gfx/2d/BlurSSE2.cpp

branch
TOR_BUG_9701
changeset 15
b8a032363ba2
equal deleted inserted replaced
-1:000000000000 0:f51e23a661d8
1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
4
5 #include "Blur.h"
6
7 #include "SSEHelpers.h"
8
9 #include <string.h>
10
11 namespace mozilla {
12 namespace gfx {
13
14 MOZ_ALWAYS_INLINE
15 __m128i Divide(__m128i aValues, __m128i aDivisor)
16 {
17 const __m128i mask = _mm_setr_epi32(0x0, 0xffffffff, 0x0, 0xffffffff);
18 static const union {
19 int64_t i64[2];
20 __m128i m;
21 } roundingAddition = { { int64_t(1) << 31, int64_t(1) << 31 } };
22
23 __m128i multiplied31 = _mm_mul_epu32(aValues, aDivisor);
24 __m128i multiplied42 = _mm_mul_epu32(_mm_srli_epi64(aValues, 32), aDivisor);
25
26 // Add 1 << 31 before shifting or masking the lower 32 bits away, so that the
27 // result is rounded.
28 __m128i p_3_1 = _mm_srli_epi64(_mm_add_epi64(multiplied31, roundingAddition.m), 32);
29 __m128i p4_2_ = _mm_and_si128(_mm_add_epi64(multiplied42, roundingAddition.m), mask);
30 __m128i p4321 = _mm_or_si128(p_3_1, p4_2_);
31 return p4321;
32 }
33
34 MOZ_ALWAYS_INLINE
35 __m128i BlurFourPixels(const __m128i& aTopLeft, const __m128i& aTopRight,
36 const __m128i& aBottomRight, const __m128i& aBottomLeft,
37 const __m128i& aDivisor)
38 {
39 __m128i values = _mm_add_epi32(_mm_sub_epi32(_mm_sub_epi32(aBottomRight, aTopRight), aBottomLeft), aTopLeft);
40 return Divide(values, aDivisor);
41 }
42
43 MOZ_ALWAYS_INLINE
44 void LoadIntegralRowFromRow(uint32_t *aDest, const uint8_t *aSource,
45 int32_t aSourceWidth, int32_t aLeftInflation,
46 int32_t aRightInflation)
47 {
48 int32_t currentRowSum = 0;
49
50 for (int x = 0; x < aLeftInflation; x++) {
51 currentRowSum += aSource[0];
52 aDest[x] = currentRowSum;
53 }
54 for (int x = aLeftInflation; x < (aSourceWidth + aLeftInflation); x++) {
55 currentRowSum += aSource[(x - aLeftInflation)];
56 aDest[x] = currentRowSum;
57 }
58 for (int x = (aSourceWidth + aLeftInflation); x < (aSourceWidth + aLeftInflation + aRightInflation); x++) {
59 currentRowSum += aSource[aSourceWidth - 1];
60 aDest[x] = currentRowSum;
61 }
62 }
63
64 // This function calculates an integral of four pixels stored in the 4
65 // 32-bit integers on aPixels. i.e. for { 30, 50, 80, 100 } this returns
66 // { 30, 80, 160, 260 }. This seems to be the fastest way to do this after
67 // much testing.
68 MOZ_ALWAYS_INLINE
69 __m128i AccumulatePixelSums(__m128i aPixels)
70 {
71 __m128i sumPixels = aPixels;
72 __m128i currentPixels = _mm_slli_si128(aPixels, 4);
73 sumPixels = _mm_add_epi32(sumPixels, currentPixels);
74 currentPixels = _mm_unpacklo_epi64(_mm_setzero_si128(), sumPixels);
75
76 return _mm_add_epi32(sumPixels, currentPixels);
77 }
78
79 MOZ_ALWAYS_INLINE void
80 GenerateIntegralImage_SSE2(int32_t aLeftInflation, int32_t aRightInflation,
81 int32_t aTopInflation, int32_t aBottomInflation,
82 uint32_t *aIntegralImage, size_t aIntegralImageStride,
83 uint8_t *aSource, int32_t aSourceStride, const IntSize &aSize)
84 {
85 MOZ_ASSERT(!(aLeftInflation & 3));
86
87 uint32_t stride32bit = aIntegralImageStride / 4;
88
89 IntSize integralImageSize(aSize.width + aLeftInflation + aRightInflation,
90 aSize.height + aTopInflation + aBottomInflation);
91
92 LoadIntegralRowFromRow(aIntegralImage, aSource, aSize.width, aLeftInflation, aRightInflation);
93
94 for (int y = 1; y < aTopInflation + 1; y++) {
95 uint32_t *intRow = aIntegralImage + (y * stride32bit);
96 uint32_t *intPrevRow = aIntegralImage + (y - 1) * stride32bit;
97 uint32_t *intFirstRow = aIntegralImage;
98
99 for (int x = 0; x < integralImageSize.width; x += 4) {
100 __m128i firstRow = _mm_load_si128((__m128i*)(intFirstRow + x));
101 __m128i previousRow = _mm_load_si128((__m128i*)(intPrevRow + x));
102 _mm_store_si128((__m128i*)(intRow + x), _mm_add_epi32(firstRow, previousRow));
