|
1 /* GRAPHITE2 LICENSING |
|
2 |
|
3 Copyright 2010, SIL International |
|
4 All rights reserved. |
|
5 |
|
6 This library is free software; you can redistribute it and/or modify |
|
7 it under the terms of the GNU Lesser General Public License as published |
|
8 by the Free Software Foundation; either version 2.1 of License, or |
|
9 (at your option) any later version. |
|
10 |
|
11 This program is distributed in the hope that it will be useful, |
|
12 but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
14 Lesser General Public License for more details. |
|
15 |
|
16 You should also have received a copy of the GNU Lesser General Public |
|
17 License along with this library in the file named "LICENSE". |
|
18 If not, write to the Free Software Foundation, 51 Franklin Street, |
|
19 Suite 500, Boston, MA 02110-1335, USA or visit their web page on the |
|
20 internet at http://www.fsf.org/licenses/lgpl.html. |
|
21 |
|
22 Alternatively, the contents of this file may be used under the terms of the |
|
23 Mozilla Public License (http://mozilla.org/MPL) or the GNU General Public |
|
24 License, as published by the Free Software Foundation, either version 2 |
|
25 of the License or (at your option) any later version. |
|
26 */ |
|
27 /*--------------------------------------------------------------------*//*:Ignore this sentence. |
|
28 |
|
29 File: TtfUtil.cpp |
|
30 Responsibility: Alan Ward |
|
31 Last reviewed: Not yet. |
|
32 |
|
33 Description |
|
34 Implements the methods for TtfUtil class. This file should remain portable to any C++ |
|
35 environment by only using standard C++ and the TTF structurs defined in Tt.h. |
|
36 -------------------------------------------------------------------------------*//*:End Ignore*/ |
|
37 |
|
38 |
|
39 /*********************************************************************************************** |
|
40 Include files |
|
41 ***********************************************************************************************/ |
|
42 // Language headers |
|
43 //#include <algorithm> |
|
44 #include <cassert> |
|
45 #include <cstddef> |
|
46 #include <cstring> |
|
47 #include <climits> |
|
48 #include <cwchar> |
|
49 //#include <stdexcept> |
|
50 // Platform headers |
|
51 // Module headers |
|
52 #include "inc/TtfUtil.h" |
|
53 #include "inc/TtfTypes.h" |
|
54 #include "inc/Endian.h" |
|
55 |
|
56 /*********************************************************************************************** |
|
57 Forward declarations |
|
58 ***********************************************************************************************/ |
|
59 |
|
60 /*********************************************************************************************** |
|
61 Local Constants and static variables |
|
62 ***********************************************************************************************/ |
|
63 namespace |
|
64 { |
|
65 // max number of components allowed in composite glyphs |
|
66 const int kMaxGlyphComponents = 8; |
|
67 |
|
68 template <int R, typename T> |
|
69 inline float fixed_to_float(const T f) { |
|
70 return float(f)/float(2^R); |
|
71 } |
|
72 |
|
73 /*---------------------------------------------------------------------------------------------- |
|
74 Table of standard Postscript glyph names. From Martin Hosken. Disagress with ttfdump.exe |
|
75 ---------------------------------------------------------------------------------------------*/ |
|
76 #ifdef ALL_TTFUTILS |
|
77 const int kcPostNames = 258; |
|
78 |
|
79 const char * rgPostName[kcPostNames] = { |
|
80 ".notdef", ".null", "nonmarkingreturn", "space", "exclam", "quotedbl", "numbersign", |
|
81 "dollar", "percent", "ampersand", "quotesingle", "parenleft", |
|
82 "parenright", "asterisk", "plus", "comma", "hyphen", "period", "slash", |
|
83 "zero", "one", "two", "three", "four", "five", "six", "seven", "eight", |
|
84 "nine", "colon", "semicolon", "less", "equal", "greater", "question", |
|
85 "at", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", |
|
86 "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", |
|
87 "bracketleft", "backslash", "bracketright", "asciicircum", |
|
88 "underscore", "grave", "a", "b", "c", "d", "e", "f", "g", "h", "i", |
|
89 "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", |
|
90 "x", "y", "z", "braceleft", "bar", "braceright", "asciitilde", |
|
91 "Adieresis", "Aring", "Ccedilla", "Eacute", "Ntilde", "Odieresis", |
|
92 "Udieresis", "aacute", "agrave", "acircumflex", "adieresis", "atilde", |
|
93 "aring", "ccedilla", "eacute", "egrave", "ecircumflex", "edieresis", |
|
94 "iacute", "igrave", "icircumflex", "idieresis", "ntilde", "oacute", |
|
95 "ograve", "ocircumflex", "odieresis", "otilde", "uacute", "ugrave", |
|
96 "ucircumflex", "udieresis", "dagger", "degree", "cent", "sterling", |
|
97 "section", "bullet", "paragraph", "germandbls", "registered", |
|
98 "copyright", "trademark", "acute", "dieresis", "notequal", "AE", |
|
99 "Oslash", "infinity", "plusminus", "lessequal", "greaterequal", "yen", |
|
100 "mu", "partialdiff", "summation", "product", "pi", "integral", |
|
101 "ordfeminine", "ordmasculine", "Omega", "ae", "oslash", "questiondown", |
|
102 "exclamdown", "logicalnot", "radical", "florin", "approxequal", |
|
103 "Delta", "guillemotleft", "guillemotright", "ellipsis", "nonbreakingspace", |
|
104 "Agrave", "Atilde", "Otilde", "OE", "oe", "endash", "emdash", |
|
105 "quotedblleft", "quotedblright", "quoteleft", "quoteright", "divide", |
|
106 "lozenge", "ydieresis", "Ydieresis", "fraction", "currency", |
|
107 "guilsinglleft", "guilsinglright", "fi", "fl", "daggerdbl", "periodcentered", |
|
108 "quotesinglbase", "quotedblbase", "perthousand", "Acircumflex", |
|
109 "Ecircumflex", "Aacute", "Edieresis", "Egrave", "Iacute", |
|
110 "Icircumflex", "Idieresis", "Igrave", "Oacute", "Ocircumflex", |
|
111 "apple", "Ograve", "Uacute", "Ucircumflex", "Ugrave", "dotlessi", |
|
112 "circumflex", "tilde", "macron", "breve", "dotaccent", "ring", |
|
113 "cedilla", "hungarumlaut", "ogonek", "caron", "Lslash", "lslash", |
|
114 "Scaron", "scaron", "Zcaron", "zcaron", "brokenbar", "Eth", "eth", |
|
115 "Yacute", "yacute", "Thorn", "thorn", "minus", "multiply", |
|
116 "onesuperior", "twosuperior", "threesuperior", "onehalf", "onequarter", |
|
117 "threequarters", "franc", "Gbreve", "gbreve", "Idotaccent", "Scedilla", |
|
118 "scedilla", "Cacute", "cacute", "Ccaron", "ccaron", |
|
119 "dcroat" }; |
|
120 #endif |
|
121 |
|
122 } // end of namespace |
|
123 |
|
124 /*********************************************************************************************** |
|
125 Methods |
|
126 ***********************************************************************************************/ |
|
127 |
|
128 /* Note on error processing: The code guards against bad glyph ids being used to look up data |
|
129 in open ended tables (loca, hmtx). If the glyph id comes from a cmap this shouldn't happen |
|
130 but it seems prudent to check for user errors here. The code does assume that data obtained |
|
131 from the TTF file is valid otherwise (though the CheckTable method seeks to check for |
|
132 obvious problems that might accompany a change in table versions). For example an invalid |
|
133 offset in the loca table which could exceed the size of the glyf table is NOT trapped. |
|
134 Likewise if numberOf_LongHorMetrics in the hhea table is wrong, this will NOT be trapped, |
|
135 which could cause a lookup in the hmtx table to exceed the table length. Of course, TTF tables |
|
136 that are completely corrupt will cause unpredictable results. */ |
|
137 |
|
138 /* Note on composite glyphs: Glyphs that have components that are themselves composites |
|
139 are not supported. IsDeepComposite can be used to test for this. False is returned from many |
|
140 of the methods in this cases. It is unclear how to build composite glyphs in some cases, |
|
141 so this code represents my best guess until test cases can be found. See notes on the high- |
|
142 level GlyfPoints method. */ |
|
143 namespace graphite2 |
|
144 { |
|
145 namespace TtfUtil |
|
146 { |
|
147 |
|
148 |
|
149 /*---------------------------------------------------------------------------------------------- |
|
150 Get offset and size of the offset table needed to find table directory. |
|
151 Return true if success, false otherwise. |
|
152 lSize excludes any table directory entries. |
|
153 ----------------------------------------------------------------------------------------------*/ |
|
154 bool GetHeaderInfo(size_t & lOffset, size_t & lSize) |
|
155 { |
|
156 lOffset = 0; |
|
157 lSize = offsetof(Sfnt::OffsetSubTable, table_directory); |
|
158 assert(sizeof(uint32) + 4*sizeof (uint16) == lSize); |
|
159 return true; |
|
160 } |
|
161 |
|
162 /*---------------------------------------------------------------------------------------------- |
