shift(output[3]); |
|
1081 output[4] = half_round_shift(output[4]); |
|
1082 output[5] = half_round_shift(output[5]); |
|
1083 output[6] = half_round_shift(output[6]); |
|
1084 output[7] = half_round_shift(output[7]); |
|
1085 output[8] = half_round_shift(output[8]); |
|
1086 output[9] = half_round_shift(output[9]); |
|
1087 output[10] = half_round_shift(output[10]); |
|
1088 output[11] = half_round_shift(output[11]); |
|
1089 output[12] = half_round_shift(output[12]); |
|
1090 output[13] = half_round_shift(output[13]); |
|
1091 output[14] = half_round_shift(output[14]); |
|
1092 output[15] = half_round_shift(output[15]); |
|
1093 |
|
1094 output[16] = half_round_shift(output[16]); |
|
1095 output[17] = half_round_shift(output[17]); |
|
1096 output[18] = half_round_shift(output[18]); |
|
1097 output[19] = half_round_shift(output[19]); |
|
1098 output[20] = half_round_shift(output[20]); |
|
1099 output[21] = half_round_shift(output[21]); |
|
1100 output[22] = half_round_shift(output[22]); |
|
1101 output[23] = half_round_shift(output[23]); |
|
1102 output[24] = half_round_shift(output[24]); |
|
1103 output[25] = half_round_shift(output[25]); |
|
1104 output[26] = half_round_shift(output[26]); |
|
1105 output[27] = half_round_shift(output[27]); |
|
1106 output[28] = half_round_shift(output[28]); |
|
1107 output[29] = half_round_shift(output[29]); |
|
1108 output[30] = half_round_shift(output[30]); |
|
1109 output[31] = half_round_shift(output[31]); |
|
1110 } |
|
1111 |
|
1112 // Stage 3 |
|
1113 step[0] = output[0] + output[(8 - 1)]; |
|
1114 step[1] = output[1] + output[(8 - 2)]; |
|
1115 step[2] = output[2] + output[(8 - 3)]; |
|
1116 step[3] = output[3] + output[(8 - 4)]; |
|
1117 step[4] = -output[4] + output[(8 - 5)]; |
|
1118 step[5] = -output[5] + output[(8 - 6)]; |
|
1119 step[6] = -output[6] + output[(8 - 7)]; |
|
1120 step[7] = -output[7] + output[(8 - 8)]; |
|
1121 step[8] = output[8]; |
|
1122 step[9] = output[9]; |
|
1123 step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64); |
|
1124 step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64); |
|
1125 step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64); |
|
1126 step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64); |
|
1127 step[14] = output[14]; |
|
1128 step[15] = output[15]; |
|
1129 |
|
1130 step[16] = output[16] + output[23]; |
|
1131 step[17] = output[17] + output[22]; |
|
1132 step[18] = output[18] + output[21]; |
|
1133 step[19] = output[19] + output[20]; |
|
1134 step[20] = -output[20] + output[19]; |
|
1135 step[21] = -output[21] + output[18]; |
|
1136 step[22] = -output[22] + output[17]; |
|
1137 step[23] = -output[23] + output[16]; |
|
1138 step[24] = -output[24] + output[31]; |
|
1139 step[25] = -output[25] + output[30]; |
|
1140 step[26] = -output[26] + output[29]; |
|
1141 step[27] = -output[27] + output[28]; |
|
1142 step[28] = output[28] + output[27]; |
|
1143 step[29] = output[29] + output[26]; |
|
1144 step[30] = output[30] + output[25]; |
|
1145 step[31] = output[31] + output[24]; |
|
1146 |
|
1147 // Stage 4 |
|
1148 output[0] = step[0] + step[3]; |
|
1149 output[1] = step[1] + step[2]; |
|
1150 output[2] = -step[2] + step[1]; |
|
1151 output[3] = -step[3] + step[0]; |
|
1152 output[4] = step[4]; |
|
1153 output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64); |
|
1154 output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64); |
|
1155 output[7] = step[7]; |
|
1156 output[8] = step[8] + step[11]; |
|
1157 output[9] = step[9] + step[10]; |
|
1158 output[10] = -step[10] + step[9]; |
|
1159 output[11] = -step[11] + step[8]; |
|
1160 output[12] = -step[12] + step[15]; |
|
1161 output[13] = -step[13] + step[14]; |
|
1162 output[14] = step[14] + step[13]; |
|
1163 output[15] = step[15] + step[12]; |
|
1164 |
|
1165 output[16] = step[16]; |
|
1166 output[17] = step[17]; |
|
1167 output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64); |
|
1168 output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64); |
|
1169 output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64); |
|
1170 output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64); |
|
1171 output[22] = step[22]; |
|
1172 output[23] = step[23]; |
|
1173 output[24] = step[24]; |
|
1174 output[25] = step[25]; |
|
1175 output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64); |
|
1176 output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64); |
|
1177 output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64); |
|
1178 output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64); |
|
1179 output[30] = step[30]; |
|
1180 output[31] = step[31]; |
|
1181 |
|
1182 // Stage 5 |
|