103 }
104 }
105
106 for (int y = aTopInflation + 1; y < (aSize.height + aTopInflation); y++) {
107 __m128i currentRowSum = _mm_setzero_si128();
108 uint32_t *intRow = aIntegralImage + (y * stride32bit);
109 uint32_t *intPrevRow = aIntegralImage + (y - 1) * stride32bit;
110 uint8_t *sourceRow = aSource + aSourceStride * (y - aTopInflation);
111
112 uint32_t pixel = sourceRow[0];
113 for (int x = 0; x < aLeftInflation; x += 4) {
114 __m128i sumPixels = AccumulatePixelSums(_mm_shuffle_epi32(_mm_set1_epi32(pixel), _MM_SHUFFLE(0, 0, 0, 0)));
115
116 sumPixels = _mm_add_epi32(sumPixels, currentRowSum);
117
118 currentRowSum = _mm_shuffle_epi32(sumPixels, _MM_SHUFFLE(3, 3, 3, 3));
119
120 _mm_store_si128((__m128i*)(intRow + x), _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x))));
121 }
122 for (int x = aLeftInflation; x < (aSize.width + aLeftInflation); x += 4) {
123 uint32_t pixels = *(uint32_t*)(sourceRow + (x - aLeftInflation));
124
125 // It's important to shuffle here. When we exit this loop currentRowSum
126 // has to be set to sumPixels, so that the following loop can get the
127 // correct pixel for the currentRowSum. The highest order pixel in
128 // currentRowSum could've originated from accumulation in the stride.
129 currentRowSum = _mm_shuffle_epi32(currentRowSum, _MM_SHUFFLE(3, 3, 3, 3));
130
131 __m128i sumPixels = AccumulatePixelSums(_mm_unpacklo_epi16(_mm_unpacklo_epi8( _mm_set1_epi32(pixels), _mm_setzero_si128()), _mm_setzero_si128()));
132 sumPixels = _mm_add_epi32(sumPixels, currentRowSum);
133
134 currentRowSum = sumPixels;
135
136 _mm_store_si128((__m128i*)(intRow + x), _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x))));
137 }
138
139 pixel = sourceRow[aSize.width - 1];
140 int x = (aSize.width + aLeftInflation);
141 if ((aSize.width & 3)) {
142 // Deal with unaligned portion. Get the correct pixel from currentRowSum,
143 // see explanation above.
144 uint32_t intCurrentRowSum = ((uint32_t*)&currentRowSum)[(aSize.width % 4) - 1];
145 for (; x < integralImageSize.width; x++) {
146 // We could be unaligned here!
147 if (!(x & 3)) {
148 // aligned!
149 currentRowSum = _mm_set1_epi32(intCurrentRowSum);
150 break;
151 }
152 intCurrentRowSum += pixel;
153 intRow[x] = intPrevRow[x] + intCurrentRowSum;
154 }
155 } else {
156 currentRowSum = _mm_shuffle_epi32(currentRowSum, _MM_SHUFFLE(3, 3, 3, 3));
157 }
158 for (; x < integralImageSize.width; x += 4) {
159 __m128i sumPixels = AccumulatePixelSums(_mm_set1_epi32(pixel));
160
161 sumPixels = _mm_add_epi32(sumPixels, currentRowSum);
162
163 currentRowSum = _mm_shuffle_epi32(sumPixels, _MM_SHUFFLE(3, 3, 3, 3));
164
165 _mm_store_si128((__m128i*)(intRow + x), _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x))));
166 }
167 }
168
169 if (aBottomInflation) {
170 // Store the last valid row of our source image in the last row of
171 // our integral image. This will be overwritten with the correct values
172 // in the upcoming loop.
173 LoadIntegralRowFromRow(aIntegralImage + (integralImageSize.height - 1) * stride32bit,
174 aSource + (aSize.height - 1) * aSourceStride, aSize.width, aLeftInflation, aRightInflation);
175
176
177 for (int y = aSize.height + aTopInflation; y < integralImageSize.height; y++) {
178 __m128i *intRow = (__m128i*)(aIntegralImage + (y * stride32bit));
179 __m128i *intPrevRow = (__m128i*)(aIntegralImage + (y - 1) * stride32bit);
180 __m128i *intLastRow = (__m128i*)(aIntegralImage + (integralImageSize.height - 1) * stride32bit);
181
182 for (int x = 0; x < integralImageSize.width; x += 4) {
183 _mm_store_si128(intRow + (x / 4),
184 _mm_add_epi32(_mm_load_si128(intLastRow + (x / 4)),
185 _mm_load_si128(intPrevRow + (x / 4))));
186 }
187 }
188 }
189 }
190
191 /**
192 * Attempt to do an in-place box blur using an integral image.