|
163 Check the offset table for expected data. |
|
164 Return true if success, false otherwise. |
|
165 ----------------------------------------------------------------------------------------------*/ |
|
166 bool CheckHeader(const void * pHdr) |
|
167 { |
|
168 const Sfnt::OffsetSubTable * pOffsetTable |
|
169 = reinterpret_cast<const Sfnt::OffsetSubTable *>(pHdr); |
|
170 |
|
171 return pHdr && be::swap(pOffsetTable->scaler_type) == Sfnt::OffsetSubTable::TrueTypeWin; |
|
172 } |
|
173 |
|
174 /*---------------------------------------------------------------------------------------------- |
|
175 Get offset and size of the table directory. |
|
176 Return true if successful, false otherwise. |
|
177 ----------------------------------------------------------------------------------------------*/ |
|
178 bool GetTableDirInfo(const void * pHdr, size_t & lOffset, size_t & lSize) |
|
179 { |
|
180 const Sfnt::OffsetSubTable * pOffsetTable |
|
181 = reinterpret_cast<const Sfnt::OffsetSubTable *>(pHdr); |
|
182 |
|
183 lOffset = offsetof(Sfnt::OffsetSubTable, table_directory); |
|
184 lSize = be::swap(pOffsetTable->num_tables) |
|
185 * sizeof(Sfnt::OffsetSubTable::Entry); |
|
186 |
|
187 return true; |
|
188 } |
|
189 |
|
190 |
|
191 /*---------------------------------------------------------------------------------------------- |
|
192 Get offset and size of the specified table. |
|
193 Return true if successful, false otherwise. On false, offset and size will be 0. |
|
194 ----------------------------------------------------------------------------------------------*/ |
|
195 bool GetTableInfo(const Tag TableTag, const void * pHdr, const void * pTableDir, |
|
196 size_t & lOffset, size_t & lSize) |
|
197 { |
|
198 const Sfnt::OffsetSubTable * pOffsetTable |
|
199 = reinterpret_cast<const Sfnt::OffsetSubTable *>(pHdr); |
|
200 const size_t num_tables = be::swap(pOffsetTable->num_tables); |
|
201 const Sfnt::OffsetSubTable::Entry |
|
202 * entry_itr = reinterpret_cast<const Sfnt::OffsetSubTable::Entry *>( |
|
203 pTableDir), |
|
204 * const dir_end = entry_itr + num_tables; |
|
205 |
|
206 if (num_tables > 40) |
|
207 return false; |
|
208 |
|
209 for (;entry_itr != dir_end; ++entry_itr) // 40 - safe guard |
|
210 { |
|
211 if (be::swap(entry_itr->tag) == TableTag) |
|
212 { |
|
213 lOffset = be::swap(entry_itr->offset); |
|
214 lSize = be::swap(entry_itr->length); |
|
215 return true; |
|
216 } |
|
217 } |
|
218 |
|
219 return false; |
|
220 } |
|
221 |
|
222 /*---------------------------------------------------------------------------------------------- |
|
223 Check the specified table. Tests depend on the table type. |
|
224 Return true if successful, false otherwise. |
|
225 ----------------------------------------------------------------------------------------------*/ |
|
226 bool CheckTable(const Tag TableId, const void * pTable, size_t lTableSize) |
|
227 { |
|
228 using namespace Sfnt; |
|
229 |
|
230 if (pTable == 0) return false; |
|
231 |
|
232 switch(TableId) |
|
233 { |
|
234 case Tag::cmap: // cmap |
|
235 { |
|
236 const Sfnt::CharacterCodeMap * const pCmap |
|
237 = reinterpret_cast<const Sfnt::CharacterCodeMap *>(pTable); |
|
238 return be::swap(pCmap->version) == 0; |
|
239 } |
|
240 |
|
241 case Tag::head: // head |
|
242 { |
|
243 const Sfnt::FontHeader * const pHead |
|
244 = reinterpret_cast<const Sfnt::FontHeader *>(pTable); |
|
245 bool r = be::swap(pHead->version) == OneFix |
|
246 && be::swap(pHead->magic_number) == FontHeader::MagicNumber |
|
247 && be::swap(pHead->glyph_data_format) |
|
248 == FontHeader::GlypDataFormat |
|
249 && (be::swap(pHead->index_to_loc_format) |
|
250 == FontHeader::ShortIndexLocFormat |
|
251 || be::swap(pHead->index_to_loc_format) |
|
252 == FontHeader::LongIndexLocFormat) |
|
253 && sizeof(FontHeader) <= lTableSize; |
|
254 return r; |
|
255 } |
|
256 |
|
257 case Tag::post: // post |
|
258 { |
|
259 const Sfnt::PostScriptGlyphName * const pPost |
|
260 = reinterpret_cast<const Sfnt::PostScriptGlyphName *>(pTable); |
|
261 const fixed format = be::swap(pPost->format); |
|
262 bool r = format == PostScriptGlyphName::Format1 |
|
263 || format == PostScriptGlyphName::Format2 |
|
264 || format == PostScriptGlyphName::Format3 |
|
265 || format == PostScriptGlyphName::Format25; |
|
266 return r; |
|
267 } |
|
268 |
|
269 case Tag::hhea: // hhea |
|
270 { |
|
271 const Sfnt::HorizontalHeader * pHhea = |
|
272 reinterpret_cast<const Sfnt::HorizontalHeader *>(pTable); |
|
273 bool r = be::swap(pHhea->version) == OneFix |
|
274 && be::swap(pHhea->metric_data_format) == 0 |
|
275 && sizeof (Sfnt::HorizontalHeader) <= lTableSize; |
|
276 return r; |
|
277 } |
|
278 |
|
279 case Tag::maxp: // maxp |
|
280 { |
|
281 const Sfnt::MaximumProfile * pMaxp = |
|
282 reinterpret_cast<const Sfnt::MaximumProfile *>(pTable); |
|
283 bool r = be::swap(pMaxp->version) == OneFix |
|
284 && sizeof(Sfnt::MaximumProfile) <= lTableSize; |
|
285 return r; |
|
286 } |
|
287 |
|
288 case Tag::OS_2: // OS/2 |
|
289 { |
|
290 const Sfnt::Compatibility * pOs2 |
|
291 = reinterpret_cast<const Sfnt::Compatibility *>(pTable); |
|
292 if (be::swap(pOs2->version) == 0) |
|
293 { // OS/2 table version 1 size |
|
294 // if (sizeof(Sfnt::Compatibility) |
|
295 // - sizeof(uint32)*2 - sizeof(int16)*2 |
|
296 // - sizeof(uint16)*3 <= lTableSize) |
|
297 if (sizeof(Sfnt::Compatibility0) <= lTableSize) |
|
298 return true; |
|
299 } |
|
300 else if (be::swap(pOs2->version) == 1) |
|
301 { // OS/2 table version 2 size |
|
302 // if (sizeof(Sfnt::Compatibility) |
|
303 // - sizeof(int16) *2 |
|
304 // - sizeof(uint16)*3 <= lTableSize) |
|
305 if (sizeof(Sfnt::Compatibility1) <= lTableSize) |
|
306 return true; |
|
307 } |
|
308 else if (be::swap(pOs2->version) == 2) |
|
309 { // OS/2 table version 3 size |
|
310 if (sizeof(Sfnt::Compatibility2) <= lTableSize) |
|
311 return true; |
|
312 } |
|
313 else if (be::swap(pOs2->version) == 3 || be::swap(pOs2->version) == 4) |
|
314 { // OS/2 table version 4 size - version 4 changed the meaning of some fields which we don't use |
|
315 if (sizeof(Sfnt::Compatibility3) <= lTableSize) |
|
316 return true; |
|
317 } |
|
318 else |
|
319 return false; |
|
320 break; |
|
321 } |
|
322 |
|
323 case Tag::name: |
|
324 { |
|
325 const Sfnt::FontNames * pName |
|
326 = reinterpret_cast<const Sfnt::FontNames *>(pTable); |
|
327 return be::swap(pName->format) == 0; |
|
328 } |
|
329 |
|
330 default: |
|
331 break; |
|
332 } |
|
333 |
|
334 return true; |
|
335 } |
|
336 |
|
337 /*---------------------------------------------------------------------------------------------- |
|
338 Return the number of glyphs in the font. Should never be less than zero. |
|
339 |
|
340 Note: this method is not currently used by the Graphite engine. |
|
341 ----------------------------------------------------------------------------------------------*/ |
|
342 size_t GlyphCount(const void * pMaxp) |
|
343 { |
|
344 const Sfnt::MaximumProfile * pTable = |
|
345 reinterpret_cast<const Sfnt::MaximumProfile *>(pMaxp); |
|
346 return be::swap(pTable->num_glyphs); |
|
347 } |
|
348 |
|
349 #ifdef ALL_TTFUTILS |
|
350 /*---------------------------------------------------------------------------------------------- |
|
351 Return the maximum number of components for any composite glyph in the font. |
|
352 |
|
353 Note: this method is not currently used by the Graphite engine. |
|
354 ----------------------------------------------------------------------------------------------*/ |
|
355 size_t MaxCompositeComponentCount(const void * pMaxp) |
|
356 { |
|
357 const Sfnt::MaximumProfile * pTable = |
|
358 reinterpret_cast<const Sfnt::MaximumProfile *>(pMaxp); |
|
359 return be::swap(pTable->max_component_elements); |
|
360 } |
|
361 |
|
362 /*---------------------------------------------------------------------------------------------- |
|
363 Composite glyphs can be composed of glyphs that are themselves composites. |
|
364 This method returns the maximum number of levels like this for any glyph in the font. |
|
365 A non-composite glyph has a level of 1. |
|
366 |
|
367 Note: this method is not currently used by the Graphite engine. |
|
368 ----------------------------------------------------------------------------------------------*/ |
|
369 size_t MaxCompositeLevelCount(const void * pMaxp) |
|
370 { |
|
371 const Sfnt::MaximumProfile * pTable = |
|
372 reinterpret_cast<const Sfnt::MaximumProfile *>(pMaxp); |
|
373 return be::swap(pTable->max_component_depth); |
|
374 } |
|
375 |
|
376 /*---------------------------------------------------------------------------------------------- |
|
377 Return the number of glyphs in the font according to a differt source. |
|
378 Should never be less than zero. Return -1 on failure. |
|
379 |
|
380 Note: this method is not currently used by the Graphite engine. |
