|
1 // Copyright (c) 2006-2011 The Chromium Authors. All rights reserved. |
|
2 // |
|
3 // Redistribution and use in source and binary forms, with or without |
|
4 // modification, are permitted provided that the following conditions |
|
5 // are met: |
|
6 // * Redistributions of source code must retain the above copyright |
|
7 // notice, this list of conditions and the following disclaimer. |
|
8 // * Redistributions in binary form must reproduce the above copyright |
|
9 // notice, this list of conditions and the following disclaimer in |
|
10 // the documentation and/or other materials provided with the |
|
11 // distribution. |
|
12 // * Neither the name of Google, Inc. nor the names of its contributors |
|
13 // may be used to endorse or promote products derived from this |
|
14 // software without specific prior written permission. |
|
15 // |
|
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
19 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
20 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
21 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
22 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
23 // OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
24 // AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
|
25 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
|
26 // OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
27 // SUCH DAMAGE. |
|
28 |
|
29 #include "convolver.h" |
|
30 |
|
31 #include <algorithm> |
|
32 |
|
33 #include "skia/SkTypes.h" |
|
34 |
|
35 // note: SIMD_SSE2 is not enabled because of bugs, apparently |
|
36 |
|
37 #if defined(SIMD_SSE2) |
|
38 #include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h |
|
39 #endif |
|
40 |
|
41 #if defined(SK_CPU_LENDIAN) |
|
42 #define R_OFFSET_IDX 0 |
|
43 #define G_OFFSET_IDX 1 |
|
44 #define B_OFFSET_IDX 2 |
|
45 #define A_OFFSET_IDX 3 |
|
46 #else |
|
47 #define R_OFFSET_IDX 3 |
|
48 #define G_OFFSET_IDX 2 |
|
49 #define B_OFFSET_IDX 1 |
|
50 #define A_OFFSET_IDX 0 |
|
51 #endif |
|
52 |
|
53 namespace skia { |
|
54 |
|
55 namespace { |
|
56 |
|
57 // Converts the argument to an 8-bit unsigned value by clamping to the range |
|
58 // 0-255. |
|
59 inline unsigned char ClampTo8(int a) { |
|
60 if (static_cast<unsigned>(a) < 256) |
|
61 return a; // Avoid the extra check in the common case. |
|
62 if (a < 0) |
|
63 return 0; |
|
64 return 255; |
|
65 } |
|
66 |
|
67 // Stores a list of rows in a circular buffer. The usage is you write into it |
|
68 // by calling AdvanceRow. It will keep track of which row in the buffer it |
|
69 // should use next, and the total number of rows added. |
|
70 class CircularRowBuffer { |
|
71 public: |
|
72 // The number of pixels in each row is given in |source_row_pixel_width|. |
|
73 // The maximum number of rows needed in the buffer is |max_y_filter_size| |
|
74 // (we only need to store enough rows for the biggest filter). |
|
75 // |
|
76 // We use the |first_input_row| to compute the coordinates of all of the |
|
77 // following rows returned by Advance(). |
|
78 CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size, |
|
79 int first_input_row) |
|
80 : row_byte_width_(dest_row_pixel_width * 4), |
|
81 num_rows_(max_y_filter_size), |
|
82 next_row_(0), |
|
83 next_row_coordinate_(first_input_row) { |
|
84 buffer_.resize(row_byte_width_ * max_y_filter_size); |
|
85 row_addresses_.resize(num_rows_); |
|
86 } |
|
87 |
|
88 // Moves to the next row in the buffer, returning a pointer to the beginning |
|
89 // of it. |
|
90 unsigned char* AdvanceRow() { |
|
91 unsigned char* row = &buffer_[next_row_ * row_byte_width_]; |
|
92 next_row_coordinate_++; |
|
93 |
|
94 // Set the pointer to the next row to use, wrapping around if necessary. |
|
95 next_row_++; |
|
96 if (next_row_ == num_rows_) |
|
97 next_row_ = 0; |
|
98 return row; |
|
99 } |
|
100 |
|
101 // Returns a pointer to an "unrolled" array of rows. These rows will start |
|
102 // at the y coordinate placed into |*first_row_index| and will continue in |
|
103 // order for the maximum number of rows in this circular buffer. |
|
104 // |
|
105 // The |first_row_index_| may be negative. This means the circular buffer |
|
106 // starts before the top of the image (it hasn't been filled yet). |
|
107 unsigned char* const* GetRowAddresses(int* first_row_index) { |
|
108 // Example for a 4-element circular buffer holding coords 6-9. |
|
109 // Row 0 Coord 8 |
|
110 // Row 1 Coord 9 |
|
111 // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10. |
|
112 // Row 3 Coord 7 |
|
113 // |
|
114 // The "next" row is also the first (lowest) coordinate. This computation |
|
115 // may yield a negative value, but that's OK, the math will work out |
|
116 // since the user of this buffer will compute the offset relative |
|
117 // to the first_row_index and the negative rows will never be used. |
|
118 *first_row_index = next_row_coordinate_ - num_rows_; |
|
119 |
|
120 int cur_row = next_row_; |
|
