|
1 #define R16_BITS 5 |
|
2 #define G16_BITS 6 |
|
3 #define B16_BITS 5 |
|
4 |
|
5 #define R16_SHIFT (B16_BITS + G16_BITS) |
|
6 #define G16_SHIFT (B16_BITS) |
|
7 #define B16_SHIFT 0 |
|
8 |
|
9 #define MASK 0xff |
|
10 #define ONE_HALF 0x80 |
|
11 |
|
12 #define A_SHIFT 8 * 3 |
|
13 #define R_SHIFT 8 * 2 |
|
14 #define G_SHIFT 8 |
|
15 #define A_MASK 0xff000000 |
|
16 #define R_MASK 0xff0000 |
|
17 #define G_MASK 0xff00 |
|
18 |
|
19 #define RB_MASK 0xff00ff |
|
20 #define AG_MASK 0xff00ff00 |
|
21 #define RB_ONE_HALF 0x800080 |
|
22 #define RB_MASK_PLUS_ONE 0x10000100 |
|
23 |
|
24 #define ALPHA_8(x) ((x) >> A_SHIFT) |
|
25 #define RED_8(x) (((x) >> R_SHIFT) & MASK) |
|
26 #define GREEN_8(x) (((x) >> G_SHIFT) & MASK) |
|
27 #define BLUE_8(x) ((x) & MASK) |
|
28 |
|
29 // This uses the same dithering technique that Skia does. |
|
30 // It is essentially preturbing the lower bit based on the |
|
31 // high bit |
|
32 static inline uint16_t dither_32_to_16(uint32_t c) |
|
33 { |
|
34 uint8_t b = BLUE_8(c); |
|
35 uint8_t g = GREEN_8(c); |
|
36 uint8_t r = RED_8(c); |
|
37 r = ((r << 1) - ((r >> (8 - R16_BITS) << (8 - R16_BITS)) | (r >> R16_BITS))) >> (8 - R16_BITS); |
|
38 g = ((g << 1) - ((g >> (8 - G16_BITS) << (8 - G16_BITS)) | (g >> G16_BITS))) >> (8 - G16_BITS); |
|
39 b = ((b << 1) - ((b >> (8 - B16_BITS) << (8 - B16_BITS)) | (b >> B16_BITS))) >> (8 - B16_BITS); |
|
40 return ((r << R16_SHIFT) | (g << G16_SHIFT) | (b << B16_SHIFT)); |
|
41 } |
|
42 |
|
43 static inline uint16_t dither_8888_to_0565(uint32_t color, pixman_bool_t toggle) |
|
44 { |
|
45 // alternate between a preturbed truncation and a regular truncation |
|
46 if (toggle) { |
|
47 return dither_32_to_16(color); |
|
48 } else { |
|
49 return convert_8888_to_0565(color); |
|
50 } |
|
51 } |