|
381 ----------------------------------------------------------------------------------------------*/ |
|
382 size_t LocaGlyphCount(size_t lLocaSize, const void * pHead) //throw(std::domain_error) |
|
383 { |
|
384 |
|
385 const Sfnt::FontHeader * pTable |
|
386 = reinterpret_cast<const Sfnt::FontHeader *>(pHead); |
|
387 |
|
388 if (be::swap(pTable->index_to_loc_format) |
|
389 == Sfnt::FontHeader::ShortIndexLocFormat) |
|
390 // loca entries are two bytes and have been divided by two |
|
391 return (lLocaSize >> 1) - 1; |
|
392 |
|
393 if (be::swap(pTable->index_to_loc_format) |
|
394 == Sfnt::FontHeader::LongIndexLocFormat) |
|
395 // loca entries are four bytes |
|
396 return (lLocaSize >> 2) - 1; |
|
397 |
|
398 return -1; |
|
399 //throw std::domain_error("head table in inconsistent state. The font may be corrupted"); |
|
400 } |
|
401 #endif |
|
402 |
|
403 /*---------------------------------------------------------------------------------------------- |
|
404 Return the design units the font is designed with |
|
405 ----------------------------------------------------------------------------------------------*/ |
|
406 int DesignUnits(const void * pHead) |
|
407 { |
|
408 const Sfnt::FontHeader * pTable = |
|
409 reinterpret_cast<const Sfnt::FontHeader *>(pHead); |
|
410 |
|
411 return be::swap(pTable->units_per_em); |
|
412 } |
|
413 |
|
414 #ifdef ALL_TTFUTILS |
|
415 /*---------------------------------------------------------------------------------------------- |
|
416 Return the checksum from the head table, which serves as a unique identifer for the font. |
|
417 ----------------------------------------------------------------------------------------------*/ |
|
418 int HeadTableCheckSum(const void * pHead) |
|
419 { |
|
420 const Sfnt::FontHeader * pTable = |
|
421 reinterpret_cast<const Sfnt::FontHeader *>(pHead); |
|
422 |
|
423 return be::swap(pTable->check_sum_adjustment); |
|
424 } |
|
425 |
|
426 /*---------------------------------------------------------------------------------------------- |
|
427 Return the create time from the head table. This consists of a 64-bit integer, which |
|
428 we return here as two 32-bit integers. |
|
429 |
|
430 Note: this method is not currently used by the Graphite engine. |
|
431 ----------------------------------------------------------------------------------------------*/ |
|
432 void HeadTableCreateTime(const void * pHead, |
|
433 unsigned int * pnDateBC, unsigned int * pnDateAD) |
|
434 { |
|
435 const Sfnt::FontHeader * pTable = |
|
436 reinterpret_cast<const Sfnt::FontHeader *>(pHead); |
|
437 |
|
438 *pnDateBC = be::swap(pTable->created[0]); |
|
439 *pnDateAD = be::swap(pTable->created[1]); |
|
440 } |
|
441 |
|
442 /*---------------------------------------------------------------------------------------------- |
|
443 Return the modify time from the head table.This consists of a 64-bit integer, which |
|
444 we return here as two 32-bit integers. |
|
445 |
|
446 Note: this method is not currently used by the Graphite engine. |
|
447 ----------------------------------------------------------------------------------------------*/ |
|
448 void HeadTableModifyTime(const void * pHead, |
|
449 unsigned int * pnDateBC, unsigned int *pnDateAD) |
|
450 { |
|
451 const Sfnt::FontHeader * pTable = |
|
452 reinterpret_cast<const Sfnt::FontHeader *>(pHead); |
|
453 |
|
454 *pnDateBC = be::swap(pTable->modified[0]); |
|
455 *pnDateAD = be::swap(pTable->modified[1]); |
|
456 } |
|
457 |
|
458 /*---------------------------------------------------------------------------------------------- |
|
459 Return true if the font is italic. |
|
460 ----------------------------------------------------------------------------------------------*/ |
|
461 bool IsItalic(const void * pHead) |
|
462 { |
|
463 const Sfnt::FontHeader * pTable = |
|
464 reinterpret_cast<const Sfnt::FontHeader *>(pHead); |
|
465 |
|
466 return ((be::swap(pTable->mac_style) & 0x00000002) != 0); |
|
467 } |
|
468 |
|
469 /*---------------------------------------------------------------------------------------------- |
|
470 Return the ascent for the font |
|
471 ----------------------------------------------------------------------------------------------*/ |
|
472 int FontAscent(const void * pOs2) |
|
473 { |
|
474 const Sfnt::Compatibility * pTable = reinterpret_cast<const Sfnt::Compatibility *>(pOs2); |
|
475 |
|
476 return be::swap(pTable->win_ascent); |
|
477 } |
|
478 |
|
479 /*---------------------------------------------------------------------------------------------- |
|
480 Return the descent for the font |
|
481 ----------------------------------------------------------------------------------------------*/ |
|
482 int FontDescent(const void * pOs2) |
|
483 { |
|
484 const Sfnt::Compatibility * pTable = reinterpret_cast<const Sfnt::Compatibility *>(pOs2); |
|
485 |
|
486 return be::swap(pTable->win_descent); |
|
487 } |
|
488 |
|
489 /*---------------------------------------------------------------------------------------------- |
|
490 Get the bold and italic style bits. |
|
491 Return true if successful. false otherwise. |
|
492 In addition to checking the OS/2 table, one could also check |
|
493 the head table's macStyle field (overridden by the OS/2 table on Win) |
|
494 the sub-family name in the name table (though this can contain oblique, dark, etc too) |
|
495 ----------------------------------------------------------------------------------------------*/ |
|
496 bool FontOs2Style(const void *pOs2, bool & fBold, bool & fItalic) |
|
497 { |
|
498 const Sfnt::Compatibility * pTable = reinterpret_cast<const Sfnt::Compatibility *>(pOs2); |
|
499 |
|
500 fBold = (be::swap(pTable->fs_selection) & Sfnt::Compatibility::Bold) != 0; |
|
501 fItalic = (be::swap(pTable->fs_selection) & Sfnt::Compatibility::Italic) != 0; |
|
502 |
|
503 return true; |
|
504 } |
|
505 #endif |
|
506 |
|
507 /*---------------------------------------------------------------------------------------------- |
|
508 Method for searching name table. |
|
509 ----------------------------------------------------------------------------------------------*/ |
|
510 bool GetNameInfo(const void * pName, int nPlatformId, int nEncodingId, |
|
511 int nLangId, int nNameId, size_t & lOffset, size_t & lSize) |
|
512 { |
|
513 lOffset = 0; |
|
514 lSize = 0; |
|
515 |
|
516 const Sfnt::FontNames * pTable = reinterpret_cast<const Sfnt::FontNames *>(pName); |
|
517 uint16 cRecord = be::swap(pTable->count); |
|
518 uint16 nRecordOffset = be::swap(pTable->string_offset); |
|
519 const Sfnt::NameRecord * pRecord = reinterpret_cast<const Sfnt::NameRecord *>(pTable + 1); |
|
520 |
|
521 for (int i = 0; i < cRecord; ++i) |
|
522 { |
|
523 if (be::swap(pRecord->platform_id) == nPlatformId && |
|
524 be::swap(pRecord->platform_specific_id) == nEncodingId && |
|
525 be::swap(pRecord->language_id) == nLangId && |
|
526 be::swap(pRecord->name_id) == nNameId) |
|
527 { |
|
528 lOffset = be::swap(pRecord->offset) + nRecordOffset; |
|
529 lSize = be::swap(pRecord->length); |
|
530 return true; |
|
531 } |
|
532 pRecord++; |
|
533 } |
|
534 |
|
535 return false; |
|
536 } |
|
537 |
|
538 #ifdef ALL_TTFUTILS |
|
539 /*---------------------------------------------------------------------------------------------- |
|
540 Return all the lang-IDs that have data for the given name-IDs. Assume that there is room |
|
541 in the return array (langIdList) for 128 items. The purpose of this method is to return |
|
542 a list of all possible lang-IDs. |
|
543 ----------------------------------------------------------------------------------------------*/ |
|
544 int GetLangsForNames(const void * pName, int nPlatformId, int nEncodingId, |
|
545 int * nameIdList, int cNameIds, short * langIdList) |
|
546 { |
|
547 const Sfnt::FontNames * pTable = reinterpret_cast<const Sfnt::FontNames *>(pName); |
|
548 int cLangIds = 0; |
|
549 uint16 cRecord = be::swap(pTable->count); |
|
550 if (cRecord > 127) return cLangIds; |
|
551 //uint16 nRecordOffset = swapw(pTable->stringOffset); |
|
552 const Sfnt::NameRecord * pRecord = reinterpret_cast<const Sfnt::NameRecord *>(pTable + 1); |
|
553 |
|
554 for (int i = 0; i < cRecord; ++i) |
|
555 { |
|
556 if (be::swap(pRecord->platform_id) == nPlatformId && |
|
557 be::swap(pRecord->platform_specific_id) == nEncodingId) |
|
558 { |
|
559 bool fNameFound = false; |
|
560 int nLangId = be::swap(pRecord->language_id); |
|
561 int nNameId = be::swap(pRecord->name_id); |
|
562 for (int j = 0; j < cNameIds; j++) |
|
563 { |
|
564 if (nNameId == nameIdList[j]) |
|
565 { |
|
566 fNameFound = true; |
|
567 break; |
|
568 } |
|
569 } |
|
570 if (fNameFound) |
|
571 { |
|
572 // Add it if it's not there. |
|
573 int ilang; |
|
574 for (ilang = 0; ilang < cLangIds; ilang++) |
|
575 if (langIdList[ilang] == nLangId) |
|