193 */
194 void
195 AlphaBoxBlur::BoxBlur_SSE2(uint8_t* aData,
196 int32_t aLeftLobe,
197 int32_t aRightLobe,
198 int32_t aTopLobe,
199 int32_t aBottomLobe,
200 uint32_t *aIntegralImage,
201 size_t aIntegralImageStride)
202 {
203 IntSize size = GetSize();
204
205 MOZ_ASSERT(size.height > 0);
206
207 // Our 'left' or 'top' lobe will include the current pixel. i.e. when
208 // looking at an integral image the value of a pixel at 'x,y' is calculated
209 // using the value of the integral image values above/below that.
210 aLeftLobe++;
211 aTopLobe++;
212 int32_t boxSize = (aLeftLobe + aRightLobe) * (aTopLobe + aBottomLobe);
213
214 MOZ_ASSERT(boxSize > 0);
215
216 if (boxSize == 1) {
217 return;
218 }
219
220 uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize);
221
222 uint32_t stride32bit = aIntegralImageStride / 4;
223 int32_t leftInflation = RoundUpToMultipleOf4(aLeftLobe).value();
224
225 GenerateIntegralImage_SSE2(leftInflation, aRightLobe, aTopLobe, aBottomLobe,
226 aIntegralImage, aIntegralImageStride, aData,
227 mStride, size);
228
229 __m128i divisor = _mm_set1_epi32(reciprocal);
230
231 // This points to the start of the rectangle within the IntegralImage that overlaps
232 // the surface being blurred.
233 uint32_t *innerIntegral = aIntegralImage + (aTopLobe * stride32bit) + leftInflation;
234
235 IntRect skipRect = mSkipRect;
236 int32_t stride = mStride;
237 uint8_t *data = aData;
238 for (int32_t y = 0; y < size.height; y++) {
239 bool inSkipRectY = y > skipRect.y && y < skipRect.YMost();
240
241 uint32_t *topLeftBase = innerIntegral + ((y - aTopLobe) * ptrdiff_t(stride32bit) - aLeftLobe);
242 uint32_t *topRightBase = innerIntegral + ((y - aTopLobe) * ptrdiff_t(stride32bit) + aRightLobe);
243 uint32_t *bottomRightBase = innerIntegral + ((y + aBottomLobe) * ptrdiff_t(stride32bit) + aRightLobe);
244 uint32_t *bottomLeftBase = innerIntegral + ((y + aBottomLobe) * ptrdiff_t(stride32bit) - aLeftLobe);
245
246 int32_t x = 0;
247 // Process 16 pixels at a time for as long as possible.
248 for (; x <= size.width - 16; x += 16) {
249 if (inSkipRectY && x > skipRect.x && x < skipRect.XMost()) {
250 x = skipRect.XMost() - 16;
251 // Trigger early jump on coming loop iterations, this will be reset
252 // next line anyway.
253 inSkipRectY = false;
254 continue;
255 }
256
257 __m128i topLeft;
258 __m128i topRight;
259 __m128i bottomRight;
260 __m128i bottomLeft;
261
262 topLeft = loadUnaligned128((__m128i*)(topLeftBase + x));
263 topRight = loadUnaligned128((__m128i*)(topRightBase + x));
264 bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x));
265 bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x));
266 __m128i result1 = BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
267
268 topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 4));
269 topRight = loadUnaligned128((__m128i*)(topRightBase + x + 4));
270 bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 4));
271 bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 4));
272 __m128i result2 = BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
273
274 topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 8));
275 topRight = loadUnaligned128((__m128i*)(topRightBase + x + 8));
276 bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 8));
277 bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 8));
278 __m128i result3 = BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
279
280 topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 12));
281 topRight = loadUnaligned128((__m128i*)(topRightBase + x + 12));
282 bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 12));
283 bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 12));
284 __m128i result4 = BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
285
286 __m128i final = _mm_packus_epi16(_mm_packs_epi32(result1, result2), _mm_packs_epi32(result3, result4));
287
288 _mm_storeu_si128((__m128i*)(data + stride * y + x), final);
289 }
290
291 // Process the remaining pixels 4 bytes at a time.
292 for (; x < size.width; x += 4) {
293 if (inSkipRectY && x > skipRect.x && x < skipRect.XMost()) {
294 x = skipRect.XMost() - 4;
295 // Trigger early jump on coming loop iterations, this will be reset
296 // next line anyway.
297 inSkipRectY = false;
298 continue;
299 }
300 __m128i topLeft = loadUnaligned128((__m128i*)(topLeftBase + x));
301 __m128i topRight = loadUnaligned128((__m128i*)(topRightBase + x));
302 __m128i bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x));
303 __m128i bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x));
304
305 __m128i result = BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
306 __m128i final = _mm_packus_epi16(_mm_packs_epi32(result, _mm_setzero_si128()), _mm_setzero_si128());
307
308 *(uint32_t*)(data + stride * y + x) = _mm_cvtsi128_si32(final);
309 }
310 }
311
312 }
313
314 }
315 }

mercurial