1183 step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64); |
|
1184 step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64); |
|
1185 step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64); |
|
1186 step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64); |
|
1187 step[4] = output[4] + output[5]; |
|
1188 step[5] = -output[5] + output[4]; |
|
1189 step[6] = -output[6] + output[7]; |
|
1190 step[7] = output[7] + output[6]; |
|
1191 step[8] = output[8]; |
|
1192 step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64); |
|
1193 step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64); |
|
1194 step[11] = output[11]; |
|
1195 step[12] = output[12]; |
|
1196 step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64); |
|
1197 step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64); |
|
1198 step[15] = output[15]; |
|
1199 |
|
1200 step[16] = output[16] + output[19]; |
|
1201 step[17] = output[17] + output[18]; |
|
1202 step[18] = -output[18] + output[17]; |
|
1203 step[19] = -output[19] + output[16]; |
|
1204 step[20] = -output[20] + output[23]; |
|
1205 step[21] = -output[21] + output[22]; |
|
1206 step[22] = output[22] + output[21]; |
|
1207 step[23] = output[23] + output[20]; |
|
1208 step[24] = output[24] + output[27]; |
|
1209 step[25] = output[25] + output[26]; |
|
1210 step[26] = -output[26] + output[25]; |
|
1211 step[27] = -output[27] + output[24]; |
|
1212 step[28] = -output[28] + output[31]; |
|
1213 step[29] = -output[29] + output[30]; |
|
1214 step[30] = output[30] + output[29]; |
|
1215 step[31] = output[31] + output[28]; |
|
1216 |
|
1217 // Stage 6 |
|
1218 output[0] = step[0]; |
|
1219 output[1] = step[1]; |
|
1220 output[2] = step[2]; |
|
1221 output[3] = step[3]; |
|
1222 output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64); |
|
1223 output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64); |
|
1224 output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64); |
|
1225 output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64); |
|
1226 output[8] = step[8] + step[9]; |
|
1227 output[9] = -step[9] + step[8]; |
|
1228 output[10] = -step[10] + step[11]; |
|
1229 output[11] = step[11] + step[10]; |
|
1230 output[12] = step[12] + step[13]; |
|
1231 output[13] = -step[13] + step[12]; |
|
1232 output[14] = -step[14] + step[15]; |
|
1233 output[15] = step[15] + step[14]; |
|
1234 |
|
1235 output[16] = step[16]; |
|
1236 output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64); |
|
1237 output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64); |
|
1238 output[19] = step[19]; |
|
1239 output[20] = step[20]; |
|
1240 output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64); |
|
1241 output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64); |
|
1242 output[23] = step[23]; |
|
1243 output[24] = step[24]; |
|
1244 output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64); |
|
1245 output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64); |
|
1246 output[27] = step[27]; |
|
1247 output[28] = step[28]; |
|
1248 output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64); |
|
1249 output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64); |
|
1250 output[31] = step[31]; |
|
1251 |
|
1252 // Stage 7 |
|
1253 step[0] = output[0]; |
|
1254 step[1] = output[1]; |
|
1255 step[2] = output[2]; |
|
1256 step[3] = output[3]; |
|
1257 step[4] = output[4]; |
|
1258 step[5] = output[5]; |
|
1259 step[6] = output[6]; |
|
1260 step[7] = output[7]; |
|
1261 step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64); |
|
1262 step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64); |
|
1263 step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64); |
|
1264 step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64); |
|
1265 step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64); |
|
1266 step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64); |
|
1267 step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64); |
|
1268 step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64); |
|
1269 |
|
1270 step[16] = output[16] + output[17]; |
|
1271 step[17] = -output[17] + output[16]; |
|
1272 step[18] = -output[18] + output[19]; |
|
1273 step[19] = output[19] + output[18]; |
|
1274 step[20] = output[20] + output[21]; |
|
1275 step[21] = -output[21] + output[20]; |
|
1276 step[22] = -output[22] + output[23]; |
|
1277 step[23] = output[23] + output[22]; |
|
1278 step[24] = output[24] + output[25]; |
|
1279 step[25] = -output[25] + output[24]; |
|
1280 step[26] = -output[26] + output[27]; |
|
1281 step[27] = output[27] + output[26]; |
|
1282 step[28] = output[28] + output[29]; |
|
1283 step[29] = -output[29] + output[28]; |
|