121 for (int i = 0; i < num_rows_; i++) { |
|
122 row_addresses_[i] = &buffer_[cur_row * row_byte_width_]; |
|
123 |
|
124 // Advance to the next row, wrapping if necessary. |
|
125 cur_row++; |
|
126 if (cur_row == num_rows_) |
|
127 cur_row = 0; |
|
128 } |
|
129 return &row_addresses_[0]; |
|
130 } |
|
131 |
|
132 private: |
|
133 // The buffer storing the rows. They are packed, each one row_byte_width_. |
|
134 std::vector<unsigned char> buffer_; |
|
135 |
|
136 // Number of bytes per row in the |buffer_|. |
|
137 int row_byte_width_; |
|
138 |
|
139 // The number of rows available in the buffer. |
|
140 int num_rows_; |
|
141 |
|
142 // The next row index we should write into. This wraps around as the |
|
143 // circular buffer is used. |
|
144 int next_row_; |
|
145 |
|
146 // The y coordinate of the |next_row_|. This is incremented each time a |
|
147 // new row is appended and does not wrap. |
|
148 int next_row_coordinate_; |
|
149 |
|
150 // Buffer used by GetRowAddresses(). |
|
151 std::vector<unsigned char*> row_addresses_; |
|
152 }; |
|
153 |
|
154 // Convolves horizontally along a single row. The row data is given in |
|
155 // |src_data| and continues for the num_values() of the filter. |
|
156 template<bool has_alpha> |
|
157 // This function is miscompiled with gcc 4.5 with pgo. See bug 827946. |
|
158 #if defined(__GNUC__) && defined(MOZ_GCC_VERSION_AT_LEAST) |
|
159 #if MOZ_GCC_VERSION_AT_LEAST(4, 5, 0) && !MOZ_GCC_VERSION_AT_LEAST(4, 6, 0) |
|
160 __attribute__((optimize("-O1"))) |
|
161 #endif |
|
162 #endif |
|
163 void ConvolveHorizontally(const unsigned char* src_data, |
|
164 const ConvolutionFilter1D& filter, |
|
165 unsigned char* out_row) { |
|
166 // Loop over each pixel on this row in the output image. |
|
167 int num_values = filter.num_values(); |
|
168 for (int out_x = 0; out_x < num_values; out_x++) { |
|
169 // Get the filter that determines the current output pixel. |
|
170 int filter_offset, filter_length; |
|
171 const ConvolutionFilter1D::Fixed* filter_values = |
|
172 filter.FilterForValue(out_x, &filter_offset, &filter_length); |
|
173 |
|
174 // Compute the first pixel in this row that the filter affects. It will |
|
175 // touch |filter_length| pixels (4 bytes each) after this. |
|
176 const unsigned char* row_to_filter = &src_data[filter_offset * 4]; |
|
177 |
|
178 // Apply the filter to the row to get the destination pixel in |accum|. |
|
179 int accum[4] = {0}; |
|
180 for (int filter_x = 0; filter_x < filter_length; filter_x++) { |
|
181 ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x]; |
|
182 accum[0] += cur_filter * row_to_filter[filter_x * 4 + R_OFFSET_IDX]; |
|
183 accum[1] += cur_filter * row_to_filter[filter_x * 4 + G_OFFSET_IDX]; |
|
184 accum[2] += cur_filter * row_to_filter[filter_x * 4 + B_OFFSET_IDX]; |
|
185 if (has_alpha) |
|
186 accum[3] += cur_filter * row_to_filter[filter_x * 4 + A_OFFSET_IDX]; |
|
187 } |
|
188 |
|
189 // Bring this value back in range. All of the filter scaling factors |
|
190 // are in fixed point with kShiftBits bits of fractional part. |
|
191 accum[0] >>= ConvolutionFilter1D::kShiftBits; |
|
192 accum[1] >>= ConvolutionFilter1D::kShiftBits; |
|
193 accum[2] >>= ConvolutionFilter1D::kShiftBits; |
|
194 if (has_alpha) |
|
195 accum[3] >>= ConvolutionFilter1D::kShiftBits; |
|
196 |
|
197 // Store the new pixel. |
|
198 out_row[out_x * 4 + R_OFFSET_IDX] = ClampTo8(accum[0]); |
|
199 out_row[out_x * 4 + G_OFFSET_IDX] = ClampTo8(accum[1]); |
|
200 out_row[out_x * 4 + B_OFFSET_IDX] = ClampTo8(accum[2]); |
|
201 if (has_alpha) |
|
202 out_row[out_x * 4 + A_OFFSET_IDX] = ClampTo8(accum[3]); |
|
203 } |
|
204 } |
|
205 |
|
206 // Does vertical convolution to produce one output row. The filter values and |
|
207 // length are given in the first two parameters. These are applied to each |
|
208 // of the rows pointed to in the |source_data_rows| array, with each row |
|
209 // being |pixel_width| wide. |
|
210 // |
|
211 // The output must have room for |pixel_width * 4| bytes. |
|
212 template<bool has_alpha> |
|
213 void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, |
|
214 int filter_length, |
|
215 unsigned char* const* source_data_rows, |
|
216 int pixel_width, |
|
217 unsigned char* out_row) { |
|
218 // We go through each column in the output and do a vertical convolution, |
|
219 // generating one output pixel each time. |
|
220 for (int out_x = 0; out_x < pixel_width; out_x++) { |
|
221 // Compute the number of bytes over in each row that the current column |
|
222 // we're convolving starts at. The pixel will cover the next 4 bytes. |
|
223 int byte_offset = out_x * 4; |
|
224 |
|
225 // Apply the filter to one column of pixels. |
|
226 int accum[4] = {0}; |
|
227 for (int filter_y = 0; filter_y < filter_length; filter_y++) { |
|
228 ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y]; |
|
229 accum[0] += cur_filter |
|
230 * source_data_rows[filter_y][byte_offset + R_OFFSET_IDX]; |
|