576 break; |
|
577 if (ilang >= cLangIds) |
|
578 { |
|
579 langIdList[cLangIds] = short(nLangId); |
|
580 cLangIds++; |
|
581 } |
|
582 if (cLangIds == 128) |
|
583 return cLangIds; |
|
584 } |
|
585 } |
|
586 pRecord++; |
|
587 } |
|
588 |
|
589 return cLangIds; |
|
590 } |
|
591 |
|
592 /*---------------------------------------------------------------------------------------------- |
|
593 Get the offset and size of the font family name in English for the MS Platform with Unicode |
|
594 writing system. The offset is within the pName data. The string is double byte with MSB |
|
595 first. |
|
596 ----------------------------------------------------------------------------------------------*/ |
|
597 bool Get31EngFamilyInfo(const void * pName, size_t & lOffset, size_t & lSize) |
|
598 { |
|
599 return GetNameInfo(pName, Sfnt::NameRecord::Microsoft, 1, 1033, |
|
600 Sfnt::NameRecord::Family, lOffset, lSize); |
|
601 } |
|
602 |
|
603 /*---------------------------------------------------------------------------------------------- |
|
604 Get the offset and size of the full font name in English for the MS Platform with Unicode |
|
605 writing system. The offset is within the pName data. The string is double byte with MSB |
|
606 first. |
|
607 |
|
608 Note: this method is not currently used by the Graphite engine. |
|
609 ----------------------------------------------------------------------------------------------*/ |
|
610 bool Get31EngFullFontInfo(const void * pName, size_t & lOffset, size_t & lSize) |
|
611 { |
|
612 return GetNameInfo(pName, Sfnt::NameRecord::Microsoft, 1, 1033, |
|
613 Sfnt::NameRecord::Fullname, lOffset, lSize); |
|
614 } |
|
615 |
|
616 /*---------------------------------------------------------------------------------------------- |
|
617 Get the offset and size of the font family name in English for the MS Platform with Symbol |
|
618 writing system. The offset is within the pName data. The string is double byte with MSB |
|
619 first. |
|
620 ----------------------------------------------------------------------------------------------*/ |
|
621 bool Get30EngFamilyInfo(const void * pName, size_t & lOffset, size_t & lSize) |
|
622 { |
|
623 return GetNameInfo(pName, Sfnt::NameRecord::Microsoft, 0, 1033, |
|
624 Sfnt::NameRecord::Family, lOffset, lSize); |
|
625 } |
|
626 |
|
627 /*---------------------------------------------------------------------------------------------- |
|
628 Get the offset and size of the full font name in English for the MS Platform with Symbol |
|
629 writing system. The offset is within the pName data. The string is double byte with MSB |
|
630 first. |
|
631 |
|
632 Note: this method is not currently used by the Graphite engine. |
|
633 ----------------------------------------------------------------------------------------------*/ |
|
634 bool Get30EngFullFontInfo(const void * pName, size_t & lOffset, size_t & lSize) |
|
635 { |
|
636 return GetNameInfo(pName, Sfnt::NameRecord::Microsoft, 0, 1033, |
|
637 Sfnt::NameRecord::Fullname, lOffset, lSize); |
|
638 } |
|
639 |
|
640 /*---------------------------------------------------------------------------------------------- |
|
641 Return the Glyph ID for a given Postscript name. This method finds the first glyph which |
|
642 matches the requested Postscript name. Ideally every glyph should have a unique Postscript |
|
643 name (except for special names such as .notdef), but this is not always true. |
|
644 On failure return value less than zero. |
|
645 -1 - table search failed |
|
646 -2 - format 3 table (no Postscript glyph info) |
|
647 -3 - other failures |
|
648 |
|
649 Note: this method is not currently used by the Graphite engine. |
|
650 ----------------------------------------------------------------------------------------------*/ |
|
651 int PostLookup(const void * pPost, size_t lPostSize, const void * pMaxp, |
|
652 const char * pPostName) |
|
653 { |
|
654 using namespace Sfnt; |
|
655 |
|
656 const Sfnt::PostScriptGlyphName * pTable |
|
657 = reinterpret_cast<const Sfnt::PostScriptGlyphName *>(pPost); |
|
658 fixed format = be::swap(pTable->format); |
|
659 |
|
660 if (format == PostScriptGlyphName::Format3) |
|
661 { // format 3 - no Postscript glyph info in font |
|
662 return -2; |
|
663 } |
|
664 |
|
665 // search for given Postscript name among the standard names |
|
666 int iPostName = -1; // index in standard names |
|
667 for (int i = 0; i < kcPostNames; i++) |
|
668 { |
|
669 if (!strcmp(pPostName, rgPostName[i])) |
|
670 { |
|
671 iPostName = i; |
|
672 break; |
|
673 } |
|
674 } |
|
675 |
|
676 if (format == PostScriptGlyphName::Format1) |
|
677 { // format 1 - use standard Postscript names |
|
678 return iPostName; |
|
679 } |
|
680 |
|
681 if (format == PostScriptGlyphName::Format25) |
|
682 { |
|
683 if (iPostName == -1) |
|
684 return -1; |
|
685 |
|
686 const PostScriptGlyphName25 * pTable25 |
|
687 = static_cast<const PostScriptGlyphName25 *>(pTable); |
|
688 int cnGlyphs = GlyphCount(pMaxp); |
|
689 for (gid16 nGlyphId = 0; nGlyphId < cnGlyphs && nGlyphId < kcPostNames; |
|
690 nGlyphId++) |
|
691 { // glyph_name_index25 contains bytes so no byte swapping needed |
|
692 // search for first glyph id that uses the standard name |
|
693 if (nGlyphId + pTable25->offset[nGlyphId] == iPostName) |
|
694 return nGlyphId; |
|
695 } |
|
696 } |
|
697 |
|
698 if (format == PostScriptGlyphName::Format2) |
|
699 { // format 2 |
|
700 const PostScriptGlyphName2 * pTable2 |
|
701 = static_cast<const PostScriptGlyphName2 *>(pTable); |
|
702 |
|
703 int cnGlyphs = be::swap(pTable2->number_of_glyphs); |
|
704 |
|
705 if (iPostName != -1) |
|
706 { // did match a standard name, look for first glyph id mapped to that name |
|
707 for (gid16 nGlyphId = 0; nGlyphId < cnGlyphs; nGlyphId++) |
|
708 { |
|
709 if (be::swap(pTable2->glyph_name_index[nGlyphId]) == iPostName) |
|
710 return nGlyphId; |
|
711 } |
|
712 } |
|
713 |
|
714 { // did not match a standard name, search font specific names |
|
715 size_t nStrSizeGoal = strlen(pPostName); |
|
716 const char * pFirstGlyphName = reinterpret_cast<const char *>( |
|
717 &pTable2->glyph_name_index[0] + cnGlyphs); |
|
718 const char * pGlyphName = pFirstGlyphName; |
|
719 int iInNames = 0; // index in font specific names |
|
720 bool fFound = false; |
|
721 const char * const endOfTable |
|
722 = reinterpret_cast<const char *>(pTable2) + lPostSize; |
|
723 while (pGlyphName < endOfTable && !fFound) |
|
724 { // search Pascal strings for first matching name |
|
725 size_t nStringSize = size_t(*pGlyphName); |
|
726 if (nStrSizeGoal != nStringSize || |
|
727 strncmp(pGlyphName + 1, pPostName, nStringSize)) |
|
728 { // did not match |
|
729 ++iInNames; |
|
730 pGlyphName += nStringSize + 1; |
|
731 } |
|
732 else |
|
733 { // did match |
|
734 fFound = true; |
|
735 } |
|
736 } |
|
737 if (!fFound) |
|
738 return -1; // no font specific name matches request |
|
739 |
|
740 iInNames += kcPostNames; |
|
741 for (gid16 nGlyphId = 0; nGlyphId < cnGlyphs; nGlyphId++) |
|
742 { // search for first glyph id that maps to the found string index |
|
743 if (be::swap(pTable2->glyph_name_index[nGlyphId]) == iInNames) |
|
744 return nGlyphId; |
|
745 } |
|
746 return -1; // no glyph mapped to this index (very strange) |
|
747 } |
|
748 } |
|
749 |
|
750 return -3; |
|
751 } |
|
752 |
|
753 /*---------------------------------------------------------------------------------------------- |
|
754 Convert a Unicode character string from big endian (MSB first, Motorola) format to little |
|
755 endian (LSB first, Intel) format. |
|
756 nSize is the number of Unicode characters in the string. It should not include any |
|
757 terminating null. If nSize is 0, it is assumed the string is null terminated. nSize |
|
758 defaults to 0. |
|
759 Return true if successful, false otherwise. |
|
760 ----------------------------------------------------------------------------------------------*/ |
|
761 void SwapWString(void * pWStr, size_t nSize /* = 0 */) //throw (std::invalid_argument) |
|
762 { |
|
763 if (pWStr == 0) |
|
764 { |
|
765 // throw std::invalid_argument("null pointer given"); |
|
766 return; |
|
767 } |
|
768 |
|
769 uint16 * pStr = reinterpret_cast<uint16 *>(pWStr); |
|
770 uint16 * const pStrEnd = pStr + (nSize == 0 ? wcslen((const wchar_t*)pStr) : nSize); |
|
771 |
|
772 for (; pStr != pStrEnd; ++pStr) |
|
773 *pStr = be::swap(*pStr); |
|
774 // std::transform(pStr, pStrEnd, pStr, read<uint16>); |
|
775 |
|
776 // for (int i = 0; i < nSize; i++) |
|
777 // { // swap the wide characters in the string |
|
778 // pStr[i] = utf16(be::swap(uint16(pStr[i]))); |
|
779 // } |
|
780 } |
|
781 #endif |
|
782 |
|
783 /*---------------------------------------------------------------------------------------------- |
|
784 Get the left-side bearing and and advance width based on the given tables and Glyph ID |