1284 step[30] = -output[30] + output[31]; |
|
1285 step[31] = output[31] + output[30]; |
|
1286 |
|
1287 // Final stage --- outputs indices are bit-reversed. |
|
1288 output[0] = step[0]; |
|
1289 output[16] = step[1]; |
|
1290 output[8] = step[2]; |
|
1291 output[24] = step[3]; |
|
1292 output[4] = step[4]; |
|
1293 output[20] = step[5]; |
|
1294 output[12] = step[6]; |
|
1295 output[28] = step[7]; |
|
1296 output[2] = step[8]; |
|
1297 output[18] = step[9]; |
|
1298 output[10] = step[10]; |
|
1299 output[26] = step[11]; |
|
1300 output[6] = step[12]; |
|
1301 output[22] = step[13]; |
|
1302 output[14] = step[14]; |
|
1303 output[30] = step[15]; |
|
1304 |
|
1305 output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64); |
|
1306 output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64); |
|
1307 output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64); |
|
1308 output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64); |
|
1309 output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64); |
|
1310 output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64); |
|
1311 output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64); |
|
1312 output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64); |
|
1313 output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64); |
|
1314 output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64); |
|
1315 output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64); |
|
1316 output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64); |
|
1317 output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64); |
|
1318 output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64); |
|
1319 output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64); |
|
1320 output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64); |
|
1321 } |
|
1322 |
|
1323 void vp9_fdct32x32_c(const int16_t *input, int16_t *out, int stride) { |
|
1324 int i, j; |
|
1325 int output[32 * 32]; |
|
1326 |
|
1327 // Columns |
|
1328 for (i = 0; i < 32; ++i) { |
|
1329 int temp_in[32], temp_out[32]; |
|
1330 for (j = 0; j < 32; ++j) |
|
1331 temp_in[j] = input[j * stride + i] * 4; |
|
1332 dct32_1d(temp_in, temp_out, 0); |
|
1333 for (j = 0; j < 32; ++j) |
|
1334 output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; |
|
1335 } |
|
1336 |
|
1337 // Rows |
|
1338 for (i = 0; i < 32; ++i) { |
|
1339 int temp_in[32], temp_out[32]; |
|
1340 for (j = 0; j < 32; ++j) |
|
1341 temp_in[j] = output[j + i * 32]; |
|
1342 dct32_1d(temp_in, temp_out, 0); |
|
1343 for (j = 0; j < 32; ++j) |
|
1344 out[j + i * 32] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2; |
|
1345 } |
|
1346 } |
|
1347 |
|
1348 // Note that although we use dct_32_round in dct32_1d computation flow, |
|
1349 // this 2d fdct32x32 for rate-distortion optimization loop is operating |
|
1350 // within 16 bits precision. |
|
1351 void vp9_fdct32x32_rd_c(const int16_t *input, int16_t *out, int stride) { |
|
1352 int i, j; |
|
1353 int output[32 * 32]; |
|
1354 |
|
1355 // Columns |
|
1356 for (i = 0; i < 32; ++i) { |
|
1357 int temp_in[32], temp_out[32]; |
|
1358 for (j = 0; j < 32; ++j) |
|
1359 temp_in[j] = input[j * stride + i] * 4; |
|
1360 dct32_1d(temp_in, temp_out, 0); |
|
1361 for (j = 0; j < 32; ++j) |
|
1362 // TODO(cd): see quality impact of only doing |
|
1363 // output[j * 32 + i] = (temp_out[j] + 1) >> 2; |
|
1364 // PS: also change code in vp9/encoder/x86/vp9_dct_sse2.c |
|
1365 output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; |
|
1366 } |
|
1367 |
|
1368 // Rows |
|
1369 for (i = 0; i < 32; ++i) { |
|
1370 int temp_in[32], temp_out[32]; |
|
1371 for (j = 0; j < 32; ++j) |
|
1372 temp_in[j] = output[j + i * 32]; |
|
1373 dct32_1d(temp_in, temp_out, 1); |
|
1374 for (j = 0; j < 32; ++j) |
|
1375 out[j + i * 32] = temp_out[j]; |
|
1376 } |
|
1377 } |
|
1378 |
|
1379 void vp9_fht4x4(TX_TYPE tx_type, const int16_t *input, int16_t *output, |
|
1380 int stride) { |
|
1381 if (tx_type == DCT_DCT) |
|
1382 vp9_fdct4x4(input, output, stride); |
|
1383 else |
|
1384 vp9_short_fht4x4(input, output, stride, tx_type); |
|
1385 } |
|
1386 |
|
1387 void vp9_fht8x8(TX_TYPE tx_type, const int16_t *input, int16_t *output, |
|
1388 int stride) { |
|
1389 if (tx_type == DCT_DCT) |
|
1390 vp9_fdct8x8(input, output, stride); |
|
1391 else |
|
1392 vp9_short_fht8x8(input, output, stride, tx_type); |
|
1393 } |
|
1394 |
|
1395 void vp9_fht16x16(TX_TYPE tx_type, const int16_t *input, int16_t *output, |
|
1396 int stride) { |
|
1397 if (tx_type == DCT_DCT) |
|
1398 vp9_fdct16x16(input, output, stride); |
|
1399 else |
|
1400 vp9_short_fht16x16(input, output, stride, tx_type); |
|
1401 } |