231 accum[1] += cur_filter |
|
232 * source_data_rows[filter_y][byte_offset + G_OFFSET_IDX]; |
|
233 accum[2] += cur_filter |
|
234 * source_data_rows[filter_y][byte_offset + B_OFFSET_IDX]; |
|
235 if (has_alpha) |
|
236 accum[3] += cur_filter |
|
237 * source_data_rows[filter_y][byte_offset + A_OFFSET_IDX]; |
|
238 } |
|
239 |
|
240 // Bring this value back in range. All of the filter scaling factors |
|
241 // are in fixed point with kShiftBits bits of precision. |
|
242 accum[0] >>= ConvolutionFilter1D::kShiftBits; |
|
243 accum[1] >>= ConvolutionFilter1D::kShiftBits; |
|
244 accum[2] >>= ConvolutionFilter1D::kShiftBits; |
|
245 if (has_alpha) |
|
246 accum[3] >>= ConvolutionFilter1D::kShiftBits; |
|
247 |
|
248 // Store the new pixel. |
|
249 out_row[byte_offset + R_OFFSET_IDX] = ClampTo8(accum[0]); |
|
250 out_row[byte_offset + G_OFFSET_IDX] = ClampTo8(accum[1]); |
|
251 out_row[byte_offset + B_OFFSET_IDX] = ClampTo8(accum[2]); |
|
252 if (has_alpha) { |
|
253 unsigned char alpha = ClampTo8(accum[3]); |
|
254 |
|
255 // Make sure the alpha channel doesn't come out smaller than any of the |
|
256 // color channels. We use premultipled alpha channels, so this should |
|
257 // never happen, but rounding errors will cause this from time to time. |
|
258 // These "impossible" colors will cause overflows (and hence random pixel |
|
259 // values) when the resulting bitmap is drawn to the screen. |
|
260 // |
|
261 // We only need to do this when generating the final output row (here). |
|
262 int max_color_channel = std::max(out_row[byte_offset + R_OFFSET_IDX], |
|
263 std::max(out_row[byte_offset + G_OFFSET_IDX], out_row[byte_offset + B_OFFSET_IDX])); |
|
264 if (alpha < max_color_channel) |
|
265 out_row[byte_offset + A_OFFSET_IDX] = max_color_channel; |
|
266 else |
|
267 out_row[byte_offset + A_OFFSET_IDX] = alpha; |
|
268 } else { |
|
269 // No alpha channel, the image is opaque. |
|
270 out_row[byte_offset + A_OFFSET_IDX] = 0xff; |
|
271 } |
|
272 } |
|
273 } |
|
274 |
|
275 |
|
276 // Convolves horizontally along a single row. The row data is given in |
|
277 // |src_data| and continues for the num_values() of the filter. |
|
278 void ConvolveHorizontally_SSE2(const unsigned char* src_data, |
|
279 const ConvolutionFilter1D& filter, |
|
280 unsigned char* out_row) { |
|
281 #if defined(SIMD_SSE2) |
|
282 int num_values = filter.num_values(); |
|
283 |
|
284 int filter_offset, filter_length; |
|
285 __m128i zero = _mm_setzero_si128(); |
|
286 __m128i mask[4]; |
|
287 // |mask| will be used to decimate all extra filter coefficients that are |
|
288 // loaded by SIMD when |filter_length| is not divisible by 4. |
|
289 // mask[0] is not used in following algorithm. |
|
290 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
|
291 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
|
292 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
|
293 |
|
294 // Output one pixel each iteration, calculating all channels (RGBA) together. |
|
295 for (int out_x = 0; out_x < num_values; out_x++) { |
|
296 const ConvolutionFilter1D::Fixed* filter_values = |
|
297 filter.FilterForValue(out_x, &filter_offset, &filter_length); |
|
298 |
|
299 __m128i accum = _mm_setzero_si128(); |
|
300 |
|
301 // Compute the first pixel in this row that the filter affects. It will |
|
302 // touch |filter_length| pixels (4 bytes each) after this. |
|
303 const __m128i* row_to_filter = |
|
304 reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]); |
|
305 |
|
306 // We will load and accumulate with four coefficients per iteration. |
|
307 for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { |
|
308 |
|
309 // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. |
|
310 __m128i coeff, coeff16; |
|
311 // [16] xx xx xx xx c3 c2 c1 c0 |
|
312 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
|
313 // [16] xx xx xx xx c1 c1 c0 c0 |
|
314 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
|
315 // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
|
316 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
|
317 |
|
318 // Load four pixels => unpack the first two pixels to 16 bits => |
|
319 // multiply with coefficients => accumulate the convolution result. |
|
320 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
|
321 __m128i src8 = _mm_loadu_si128(row_to_filter); |
|
322 // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
|
323 __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
|
324 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
|
325 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
|
326 // [32] a0*c0 b0*c0 g0*c0 r0*c0 |
|
327 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
|
328 accum = _mm_add_epi32(accum, t); |
|
329 // [32] a1*c1 b1*c1 g1*c1 r1*c1 |
|
330 t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
|
331 accum = _mm_add_epi32(accum, t); |
|
332 |
|
333 // Duplicate 3rd and 4th coefficients for all channels => |
|
334 // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients |
|
335 // => accumulate the convolution results. |
|
336 // [16] xx xx xx xx c3 c3 c2 c2 |
|
337 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
|
338 // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
|
339 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
|
340 // [16] a3 g3 b3 r3 a2 g2 b2 r2 |
|
341 src16 = _mm_unpackhi_epi8(src8, zero); |
|
342 mul_hi = _mm_mulhi_epi16(src16, coeff16); |
|
343 mul_lo = _mm_mullo_epi16(src16, coeff16); |
|
344 // [32] a2*c2 b2*c2 g2*c2 r2*c2 |
|
345 t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
|
346 accum = _mm_add_epi32(accum, t); |
|
347 // [32] a3*c3 b3*c3 g3*c3 r3*c3 |
|
348 t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
|
349 accum = _mm_add_epi32(accum, t); |
|
350 |
|
351 // Advance the pixel and coefficients pointers. |
|
352 row_to_filter += 1; |
|
353 filter_values += 4; |
|
354 } |
|
355 |
|
356 // When |filter_length| is not divisible by 4, we need to decimate some of |
|
357 // the filter coefficient that was loaded incorrectly to zero; Other than |
|
358 // that the algorithm is same with above, exceot that the 4th pixel will be |
|
359 // always absent. |
|
360 int r = filter_length&3; |
|
361 if (r) { |
|
362 // Note: filter_values must be padded to align_up(filter_offset, 8). |
|
363 __m128i coeff, coeff16; |
|
364 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
|
365 // Mask out extra filter taps. |
|
366 coeff = _mm_and_si128(coeff, mask[r]); |
|
367 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
|
368 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
|
369 |
|
370 // Note: line buffer must be padded to align_up(filter_offset, 16). |
|
371 // We resolve this by use C-version for the last horizontal line. |
|
372 __m128i src8 = _mm_loadu_si128(row_to_filter); |
|
373 __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
|
374 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
|
375 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
|
376 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
|
377 accum = _mm_add_epi32(accum, t); |
|
378 t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
|
379 accum = _mm_add_epi32(accum, t); |
|
380 |
|
381 src16 = _mm_unpackhi_epi8(src8, zero); |
|
382 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
|
383 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
|
384 mul_hi = _mm_mulhi_epi16(src16, coeff16); |
|
385 mul_lo = _mm_mullo_epi16(src16, coeff16); |
|
386 t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
|
387 accum = _mm_add_epi32(accum, t); |
|
388 } |
|
389 |
|
390 // Shift right for fixed point implementation. |
|
391 accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits); |
|
392 |
|
393 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
|
394 accum = _mm_packs_epi32(accum, zero); |
|
395 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
|
396 accum = _mm_packus_epi16(accum, zero); |
|
397 |
|
398 // Store the pixel value of 32 bits. |
|
399 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); |
|
400 out_row += 4; |
|
401 } |
|
402 #endif |
|
403 } |
|
404 |
|
405 // Convolves horizontally along four rows. The row data is given in |
|
406 // |src_data| and continues for the num_values() of the filter. |
|
407 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please |
|
408 // refer to that function for detailed comments. |
|
409 void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4], |
|
410 const ConvolutionFilter1D& filter, |
|
411 unsigned char* out_row[4]) { |
|
412 #if defined(SIMD_SSE2) |
|
413 int num_values = filter.num_values(); |
|
414 |
|
415 int filter_offset, filter_length; |
|
416 __m128i zero = _mm_setzero_si128(); |
|
417 __m128i mask[4]; |
|
418 // |mask| will be used to decimate all extra filter coefficients that are |
|
419 // loaded by SIMD when |filter_length| is not divisible by 4. |
|
420 // mask[0] is not used in following algorithm. |
|
421 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
|
422 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
|
423 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
|
424 |
|
425 // Output one pixel each iteration, calculating all channels (RGBA) together. |
|
426 for (int out_x = 0; out_x < num_values; out_x++) { |
|
427 const ConvolutionFilter1D::Fixed* filter_values = |
|
428 filter.FilterForValue(out_x, &filter_offset, &filter_length); |
|
429 |
|
430 // four pixels in a column per iteration. |
|
431 __m128i accum0 = _mm_setzero_si128(); |
|
432 __m128i accum1 = _mm_setzero_si128(); |
|
433 __m128i accum2 = _mm_setzero_si128(); |
|
434 __m128i accum3 = _mm_setzero_si128(); |
|
435 int start = (filter_offset<<2); |
|
436 // We will load and accumulate with four coefficients per iteration. |
|
437 for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { |
|
438 __m128i coeff, coeff16lo, coeff16hi; |
|
439 // [16] xx xx xx xx c3 c2 c1 c0 |
|
440 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
|
441 // [16] xx xx xx xx c1 c1 c0 c0 |