|
785 Return true if successful, false otherwise. On false, one or both value could be INT_MIN |
|
786 ----------------------------------------------------------------------------------------------*/ |
|
787 bool HorMetrics(gid16 nGlyphId, const void * pHmtx, size_t lHmtxSize, const void * pHhea, |
|
788 int & nLsb, unsigned int & nAdvWid) |
|
789 { |
|
790 const Sfnt::HorizontalMetric * phmtx = |
|
791 reinterpret_cast<const Sfnt::HorizontalMetric *>(pHmtx); |
|
792 |
|
793 const Sfnt::HorizontalHeader * phhea = |
|
794 reinterpret_cast<const Sfnt::HorizontalHeader *>(pHhea); |
|
795 |
|
796 size_t cLongHorMetrics = be::swap(phhea->num_long_hor_metrics); |
|
797 if (nGlyphId < cLongHorMetrics) |
|
798 { // glyph id is acceptable |
|
799 if (nGlyphId * sizeof(Sfnt::HorizontalMetric) >= lHmtxSize) return false; |
|
800 nAdvWid = be::swap(phmtx[nGlyphId].advance_width); |
|
801 nLsb = be::swap(phmtx[nGlyphId].left_side_bearing); |
|
802 } |
|
803 else |
|
804 { |
|
805 // guard against bad glyph id |
|
806 size_t lLsbOffset = sizeof(Sfnt::HorizontalMetric) * cLongHorMetrics + |
|
807 sizeof(int16) * (nGlyphId - cLongHorMetrics); // offset in bytes |
|
808 // We test like this as LsbOffset is an offset not a length. |
|
809 if (lLsbOffset > lHmtxSize - sizeof(int16)) |
|
810 { |
|
811 nLsb = 0; |
|
812 return false; |
|
813 } |
|
814 nAdvWid = be::swap(phmtx[cLongHorMetrics - 1].advance_width); |
|
815 nLsb = be::peek<int16>(reinterpret_cast<const byte *>(phmtx) + lLsbOffset); |
|
816 } |
|
817 |
|
818 return true; |
|
819 } |
|
820 |
|
821 /*---------------------------------------------------------------------------------------------- |
|
822 Return a pointer to the requested cmap subtable. By default find the Microsoft Unicode |
|
823 subtable. Pass nEncoding as -1 to find first table that matches only nPlatformId. |
|
824 Return NULL if the subtable cannot be found. |
|
825 ----------------------------------------------------------------------------------------------*/ |
|
826 const void * FindCmapSubtable(const void * pCmap, int nPlatformId, /* =3 */ int nEncodingId, /* = 1 */ size_t length) |
|
827 { |
|
828 const Sfnt::CharacterCodeMap * pTable = reinterpret_cast<const Sfnt::CharacterCodeMap *>(pCmap); |
|
829 uint16 csuPlatforms = be::swap(pTable->num_subtables); |
|
830 if (length && (sizeof(Sfnt::CharacterCodeMap) + 8 * (csuPlatforms - 1) > length)) |
|
831 return NULL; |
|
832 for (int i = 0; i < csuPlatforms; i++) |
|
833 { |
|
834 if (be::swap(pTable->encoding[i].platform_id) == nPlatformId && |
|
835 (nEncodingId == -1 || be::swap(pTable->encoding[i].platform_specific_id) == nEncodingId)) |
|
836 { |
|
837 uint32 offset = be::swap(pTable->encoding[i].offset); |
|
838 const uint8 * pRtn = reinterpret_cast<const uint8 *>(pCmap) + offset; |
|
839 if (length) |
|
840 { |
|
841 if (offset > length) return NULL; |
|
842 uint16 format = be::read<uint16>(pRtn); |
|
843 if (format == 4) |
|
844 { |
|
845 uint16 subTableLength = be::peek<uint16>(pRtn); |
|
846 if (i + 1 == csuPlatforms) |
|
847 { |
|
848 if (subTableLength > length - offset) |
|
849 return NULL; |
|
850 } |
|
851 else if (subTableLength > be::swap(pTable->encoding[i+1].offset)) |
|
852 return NULL; |
|
853 } |
|
854 if (format == 12) |
|
855 { |
|
856 uint32 subTableLength = be::peek<uint32>(pRtn); |
|
857 if (i + 1 == csuPlatforms) |
|
858 { |
|
859 if (subTableLength > length - offset) |
|
860 return NULL; |
|
861 } |
|
862 else if (subTableLength > be::swap(pTable->encoding[i+1].offset)) |
|
863 return NULL; |
|
864 } |
|
865 } |
|
866 return reinterpret_cast<const uint8 *>(pCmap) + offset; |
|
867 } |
|
868 } |
|
869 |
|
870 return 0; |
|
871 } |
|
872 |
|
873 /*---------------------------------------------------------------------------------------------- |
|
874 Check the Microsoft Unicode subtable for expected values |
|
875 ----------------------------------------------------------------------------------------------*/ |
|
876 bool CheckCmapSubtable4(const void * pCmapSubtable4) |
|
877 { |
|
878 if (!pCmapSubtable4) return false; |
|
879 const Sfnt::CmapSubTable * pTable = reinterpret_cast<const Sfnt::CmapSubTable *>(pCmapSubtable4); |
|
880 // Bob H says ome freeware TT fonts have version 1 (eg, CALIGULA.TTF) |
|
881 // so don't check subtable version. 21 Mar 2002 spec changes version to language. |
|
882 if (be::swap(pTable->format) != 4) return false; |
|
883 const Sfnt::CmapSubTableFormat4 * pTable4 = reinterpret_cast<const Sfnt::CmapSubTableFormat4 *>(pCmapSubtable4); |
|
884 uint16 length = be::swap(pTable4->length); |
|
885 if (length < sizeof(Sfnt::CmapSubTableFormat4)) |
|
886 return false; |
|
887 uint16 nRanges = be::swap(pTable4->seg_count_x2) >> 1; |
|
888 if (length < sizeof(Sfnt::CmapSubTableFormat4) + 4 * nRanges * sizeof(uint16)) |
|
889 return false; |
|
890 // check last range is properly terminated |
|
891 uint16 chEnd = be::peek<uint16>(pTable4->end_code + nRanges - 1); |
|
892 return (chEnd == 0xFFFF); |
|
893 } |
|
894 |
|
895 /*---------------------------------------------------------------------------------------------- |
|
896 Return the Glyph ID for the given Unicode ID in the Microsoft Unicode subtable. |
|
897 (Actually this code only depends on subtable being format 4.) |
|
898 Return 0 if the Unicode ID is not in the subtable. |
|
899 ----------------------------------------------------------------------------------------------*/ |
|
900 gid16 CmapSubtable4Lookup(const void * pCmapSubtabel4, unsigned int nUnicodeId, int rangeKey) |
|
901 { |
|
902 const Sfnt::CmapSubTableFormat4 * pTable = reinterpret_cast<const Sfnt::CmapSubTableFormat4 *>(pCmapSubtabel4); |
|
903 |
|
904 uint16 nSeg = be::swap(pTable->seg_count_x2) >> 1; |
|
905 |
|
906 uint16 n; |
|
907 const uint16 * pLeft, * pMid; |
|
908 uint16 cMid, chStart, chEnd; |
|
909 |
|
910 if (rangeKey) |
|
911 { |
|
912 pMid = &(pTable->end_code[rangeKey]); |
|
913 chEnd = be::peek<uint16>(pMid); |
|
914 } |
|
915 else |
|
916 { |
|
917 // Binary search of the endCode[] array |
|
918 pLeft = &(pTable->end_code[0]); |
|
919 n = nSeg; |
|
920 while (n > 0) |
|
921 { |
|
922 cMid = n >> 1; // Pick an element in the middle |
|
923 pMid = pLeft + cMid; |
|
924 chEnd = be::peek<uint16>(pMid); |
|
925 if (nUnicodeId <= chEnd) |
|
926 { |
|
927 if (cMid == 0 || nUnicodeId > be::peek<uint16>(pMid -1)) |
|
928 break; // Must be this seg or none! |
|
929 n = cMid; // Continue on left side, omitting mid point |
|
930 } |
|
931 else |
|
932 { |
|
933 pLeft = pMid + 1; // Continue on right side, omitting mid point |
|
934 n -= (cMid + 1); |
|
935 } |
|
936 } |
|
937 |
|
938 if (!n) |
|
939 return 0; |
|
940 } |
|
941 |
|
942 // Ok, we're down to one segment and pMid points to the endCode element |
|
943 // Either this is it or none is. |
|
944 |
|
945 chStart = be::peek<uint16>(pMid += nSeg + 1); |
|
946 if (chEnd >= nUnicodeId && nUnicodeId >= chStart) |
|
947 { |
|
948 // Found correct segment. Find Glyph Id |
|
949 int16 idDelta = be::peek<uint16>(pMid += nSeg); |
|
950 uint16 idRangeOffset = be::peek<uint16>(pMid += nSeg); |
|
951 |
|
952 if (idRangeOffset == 0) |
|
953 return (uint16)(idDelta + nUnicodeId); // must use modulus 2^16 |
|
954 |
|
955 // Look up value in glyphIdArray |
|
956 const ptrdiff_t offset = (nUnicodeId - chStart) + (idRangeOffset >> 1) + |
|
957 (pMid - reinterpret_cast<const uint16 *>(pTable)); |
|
958 if (offset * 2 >= be::swap<uint16>(pTable->length)) |
|
959 return 0; |
|
960 gid16 nGlyphId = be::peek<uint16>(reinterpret_cast<const uint16 *>(pTable)+offset); |
|
961 // If this value is 0, return 0. Else add the idDelta |
|
962 return nGlyphId ? nGlyphId + idDelta : 0; |
|
963 } |
|
964 |
|
965 return 0; |
|
966 } |
|
967 |
|
968 /*---------------------------------------------------------------------------------------------- |
|
969 Return the next Unicode value in the cmap. Pass 0 to obtain the first item. |
|
970 Returns 0xFFFF as the last item. |
|
971 pRangeKey is an optional key that is used to optimize the search; its value is the range |
|
972 in which the character is found. |
|
973 ----------------------------------------------------------------------------------------------*/ |
|
974 unsigned int CmapSubtable4NextCodepoint(const void *pCmap31, unsigned int nUnicodeId, int * pRangeKey) |
|
975 { |
|
976 const Sfnt::CmapSubTableFormat4 * pTable = reinterpret_cast<const Sfnt::CmapSubTableFormat4 *>(pCmap31); |
|
977 |
|
978 uint16 nRange = be::swap(pTable->seg_count_x2) >> 1; |
|
979 |
|
980 uint32 nUnicodePrev = (uint32)nUnicodeId; |
|
981 |
|
982 const uint16 * pStartCode = &(pTable->end_code[0]) |
|
983 + nRange // length of end code array |
|
984 + 1; // reserved word |
|
985 |
|
986 if (nUnicodePrev == 0) |
|
987 { |
|
988 // return the first codepoint. |
|
989 if (pRangeKey) |
|
990 *pRangeKey = 0; |