|
442 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
|
443 // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
|
444 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
|
445 // [16] xx xx xx xx c3 c3 c2 c2 |
|
446 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
|
447 // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
|
448 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
|
449 |
|
450 __m128i src8, src16, mul_hi, mul_lo, t; |
|
451 |
|
452 #define ITERATION(src, accum) \ |
|
453 src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \ |
|
454 src16 = _mm_unpacklo_epi8(src8, zero); \ |
|
455 mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ |
|
456 mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ |
|
457 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
|
458 accum = _mm_add_epi32(accum, t); \ |
|
459 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
|
460 accum = _mm_add_epi32(accum, t); \ |
|
461 src16 = _mm_unpackhi_epi8(src8, zero); \ |
|
462 mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ |
|
463 mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ |
|
464 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
|
465 accum = _mm_add_epi32(accum, t); \ |
|
466 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
|
467 accum = _mm_add_epi32(accum, t) |
|
468 |
|
469 ITERATION(src_data[0] + start, accum0); |
|
470 ITERATION(src_data[1] + start, accum1); |
|
471 ITERATION(src_data[2] + start, accum2); |
|
472 ITERATION(src_data[3] + start, accum3); |
|
473 |
|
474 start += 16; |
|
475 filter_values += 4; |
|
476 } |
|
477 |
|
478 int r = filter_length & 3; |
|
479 if (r) { |
|
480 // Note: filter_values must be padded to align_up(filter_offset, 8); |
|
481 __m128i coeff; |
|
482 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
|
483 // Mask out extra filter taps. |
|
484 coeff = _mm_and_si128(coeff, mask[r]); |
|
485 |
|
486 __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
|
487 /* c1 c1 c1 c1 c0 c0 c0 c0 */ |
|
488 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
|
489 __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
|
490 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
|
491 |
|
492 __m128i src8, src16, mul_hi, mul_lo, t; |
|
493 |
|
494 ITERATION(src_data[0] + start, accum0); |
|
495 ITERATION(src_data[1] + start, accum1); |
|
496 ITERATION(src_data[2] + start, accum2); |
|
497 ITERATION(src_data[3] + start, accum3); |
|
498 } |
|
499 |
|
500 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
|
501 accum0 = _mm_packs_epi32(accum0, zero); |
|
502 accum0 = _mm_packus_epi16(accum0, zero); |
|
503 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
|
504 accum1 = _mm_packs_epi32(accum1, zero); |
|
505 accum1 = _mm_packus_epi16(accum1, zero); |
|
506 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
|
507 accum2 = _mm_packs_epi32(accum2, zero); |
|
508 accum2 = _mm_packus_epi16(accum2, zero); |
|
509 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); |
|
510 accum3 = _mm_packs_epi32(accum3, zero); |
|
511 accum3 = _mm_packus_epi16(accum3, zero); |
|
512 |
|
513 *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0); |
|
514 *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1); |
|
515 *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2); |
|
516 *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3); |
|
517 |
|
518 out_row[0] += 4; |
|
519 out_row[1] += 4; |
|
520 out_row[2] += 4; |
|
521 out_row[3] += 4; |
|
522 } |
|
523 #endif |
|
524 } |
|
525 |
|
526 // Does vertical convolution to produce one output row. The filter values and |
|
527 // length are given in the first two parameters. These are applied to each |
|
528 // of the rows pointed to in the |source_data_rows| array, with each row |
|
529 // being |pixel_width| wide. |
|
530 // |
|
531 // The output must have room for |pixel_width * 4| bytes. |
|
532 template<bool has_alpha> |
|
533 void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, |
|
534 int filter_length, |
|
535 unsigned char* const* source_data_rows, |
|
536 int pixel_width, |
|
537 unsigned char* out_row) { |
|
538 #if defined(SIMD_SSE2) |
|
539 int width = pixel_width & ~3; |
|
540 |
|
541 __m128i zero = _mm_setzero_si128(); |
|
542 __m128i accum0, accum1, accum2, accum3, coeff16; |
|
543 const __m128i* src; |
|
544 // Output four pixels per iteration (16 bytes). |
|
545 for (int out_x = 0; out_x < width; out_x += 4) { |
|
546 |
|
547 // Accumulated result for each pixel. 32 bits per RGBA channel. |
|
548 accum0 = _mm_setzero_si128(); |
|
549 accum1 = _mm_setzero_si128(); |
|
550 accum2 = _mm_setzero_si128(); |
|
551 accum3 = _mm_setzero_si128(); |
|
552 |
|
553 // Convolve with one filter coefficient per iteration. |
|
554 for (int filter_y = 0; filter_y < filter_length; filter_y++) { |
|
555 |
|
556 // Duplicate the filter coefficient 8 times. |
|
557 // [16] cj cj cj cj cj cj cj cj |
|
558 coeff16 = _mm_set1_epi16(filter_values[filter_y]); |
|
559 |
|
560 // Load four pixels (16 bytes) together. |
|
561 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
|
562 src = reinterpret_cast<const __m128i*>( |
|
563 &source_data_rows[filter_y][out_x << 2]); |
|
564 __m128i src8 = _mm_loadu_si128(src); |
|
565 |
|
566 // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => |
|
567 // multiply with current coefficient => accumulate the result. |
|
568 // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
|
569 __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
|
570 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
|
571 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
|
572 // [32] a0 b0 g0 r0 |
|
573 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
|
574 accum0 = _mm_add_epi32(accum0, t); |
|
575 // [32] a1 b1 g1 r1 |
|
576 t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
|
577 accum1 = _mm_add_epi32(accum1, t); |
|
578 |
|
579 // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => |
|
580 // multiply with current coefficient => accumulate the result. |
|
581 // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
|
582 src16 = _mm_unpackhi_epi8(src8, zero); |
|
583 mul_hi = _mm_mulhi_epi16(src16, coeff16); |
|
584 mul_lo = _mm_mullo_epi16(src16, coeff16); |
|
585 // [32] a2 b2 g2 r2 |
|
586 t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
|
587 accum2 = _mm_add_epi32(accum2, t); |
|
588 // [32] a3 b3 g3 r3 |
|
589 t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
|
590 accum3 = _mm_add_epi32(accum3, t); |
|
591 } |
|
592 |
|
593 // Shift right for fixed point implementation. |
|
594 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
|
595 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
|
596 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
|
597 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); |
|
598 |
|
599 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
|
600 // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
|
601 accum0 = _mm_packs_epi32(accum0, accum1); |
|
602 // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
|
603 accum2 = _mm_packs_epi32(accum2, accum3); |
|
604 |
|
605 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
|
606 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
|
607 accum0 = _mm_packus_epi16(accum0, accum2); |
|
608 |
|
609 if (has_alpha) { |
|
610 // Compute the max(ri, gi, bi) for each pixel. |
|
611 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
|
612 __m128i a = _mm_srli_epi32(accum0, 8); |
|
613 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
|
614 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
|
615 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
|
616 a = _mm_srli_epi32(accum0, 16); |
|
617 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
|
618 b = _mm_max_epu8(a, b); // Max of r and g and b. |
|
619 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
|
620 b = _mm_slli_epi32(b, 24); |
|
621 |
|
622 // Make sure the value of alpha channel is always larger than maximum |
|
623 // value of color channels. |
|
624 accum0 = _mm_max_epu8(b, accum0); |
|
625 } else { |
|
626 // Set value of alpha channels to 0xFF. |
|
627 __m128i mask = _mm_set1_epi32(0xff000000); |
|
628 accum0 = _mm_or_si128(accum0, mask); |
|
629 } |
|
630 |
|
631 // Store the convolution result (16 bytes) and advance the pixel pointers. |
|
632 _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); |
|
633 out_row += 16; |
|
634 } |
|
635 |
|
636 // When the width of the output is not divisible by 4, We need to save one |
|
637 // pixel (4 bytes) each time. And also the fourth pixel is always absent. |
|
638 if (pixel_width & 3) { |
|
639 accum0 = _mm_setzero_si128(); |
|
640 accum1 = _mm_setzero_si128(); |
|
641 accum2 = _mm_setzero_si128(); |
|
642 for (int filter_y = 0; filter_y < filter_length; ++filter_y) { |
|
643 coeff16 = _mm_set1_epi16(filter_values[filter_y]); |
|
644 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
|
645 src = reinterpret_cast<const __m128i*>( |
|
646 &source_data_rows[filter_y][width<<2]); |
|
647 __m128i src8 = _mm_loadu_si128(src); |
|
648 // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
|
649 __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
|
650 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
|
651 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
|
652 // [32] a0 b0 g0 r0 |
|
653 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
|
654 accum0 = _mm_add_epi32(accum0, t); |
|
655 // [32] a1 b1 g1 r1 |
|
656 t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
|
657 accum1 = _mm_add_epi32(accum1, t); |
|
658 // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
|
659 src16 = _mm_unpackhi_epi8(src8, zero); |
|
660 mul_hi = _mm_mulhi_epi16(src16, coeff16); |
|
661 mul_lo = _mm_mullo_epi16(src16, coeff16); |
|
662 // [32] a2 b2 g2 r2 |
|
663 t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
|
664 accum2 = _mm_add_epi32(accum2, t); |
|
665 } |
|
666 |
|