|
991 return be::peek<uint16>(pStartCode); |
|
992 } |
|
993 else if (nUnicodePrev >= 0xFFFF) |
|
994 { |
|
995 if (pRangeKey) |
|
996 *pRangeKey = nRange - 1; |
|
997 return 0xFFFF; |
|
998 } |
|
999 |
|
1000 int iRange = (pRangeKey) ? *pRangeKey : 0; |
|
1001 // Just in case we have a bad key: |
|
1002 while (iRange > 0 && be::peek<uint16>(pStartCode + iRange) > nUnicodePrev) |
|
1003 iRange--; |
|
1004 while (be::peek<uint16>(pTable->end_code + iRange) < nUnicodePrev) |
|
1005 iRange++; |
|
1006 |
|
1007 // Now iRange is the range containing nUnicodePrev. |
|
1008 unsigned int nStartCode = be::peek<uint16>(pStartCode + iRange); |
|
1009 unsigned int nEndCode = be::peek<uint16>(pTable->end_code + iRange); |
|
1010 |
|
1011 if (nStartCode > nUnicodePrev) |
|
1012 // Oops, nUnicodePrev is not in the cmap! Adjust so we get a reasonable |
|
1013 // answer this time around. |
|
1014 nUnicodePrev = nStartCode - 1; |
|
1015 |
|
1016 if (nEndCode > nUnicodePrev) |
|
1017 { |
|
1018 // Next is in the same range; it is the next successive codepoint. |
|
1019 if (pRangeKey) |
|
1020 *pRangeKey = iRange; |
|
1021 return nUnicodePrev + 1; |
|
1022 } |
|
1023 |
|
1024 // Otherwise the next codepoint is the first one in the next range. |
|
1025 // There is guaranteed to be a next range because there must be one that |
|
1026 // ends with 0xFFFF. |
|
1027 if (pRangeKey) |
|
1028 *pRangeKey = iRange + 1; |
|
1029 return be::peek<uint16>(pStartCode + iRange + 1); |
|
1030 } |
|
1031 |
|
1032 /*---------------------------------------------------------------------------------------------- |
|
1033 Check the Microsoft UCS-4 subtable for expected values. |
|
1034 ----------------------------------------------------------------------------------------------*/ |
|
1035 bool CheckCmapSubtable12(const void *pCmapSubtable12) |
|
1036 { |
|
1037 if (!pCmapSubtable12) return false; |
|
1038 const Sfnt::CmapSubTable * pTable = reinterpret_cast<const Sfnt::CmapSubTable *>(pCmapSubtable12); |
|
1039 if (be::swap(pTable->format) != 12) |
|
1040 return false; |
|
1041 const Sfnt::CmapSubTableFormat12 * pTable12 = reinterpret_cast<const Sfnt::CmapSubTableFormat12 *>(pCmapSubtable12); |
|
1042 uint32 length = be::swap(pTable12->length); |
|
1043 if (length < sizeof(Sfnt::CmapSubTableFormat12)) |
|
1044 return false; |
|
1045 |
|
1046 return (length == (sizeof(Sfnt::CmapSubTableFormat12) + (be::swap(pTable12->num_groups) - 1) |
|
1047 * sizeof(uint32) * 3)); |
|
1048 } |
|
1049 |
|
1050 /*---------------------------------------------------------------------------------------------- |
|
1051 Return the Glyph ID for the given Unicode ID in the Microsoft UCS-4 subtable. |
|
1052 (Actually this code only depends on subtable being format 12.) |
|
1053 Return 0 if the Unicode ID is not in the subtable. |
|
1054 ----------------------------------------------------------------------------------------------*/ |
|
1055 gid16 CmapSubtable12Lookup(const void * pCmap310, unsigned int uUnicodeId, int rangeKey) |
|
1056 { |
|
1057 const Sfnt::CmapSubTableFormat12 * pTable = reinterpret_cast<const Sfnt::CmapSubTableFormat12 *>(pCmap310); |
|
1058 |
|
1059 //uint32 uLength = be::swap(pTable->length); //could use to test for premature end of table |
|
1060 uint32 ucGroups = be::swap(pTable->num_groups); |
|
1061 |
|
1062 for (unsigned int i = rangeKey; i < ucGroups; i++) |
|
1063 { |
|
1064 uint32 uStartCode = be::swap(pTable->group[i].start_char_code); |
|
1065 uint32 uEndCode = be::swap(pTable->group[i].end_char_code); |
|
1066 if (uUnicodeId >= uStartCode && uUnicodeId <= uEndCode) |
|
1067 { |
|
1068 uint32 uDiff = uUnicodeId - uStartCode; |
|
1069 uint32 uStartGid = be::swap(pTable->group[i].start_glyph_id); |
|
1070 return static_cast<gid16>(uStartGid + uDiff); |
|
1071 } |
|
1072 } |
|
1073 |
|
1074 return 0; |
|
1075 } |
|
1076 |
|
1077 /*---------------------------------------------------------------------------------------------- |
|
1078 Return the next Unicode value in the cmap. Pass 0 to obtain the first item. |
|
1079 Returns 0x10FFFF as the last item. |
|
1080 pRangeKey is an optional key that is used to optimize the search; its value is the range |
|
1081 in which the character is found. |
|
1082 ----------------------------------------------------------------------------------------------*/ |
|
1083 unsigned int CmapSubtable12NextCodepoint(const void *pCmap310, unsigned int nUnicodeId, int * pRangeKey) |
|
1084 { |
|
1085 const Sfnt::CmapSubTableFormat12 * pTable = reinterpret_cast<const Sfnt::CmapSubTableFormat12 *>(pCmap310); |
|
1086 |
|
1087 int nRange = be::swap(pTable->num_groups); |
|
1088 |
|
1089 uint32 nUnicodePrev = (uint32)nUnicodeId; |
|
1090 |
|
1091 if (nUnicodePrev == 0) |
|
1092 { |
|
1093 // return the first codepoint. |
|
1094 if (pRangeKey) |
|
1095 *pRangeKey = 0; |
|
1096 return be::swap(pTable->group[0].start_char_code); |
|
1097 } |
|
1098 else if (nUnicodePrev >= 0x10FFFF) |
|
1099 { |
|
1100 if (pRangeKey) |
|
1101 *pRangeKey = nRange; |
|
1102 return 0x10FFFF; |
|
1103 } |
|
1104 |
|
1105 int iRange = (pRangeKey) ? *pRangeKey : 0; |
|
1106 // Just in case we have a bad key: |
|
1107 while (iRange > 0 && be::swap(pTable->group[iRange].start_char_code) > nUnicodePrev) |
|
1108 iRange--; |
|
1109 while (be::swap(pTable->group[iRange].end_char_code) < nUnicodePrev) |
|
1110 iRange++; |
|
1111 |
|
1112 // Now iRange is the range containing nUnicodePrev. |
|
1113 |
|
1114 unsigned int nStartCode = be::swap(pTable->group[iRange].start_char_code); |
|
1115 unsigned int nEndCode = be::swap(pTable->group[iRange].end_char_code); |
|
1116 |
|
1117 if (nStartCode > nUnicodePrev) |
|
1118 // Oops, nUnicodePrev is not in the cmap! Adjust so we get a reasonable |
|
1119 // answer this time around. |
|
1120 nUnicodePrev = nStartCode - 1; |
|
1121 |
|
1122 if (nEndCode > nUnicodePrev) |
|
1123 { |
|
1124 // Next is in the same range; it is the next successive codepoint. |
|
1125 if (pRangeKey) |
|
1126 *pRangeKey = iRange; |
|
1127 return nUnicodePrev + 1; |
|
1128 } |
|
1129 |
|
1130 // Otherwise the next codepoint is the first one in the next range, or 10FFFF if we're done. |
|
1131 if (pRangeKey) |
|
1132 *pRangeKey = iRange + 1; |
|
1133 return (iRange + 1 >= nRange) ? 0x10FFFF : be::swap(pTable->group[iRange + 1].start_char_code); |
|
1134 } |
|
1135 |
|
1136 /*---------------------------------------------------------------------------------------------- |
|
1137 Return the offset stored in the loca table for the given Glyph ID. |
|
1138 (This offset is into the glyf table.) |
|
1139 Return -1 if the lookup failed. |
|
1140 Technically this method should return an unsigned long but it is unlikely the offset will |
|
1141 exceed 2^31. |
|
1142 ----------------------------------------------------------------------------------------------*/ |
|
1143 size_t LocaLookup(gid16 nGlyphId, |
|
1144 const void * pLoca, size_t lLocaSize, |
|
1145 const void * pHead) // throw (std::out_of_range) |
|
1146 { |
|
1147 const Sfnt::FontHeader * pTable = reinterpret_cast<const Sfnt::FontHeader *>(pHead); |
|
1148 |
|
1149 // CheckTable verifies the index_to_loc_format is valid |
|
1150 if (be::swap(pTable->index_to_loc_format) == Sfnt::FontHeader::ShortIndexLocFormat) |
|
1151 { // loca entries are two bytes and have been divided by two |
|
1152 if (nGlyphId < (lLocaSize >> 1) - 1) // allow sentinel value to be accessed |
|
1153 { |
|
1154 const uint16 * pShortTable = reinterpret_cast<const uint16 *>(pLoca); |
|
1155 return (be::peek<uint16>(pShortTable + nGlyphId) << 1); |
|
1156 } |
|
1157 } |
|
1158 |
|
1159 if (be::swap(pTable->index_to_loc_format) == Sfnt::FontHeader::LongIndexLocFormat) |
|
1160 { // loca entries are four bytes |
|
1161 if (nGlyphId < (lLocaSize >> 2) - 1) |
|
1162 { |
|
1163 const uint32 * pLongTable = reinterpret_cast<const uint32 *>(pLoca); |
|
1164 return be::peek<uint32>(pLongTable + nGlyphId); |
|
1165 } |
|
1166 } |
|
1167 |
|
1168 // only get here if glyph id was bad |
|
1169 return -1; |
|
1170 //throw std::out_of_range("glyph id out of range for font"); |
|
1171 } |
|
1172 |
|
1173 /*---------------------------------------------------------------------------------------------- |
|
1174 Return a pointer into the glyf table based on the given offset (from LocaLookup). |
|
1175 Return NULL on error. |
|
1176 ----------------------------------------------------------------------------------------------*/ |
|
1177 void * GlyfLookup(const void * pGlyf, size_t nGlyfOffset, size_t nTableLen) |
|
1178 { |
|
1179 const uint8 * pByte = reinterpret_cast<const uint8 *>(pGlyf); |
|
1180 if (nGlyfOffset == size_t(-1) || nGlyfOffset >= nTableLen) |
|
1181 return NULL; |
|
1182 return const_cast<uint8 *>(pByte + nGlyfOffset); |
|
1183 } |
|
1184 |
|
1185 /*---------------------------------------------------------------------------------------------- |
|
1186 Get the bounding box coordinates for a simple glyf entry (non-composite). |
|
1187 Return true if successful, false otherwise. |
|
1188 ----------------------------------------------------------------------------------------------*/ |
|
1189 bool GlyfBox(const void * pSimpleGlyf, int & xMin, int & yMin, |
|
1190 int & xMax, int & yMax) |
|
1191 { |
|
1192 const Sfnt::Glyph * pGlyph = reinterpret_cast<const Sfnt::Glyph *>(pSimpleGlyf); |
|
1193 |
|
1194 xMin = be::swap(pGlyph->x_min); |
|
1195 yMin = be::swap(pGlyph->y_min); |
|
1196 xMax = be::swap(pGlyph->x_max); |
|
1197 yMax = be::swap(pGlyph->y_max); |
|
1198 |
|
1199 return true; |
|
1200 } |
|
1201 |
|
1202 #ifdef ALL_TTFUTILS |
|
1203 /*---------------------------------------------------------------------------------------------- |
|
1204 Return the number of contours for a simple glyf entry (non-composite) |
|
1205 Returning -1 means this is a composite glyph |
|
1206 ----------------------------------------------------------------------------------------------*/ |
|
1207 int GlyfContourCount(const void * pSimpleGlyf) |
|
1208 { |
|
1209 const Sfnt::Glyph * pGlyph = reinterpret_cast<const Sfnt::Glyph *>(pSimpleGlyf); |
|
1210 return be::swap(pGlyph->number_of_contours); // -1 means composite glyph |
|
1211 } |
|
1212 |
|
1213 /*---------------------------------------------------------------------------------------------- |
|
1214 Get the point numbers for the end points of the glyph contours for a simple |
|
1215 glyf entry (non-composite). |
|
1216 cnPointsTotal - count of contours from GlyfContourCount(); (same as number of end points) |
|
1217 prgnContourEndPoints - should point to a buffer large enough to hold cnPoints integers |
|
1218 cnPoints - count of points placed in above range |
|
1219 Return true if successful, false otherwise. |
|
1220 False could indicate a multi-level composite glyphs. |
|
1221 ----------------------------------------------------------------------------------------------*/ |
|
1222 bool GlyfContourEndPoints(const void * pSimpleGlyf, int * prgnContourEndPoint, |
|
1223 int cnPointsTotal, int & cnPoints) |
|
1224 { |
|
1225 const Sfnt::SimpleGlyph * pGlyph = reinterpret_cast<const Sfnt::SimpleGlyph *>(pSimpleGlyf); |
|
1226 |
|
1227 int cContours = be::swap(pGlyph->number_of_contours); |
|
1228 if (cContours < 0) |
|
1229 return false; // this method isn't supposed handle composite glyphs |
|
1230 |
|
1231 for (int i = 0; i < cContours && i < cnPointsTotal; i++) |
|
1232 { |
|
1233 prgnContourEndPoint[i] = be::swap(pGlyph->end_pts_of_contours[i]); |
|
1234 } |
|
1235 |
|
1236 cnPoints = cContours; |
|
1237 return true; |
|
1238 } |
|
1239 |
|
1240 /*---------------------------------------------------------------------------------------------- |
|
1241 Get the points for a simple glyf entry (non-composite) |
|
1242 cnPointsTotal - count of points from largest end point obtained from GlyfContourEndPoints |
|
1243 prgnX & prgnY - should point to buffers large enough to hold cnPointsTotal integers |
|
1244 The ranges are parallel so that coordinates for point(n) are found at offset n in both |
|
1245 ranges. This is raw point data with relative coordinates. |
|
1246 prgbFlag - should point to a buffer a large enough to hold cnPointsTotal bytes |
|
1247 This range is parallel to the prgnX & prgnY |
|
1248 cnPoints - count of points placed in above ranges |
|
1249 Return true if successful, false otherwise. |
|
1250 False could indicate a composite glyph |
|
1251 ----------------------------------------------------------------------------------------------*/ |
|
1252 bool GlyfPoints(const void * pSimpleGlyf, int * prgnX, int * prgnY, |
|
1253 char * prgbFlag, int cnPointsTotal, int & cnPoints) |
|
1254 { |
|
1255 using namespace Sfnt; |
|
1256 |
|
1257 const Sfnt::SimpleGlyph * pGlyph = reinterpret_cast<const Sfnt::SimpleGlyph *>(pSimpleGlyf); |
|
1258 int cContours = be::swap(pGlyph->number_of_contours); |
|
1259 // return false for composite glyph |
|
1260 if (cContours <= 0) |
|
1261 return false; |
|
1262 int cPts = be::swap(pGlyph->end_pts_of_contours[cContours - 1]) + 1; |
|
1263 if (cPts > cnPointsTotal) |
|
1264 return false; |
|
1265 |
|
1266 // skip over bounding box data & point to byte count of instructions (hints) |
|
1267 const uint8 * pbGlyph = reinterpret_cast<const uint8 *> |
|
1268 (&pGlyph->end_pts_of_contours[cContours]); |
|
1269 |
|
1270 // skip over hints & point to first flag |
|
1271 int cbHints = be::swap(*(uint16 *)pbGlyph); |
|
1272 pbGlyph += sizeof(uint16); |
|
1273 pbGlyph += cbHints; |
|
1274 |
|
1275 // load flags & point to first x coordinate |
|
1276 int iFlag = 0; |
|
1277 while (iFlag < cPts) |
|
1278 { |
|
1279 if (!(*pbGlyph & SimpleGlyph::Repeat)) |
|
1280 { // flag isn't repeated |
|
1281 prgbFlag[iFlag] = (char)*pbGlyph; |
|
1282 pbGlyph++; |
|
1283 iFlag++; |
|
1284 } |
|
1285 else |
|
1286 { // flag is repeated; count specified by next byte |
|
1287 char chFlag = (char)*pbGlyph; |
|
1288 pbGlyph++; |
|
1289 int cFlags = (int)*pbGlyph; |
|
1290 pbGlyph++; |
|
1291 prgbFlag[iFlag] = chFlag; |
|
1292 iFlag++; |
|
1293 for (int i = 0; i < cFlags; i++) |
|
1294 { |
|
1295 prgbFlag[iFlag + i] = chFlag; |
|
1296 } |
|
1297 iFlag += cFlags; |
|
1298 } |
|
1299 } |
|
1300 if (iFlag != cPts) |
|
1301 return false; |
|
1302 |
|
1303 // load x coordinates |
|
1304 iFlag = 0; |
|
1305 while (iFlag < cPts) |
|
1306 { |
|
1307 if (prgbFlag[iFlag] & SimpleGlyph::XShort) |
|
1308 { |
|
1309 prgnX[iFlag] = *pbGlyph; |
|
1310 if (!(prgbFlag[iFlag] & SimpleGlyph::XIsPos)) |
|
1311 { |
|
1312 prgnX[iFlag] = -prgnX[iFlag]; |
|
1313 } |
|
1314 pbGlyph++; |
|
1315 } |
|
1316 else |
|
1317 { |
|
1318 if (prgbFlag[iFlag] & SimpleGlyph::XIsSame) |
|
1319 { |
|
1320 prgnX[iFlag] = 0; |
|
1321 // do NOT increment pbGlyph |
|
1322 } |
|
1323 else |
|
1324 { |
|
1325 prgnX[iFlag] = be::swap(*(int16 *)pbGlyph); |
|
1326 pbGlyph += sizeof(int16); |
|
1327 } |
|
1328 } |
|
1329 iFlag++; |
|
1330 } |
|
1331 |
|
1332 // load y coordinates |
|
1333 iFlag = 0; |
|
1334 while (iFlag < cPts) |
|
1335 { |
|
1336 if (prgbFlag[iFlag] & SimpleGlyph::YShort) |
|
1337 { |
|
1338 prgnY[iFlag] = *pbGlyph; |
|
1339 if (!(prgbFlag[iFlag] & SimpleGlyph::YIsPos)) |
|
1340 { |
|
1341 prgnY[iFlag] = -prgnY[iFlag]; |
|
1342 } |
|
1343 pbGlyph++; |
|
1344 } |
|
1345 else |
|
1346 { |
|
1347 if (prgbFlag[iFlag] & SimpleGlyph::YIsSame) |
|
1348 { |
|
1349 prgnY[iFlag] = 0; |
|
1350 // do NOT increment pbGlyph |
|
1351 } |
|
1352 else |
|
1353 { |
|
1354 prgnY[iFlag] = be::swap(*(int16 *)pbGlyph); |
|
1355 pbGlyph += sizeof(int16); |
|
1356 } |
|
1357 } |
|
1358 iFlag++; |
|
1359 } |
|
1360 |
|
1361 cnPoints = cPts; |
|
1362 return true; |
|
1363 } |
|
1364 |
|
1365 /*---------------------------------------------------------------------------------------------- |
|
1366 Fill prgnCompId with the component Glyph IDs from pSimpleGlyf. |
|
1367 Client must allocate space before calling. |
|
1368 pSimpleGlyf - assumed to point to a composite glyph |
|
1369 cCompIdTotal - the number of elements in prgnCompId |
|
1370 cCompId - the total number of Glyph IDs stored in prgnCompId |
|
1371 Return true if successful, false otherwise |
|
1372 False could indicate a non-composite glyph or the input array was not big enough |
|
1373 ----------------------------------------------------------------------------------------------*/ |
|
1374 bool GetComponentGlyphIds(const void * pSimpleGlyf, int * prgnCompId, |
|
1375 size_t cnCompIdTotal, size_t & cnCompId) |
|
1376 { |
|
1377 using namespace Sfnt; |
|
1378 |
|
1379 if (GlyfContourCount(pSimpleGlyf) >= 0) |
|
1380 return false; |
|
1381 |
|
1382 const Sfnt::SimpleGlyph * pGlyph = reinterpret_cast<const Sfnt::SimpleGlyph *>(pSimpleGlyf); |
|
1383 // for a composite glyph, the special data begins here |
|
1384 const uint8 * pbGlyph = reinterpret_cast<const uint8 *>(&pGlyph->end_pts_of_contours[0]); |
|
1385 |
|
1386 uint16 GlyphFlags; |
|
1387 size_t iCurrentComp = 0; |
|
1388 do |
|
1389 { |
|
1390 GlyphFlags = be::swap(*((uint16 *)pbGlyph)); |
|
1391 pbGlyph += sizeof(uint16); |
|
1392 prgnCompId[iCurrentComp++] = be::swap(*((uint16 *)pbGlyph)); |
|
1393 pbGlyph += sizeof(uint16); |
|
1394 if (iCurrentComp >= cnCompIdTotal) |
|
1395 return false; |
|
1396 int nOffset = 0; |
|
1397 nOffset += GlyphFlags & CompoundGlyph::Arg1Arg2Words ? 4 : 2; |
|
1398 nOffset += GlyphFlags & CompoundGlyph::HaveScale ? 2 : 0; |
|
1399 nOffset += GlyphFlags & CompoundGlyph::HaveXAndYScale ? 4 : 0; |
|
1400 nOffset += GlyphFlags & CompoundGlyph::HaveTwoByTwo ? 8 : 0; |
|
1401 pbGlyph += nOffset; |
|
1402 } while (GlyphFlags & CompoundGlyph::MoreComponents); |
|
1403 |
|
1404 cnCompId = iCurrentComp; |
|
1405 |
|
1406 return true; |
|
1407 } |
|
1408 |
|