667 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
|
668 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
|
669 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
|
670 // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
|
671 accum0 = _mm_packs_epi32(accum0, accum1); |
|
672 // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
|
673 accum2 = _mm_packs_epi32(accum2, zero); |
|
674 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
|
675 accum0 = _mm_packus_epi16(accum0, accum2); |
|
676 if (has_alpha) { |
|
677 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
|
678 __m128i a = _mm_srli_epi32(accum0, 8); |
|
679 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
|
680 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
|
681 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
|
682 a = _mm_srli_epi32(accum0, 16); |
|
683 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
|
684 b = _mm_max_epu8(a, b); // Max of r and g and b. |
|
685 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
|
686 b = _mm_slli_epi32(b, 24); |
|
687 accum0 = _mm_max_epu8(b, accum0); |
|
688 } else { |
|
689 __m128i mask = _mm_set1_epi32(0xff000000); |
|
690 accum0 = _mm_or_si128(accum0, mask); |
|
691 } |
|
692 |
|
693 for (int out_x = width; out_x < pixel_width; out_x++) { |
|
694 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0); |
|
695 accum0 = _mm_srli_si128(accum0, 4); |
|
696 out_row += 4; |
|
697 } |
|
698 } |
|
699 #endif |
|
700 } |
|
701 |
|
702 } // namespace |
|
703 |
|
704 // ConvolutionFilter1D --------------------------------------------------------- |
|
705 |
|
706 ConvolutionFilter1D::ConvolutionFilter1D() |
|
707 : max_filter_(0) { |
|
708 } |
|
709 |
|
710 ConvolutionFilter1D::~ConvolutionFilter1D() { |
|
711 } |
|
712 |
|
713 void ConvolutionFilter1D::AddFilter(int filter_offset, |
|
714 const float* filter_values, |
|
715 int filter_length) { |
|
716 SkASSERT(filter_length > 0); |
|
717 |
|
718 std::vector<Fixed> fixed_values; |
|
719 fixed_values.reserve(filter_length); |
|
720 |
|
721 for (int i = 0; i < filter_length; ++i) |
|
722 fixed_values.push_back(FloatToFixed(filter_values[i])); |
|
723 |
|
724 AddFilter(filter_offset, &fixed_values[0], filter_length); |
|
725 } |
|
726 |
|
727 void ConvolutionFilter1D::AddFilter(int filter_offset, |
|
728 const Fixed* filter_values, |
|
729 int filter_length) { |
|
730 // It is common for leading/trailing filter values to be zeros. In such |
|
731 // cases it is beneficial to only store the central factors. |
|
732 // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on |
|
733 // a 1080p image this optimization gives a ~10% speed improvement. |
|
734 int first_non_zero = 0; |
|
735 while (first_non_zero < filter_length && filter_values[first_non_zero] == 0) |
|
736 first_non_zero++; |
|
737 |
|
738 if (first_non_zero < filter_length) { |
|
739 // Here we have at least one non-zero factor. |
|
740 int last_non_zero = filter_length - 1; |
|
741 while (last_non_zero >= 0 && filter_values[last_non_zero] == 0) |
|
742 last_non_zero--; |
|
743 |
|
744 filter_offset += first_non_zero; |
|
745 filter_length = last_non_zero + 1 - first_non_zero; |
|
746 SkASSERT(filter_length > 0); |
|
747 |
|
748 for (int i = first_non_zero; i <= last_non_zero; i++) |
|
749 filter_values_.push_back(filter_values[i]); |
|
750 } else { |
|
751 // Here all the factors were zeroes. |
|
752 filter_length = 0; |
|
753 } |
|
754 |
|
755 FilterInstance instance; |
|
756 |
|
757 // We pushed filter_length elements onto filter_values_ |
|
758 instance.data_location = (static_cast<int>(filter_values_.size()) - |
|
759 filter_length); |
|
760 instance.offset = filter_offset; |
|
761 instance.length = filter_length; |
|
762 filters_.push_back(instance); |
|
763 |
|
764 max_filter_ = std::max(max_filter_, filter_length); |
|
765 } |
|
766 |
|
767 void BGRAConvolve2D(const unsigned char* source_data, |
|
768 int source_byte_row_stride, |
|
769 bool source_has_alpha, |
|
770 const ConvolutionFilter1D& filter_x, |
|
771 const ConvolutionFilter1D& filter_y, |
|
772 int output_byte_row_stride, |
|
773 unsigned char* output, |
|
774 bool use_sse2) { |
|
775 #if !defined(SIMD_SSE2) |
|
776 // Even we have runtime support for SSE2 instructions, since the binary |
|
777 // was not built with SSE2 support, we had to fallback to C version. |
|
778 use_sse2 = false; |
|
779 #endif |
|
780 |
|
781 int max_y_filter_size = filter_y.max_filter(); |
|
782 |
|
783 // The next row in the input that we will generate a horizontally |
|
784 // convolved row for. If the filter doesn't start at the beginning of the |
|
785 // image (this is the case when we are only resizing a subset), then we |
|
786 // don't want to generate any output rows before that. Compute the starting |
|
787 // row for convolution as the first pixel for the first vertical filter. |
|
788 int filter_offset, filter_length; |
|
789 const ConvolutionFilter1D::Fixed* filter_values = |
|
790 filter_y.FilterForValue(0, &filter_offset, &filter_length); |
|
791 int next_x_row = filter_offset; |
|
792 |
|
793 // We loop over each row in the input doing a horizontal convolution. This |
|
794 // will result in a horizontally convolved image. We write the results into |
|
795 // a circular buffer of convolved rows and do vertical convolution as rows |
|
796 // are available. This prevents us from having to store the entire |
|
797 // intermediate image and helps cache coherency. |
|
798 // We will need four extra rows to allow horizontal convolution could be done |
|
799 // simultaneously. We also padding each row in row buffer to be aligned-up to |
|
800 // 16 bytes. |
|
801 // TODO(jiesun): We do not use aligned load from row buffer in vertical |
|
802 // convolution pass yet. Somehow Windows does not like it. |
|
803 int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; |
|
804 int row_buffer_height = max_y_filter_size + (use_sse2 ? 4 : 0); |
|
805 CircularRowBuffer row_buffer(row_buffer_width, |
|
806 row_buffer_height, |
|
807 filter_offset); |
|
808 |
|
809 // Loop over every possible output row, processing just enough horizontal |
|
810 // convolutions to run each subsequent vertical convolution. |
|
811 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); |
|
812 int num_output_rows = filter_y.num_values(); |
|
813 |
|
814 // We need to check which is the last line to convolve before we advance 4 |
|
815 // lines in one iteration. |
|
816 int last_filter_offset, last_filter_length; |
|
817 filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset, |
|
818 &last_filter_length); |
|
819 |
|
820 for (int out_y = 0; out_y < num_output_rows; out_y++) { |
|
821 filter_values = filter_y.FilterForValue(out_y, |
|
822 &filter_offset, &filter_length); |
|
823 |
|
824 // Generate output rows until we have enough to run the current filter. |
|
825 if (use_sse2) { |
|
826 while (next_x_row < filter_offset + filter_length) { |
|
827 if (next_x_row + 3 < last_filter_offset + last_filter_length - 1) { |
|
828 const unsigned char* src[4]; |
|
829 unsigned char* out_row[4]; |
|
830 for (int i = 0; i < 4; ++i) { |
|
831 src[i] = &source_data[(next_x_row + i) * source_byte_row_stride]; |
|
832 out_row[i] = row_buffer.AdvanceRow(); |
|
833 } |
|
834 ConvolveHorizontally4_SSE2(src, filter_x, out_row); |
|
835 next_x_row += 4; |
|
836 } else { |
|
837 // For the last row, SSE2 load possibly to access data beyond the |
|
838 // image area. therefore we use C version here. |
|
839 if (next_x_row == last_filter_offset + last_filter_length - 1) { |
|
840 if (source_has_alpha) { |
|
841 ConvolveHorizontally<true>( |
|
842 &source_data[next_x_row * source_byte_row_stride], |
|
843 filter_x, row_buffer.AdvanceRow()); |
|
844 } else { |
|
845 ConvolveHorizontally<false>( |
|
846 &source_data[next_x_row * source_byte_row_stride], |
|
847 filter_x, row_buffer.AdvanceRow()); |
|
848 } |
|
849 } else { |
|
850 ConvolveHorizontally_SSE2( |
|
851 &source_data[next_x_row * source_byte_row_stride], |
|
852 filter_x, row_buffer.AdvanceRow()); |
|
853 } |
|
854 next_x_row++; |
|
855 } |
|
856 } |
|
857 } else { |
|
858 while (next_x_row < filter_offset + filter_length) { |
|
859 if (source_has_alpha) { |
|
860 ConvolveHorizontally<true>( |
|
861 &source_data[next_x_row * source_byte_row_stride], |
|
862 filter_x, row_buffer.AdvanceRow()); |
|
863 } else { |
|
864 ConvolveHorizontally<false>( |
|
865 &source_data[next_x_row * source_byte_row_stride], |
|
866 filter_x, row_buffer.AdvanceRow()); |
|
867 } |
|
868 next_x_row++; |
|
869 } |
|
870 } |
|
871 |
|
872 // Compute where in the output image this row of final data will go. |
|
873 unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; |
|
874 |
|
875 // Get the list of rows that the circular buffer has, in order. |
|
876 int first_row_in_circular_buffer; |
|
877 unsigned char* const* rows_to_convolve = |
|
878 row_buffer.GetRowAddresses(&first_row_in_circular_buffer); |
|
879 |
|
880 // Now compute the start of the subset of those rows that the filter |
|
881 // needs. |
|
882 unsigned char* const* first_row_for_filter = |
|
883 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; |
|
884 |
|
885 if (source_has_alpha) { |
|
886 if (use_sse2) { |
|
887 ConvolveVertically_SSE2<true>(filter_values, filter_length, |
|
888 first_row_for_filter, |
|
889 filter_x.num_values(), cur_output_row); |
|
890 } else { |
|
891 ConvolveVertically<true>(filter_values, filter_length, |
|
892 first_row_for_filter, |
|
893 filter_x.num_values(), cur_output_row); |
|
894 } |
|
895 } else { |
|
896 if (use_sse2) { |
|
897 ConvolveVertically_SSE2<false>(filter_values, filter_length, |
|
898 first_row_for_filter, |
|
899 filter_x.num_values(), cur_output_row); |
|
900 } else { |
|
901 ConvolveVertically<false>(filter_values, filter_length, |
|
902 first_row_for_filter, |
|
903 filter_x.num_values(), cur_output_row); |
|
904 } |
|
905 } |
|
906 } |
|
907 } |
|
908 |
|
909 } // namespace skia |