1409 /*---------------------------------------------------------------------------------------------- |
|
1410 Return info on how a component glyph is to be placed |
|
1411 pSimpleGlyph - assumed to point to a composite glyph |
|
1412 nCompId - glyph id for component of interest |
|
1413 bOffset - if true, a & b are the x & y offsets for this component |
|
1414 if false, b is the point on this component that is attaching to point a on the |
|
1415 preceding glyph |
|
1416 Return true if successful, false otherwise |
|
1417 False could indicate a non-composite glyph or that component wasn't found |
|
1418 ----------------------------------------------------------------------------------------------*/ |
|
1419 bool GetComponentPlacement(const void * pSimpleGlyf, int nCompId, |
|
1420 bool fOffset, int & a, int & b) |
|
1421 { |
|
1422 using namespace Sfnt; |
|
1423 |
|
1424 if (GlyfContourCount(pSimpleGlyf) >= 0) |
|
1425 return false; |
|
1426 |
|
1427 const Sfnt::SimpleGlyph * pGlyph = reinterpret_cast<const Sfnt::SimpleGlyph *>(pSimpleGlyf); |
|
1428 // for a composite glyph, the special data begins here |
|
1429 const uint8 * pbGlyph = reinterpret_cast<const uint8 *>(&pGlyph->end_pts_of_contours[0]); |
|
1430 |
|
1431 uint16 GlyphFlags; |
|
1432 do |
|
1433 { |
|
1434 GlyphFlags = be::swap(*((uint16 *)pbGlyph)); |
|
1435 pbGlyph += sizeof(uint16); |
|
1436 if (be::swap(*((uint16 *)pbGlyph)) == nCompId) |
|
1437 { |
|
1438 pbGlyph += sizeof(uint16); // skip over glyph id of component |
|
1439 fOffset = (GlyphFlags & CompoundGlyph::ArgsAreXYValues) == CompoundGlyph::ArgsAreXYValues; |
|
1440 |
|
1441 if (GlyphFlags & CompoundGlyph::Arg1Arg2Words ) |
|
1442 { |
|
1443 a = be::swap(*(int16 *)pbGlyph); |
|
1444 pbGlyph += sizeof(int16); |
|
1445 b = be::swap(*(int16 *)pbGlyph); |
|
1446 pbGlyph += sizeof(int16); |
|
1447 } |
|
1448 else |
|
1449 { // args are signed bytes |
|
1450 a = *pbGlyph++; |
|
1451 b = *pbGlyph++; |
|
1452 } |
|
1453 return true; |
|
1454 } |
|
1455 pbGlyph += sizeof(uint16); // skip over glyph id of component |
|
1456 int nOffset = 0; |
|
1457 nOffset += GlyphFlags & CompoundGlyph::Arg1Arg2Words ? 4 : 2; |
|
1458 nOffset += GlyphFlags & CompoundGlyph::HaveScale ? 2 : 0; |
|
1459 nOffset += GlyphFlags & CompoundGlyph::HaveXAndYScale ? 4 : 0; |
|
1460 nOffset += GlyphFlags & CompoundGlyph::HaveTwoByTwo ? 8 : 0; |
|
1461 pbGlyph += nOffset; |
|
1462 } while (GlyphFlags & CompoundGlyph::MoreComponents); |
|
1463 |
|
1464 // didn't find requested component |
|
1465 fOffset = true; |
|
1466 a = 0; |
|
1467 b = 0; |
|
1468 return false; |
|
1469 } |
|
1470 |
|
1471 /*---------------------------------------------------------------------------------------------- |
|
1472 Return info on how a component glyph is to be transformed |
|
1473 pSimpleGlyph - assumed to point to a composite glyph |
|
1474 nCompId - glyph id for component of interest |
|
1475 flt11, flt11, flt11, flt11 - a 2x2 matrix giving the transform |
|
1476 bTransOffset - whether to transform the offset from above method |
|
1477 The spec is unclear about the meaning of this flag |
|
1478 Currently - initialize to true for MS rasterizer and false for Mac rasterizer, then |
|
1479 on return it will indicate whether transform should apply to offset (MSDN CD 10/99) |
|
1480 Return true if successful, false otherwise |
|
1481 False could indicate a non-composite glyph or that component wasn't found |
|
1482 ----------------------------------------------------------------------------------------------*/ |
|
1483 bool GetComponentTransform(const void * pSimpleGlyf, int nCompId, |
|
1484 float & flt11, float & flt12, float & flt21, float & flt22, |
|
1485 bool & fTransOffset) |
|
1486 { |
|
1487 using namespace Sfnt; |
|
1488 |
|
1489 if (GlyfContourCount(pSimpleGlyf) >= 0) |
|
1490 return false; |
|
1491 |
|
1492 const Sfnt::SimpleGlyph * pGlyph = reinterpret_cast<const Sfnt::SimpleGlyph *>(pSimpleGlyf); |
|
1493 // for a composite glyph, the special data begins here |
|
1494 const uint8 * pbGlyph = reinterpret_cast<const uint8 *>(&pGlyph->end_pts_of_contours[0]); |
|
1495 |
|
1496 uint16 GlyphFlags; |
|
1497 do |
|
1498 { |
|
1499 GlyphFlags = be::swap(*((uint16 *)pbGlyph)); |
|
1500 pbGlyph += sizeof(uint16); |
|
1501 if (be::swap(*((uint16 *)pbGlyph)) == nCompId) |
|
1502 { |
|
1503 pbGlyph += sizeof(uint16); // skip over glyph id of component |
|
1504 pbGlyph += GlyphFlags & CompoundGlyph::Arg1Arg2Words ? 4 : 2; // skip over placement data |
|
1505 |
|
1506 if (fTransOffset) // MS rasterizer |
|
1507 fTransOffset = !(GlyphFlags & CompoundGlyph::UnscaledOffset); |
|
1508 else // Apple rasterizer |
|
1509 fTransOffset = (GlyphFlags & CompoundGlyph::ScaledOffset) != 0; |
|
1510 |
|
1511 if (GlyphFlags & CompoundGlyph::HaveScale) |
|
1512 { |
|
1513 flt11 = fixed_to_float<14>(be::swap(*(uint16 *)pbGlyph)); |
|
1514 pbGlyph += sizeof(uint16); |
|
1515 flt12 = 0; |
|
1516 flt21 = 0; |
|
1517 flt22 = flt11; |
|
1518 } |
|
1519 else if (GlyphFlags & CompoundGlyph::HaveXAndYScale) |
|
1520 { |
|
1521 flt11 = fixed_to_float<14>(be::swap(*(uint16 *)pbGlyph)); |
|
1522 pbGlyph += sizeof(uint16); |
|
1523 flt12 = 0; |
|
1524 flt21 = 0; |
|
1525 flt22 = fixed_to_float<14>(be::swap(*(uint16 *)pbGlyph)); |
|
1526 pbGlyph += sizeof(uint16); |
|
1527 } |
|
1528 else if (GlyphFlags & CompoundGlyph::HaveTwoByTwo) |
|
1529 { |
|
1530 flt11 = fixed_to_float<14>(be::swap(*(uint16 *)pbGlyph)); |
|
1531 pbGlyph += sizeof(uint16); |
|
1532 flt12 = fixed_to_float<14>(be::swap(*(uint16 *)pbGlyph)); |
|
1533 pbGlyph += sizeof(uint16); |
|
1534 flt21 = fixed_to_float<14>(be::swap(*(uint16 *)pbGlyph)); |
|
1535 pbGlyph += sizeof(uint16); |
|
1536 flt22 = fixed_to_float<14>(be::swap(*(uint16 *)pbGlyph)); |
|
1537 pbGlyph += sizeof(uint16); |
|
1538 } |
|
1539 else |
|
1540 { // identity transform |
|
1541 flt11 = 1.0; |
|
1542 flt12 = 0.0; |
|
1543 flt21 = 0.0; |
|
1544 flt22 = 1.0; |
|
1545 } |
|
1546 return true; |
|
1547 } |
|
1548 pbGlyph += sizeof(uint16); // skip over glyph id of component |
|
1549 int nOffset = 0; |
|
1550 nOffset += GlyphFlags & CompoundGlyph::Arg1Arg2Words ? 4 : 2; |
|
1551 nOffset += GlyphFlags & CompoundGlyph::HaveScale ? 2 : 0; |
|
1552 nOffset += GlyphFlags & CompoundGlyph::HaveXAndYScale ? 4 : 0; |
|
1553 nOffset += GlyphFlags & CompoundGlyph::HaveTwoByTwo ? 8 : 0; |
|
1554 pbGlyph += nOffset; |
|
1555 } while (GlyphFlags & CompoundGlyph::MoreComponents); |
|
1556 |
|
1557 // didn't find requested component |
|
1558 fTransOffset = false; |
|
1559 flt11 = 1; |
|
1560 flt12 = 0; |
|
1561 flt21 = 0; |
|
1562 flt22 = 1; |
|
1563 return false; |
|
1564 } |
|
1565 #endif |
|
1566 |
|
1567 /*---------------------------------------------------------------------------------------------- |
|
1568 Return a pointer into the glyf table based on the given tables and Glyph ID |
|
1569 Since this method doesn't check for spaces, it is good to call IsSpace before using it. |
|
1570 Return NULL on error. |
|
1571 ----------------------------------------------------------------------------------------------*/ |
|
1572 void * GlyfLookup(gid16 nGlyphId, const void * pGlyf, const void * pLoca, |
|
1573 size_t lGlyfSize, size_t lLocaSize, const void * pHead) |
|
1574 { |
|
1575 // test for valid glyph id |
|
1576 // CheckTable verifies the index_to_loc_format is valid |
|
1577 |
|
1578 const Sfnt::FontHeader * pTable |
|
1579 = reinterpret_cast<const Sfnt::FontHeader *>(pHead); |
|
1580 |
|
1581 if (be::swap(pTable->index_to_loc_format) == Sfnt::FontHeader::ShortIndexLocFormat) |
|
1582 { // loca entries are two bytes (and have been divided by two) |
|
1583 if (nGlyphId >= (lLocaSize >> 1) - 1) // don't allow nGlyphId to access sentinel |
|
1584 { |
|
1585 // throw std::out_of_range("glyph id out of range for font"); |
|
1586 return NULL; |
|
1587 } |
|
1588 } |
|
1589 if (be::swap(pTable->index_to_loc_format) == Sfnt::FontHeader::LongIndexLocFormat) |
|
1590 { // loca entries are four bytes |
|
1591 if (nGlyphId >= (lLocaSize >> 2) - 1) |
|
1592 { |
|
1593 // throw std::out_of_range("glyph id out of range for font"); |
|
1594 return NULL; |
|
1595 } |
|
1596 } |
|
1597 |
|
1598 long lGlyfOffset = LocaLookup(nGlyphId, pLoca, lLocaSize, pHead); |
|
1599 void * pSimpleGlyf = GlyfLookup(pGlyf, lGlyfOffset, lGlyfSize); // invalid loca offset returns null |
|
1600 return pSimpleGlyf; |
|
1601 } |
|
1602 |
|
1603 #ifdef ALL_TTFUTILS |
|
1604 /*---------------------------------------------------------------------------------------------- |
|
1605 Determine if a particular Glyph ID has any data in the glyf table. If it is white space, |
|
1606 there will be no glyf data, though there will be metric data in hmtx, etc. |
|
1607 ----------------------------------------------------------------------------------------------*/ |
|
1608 bool IsSpace(gid16 nGlyphId, const void * pLoca, size_t lLocaSize, const void * pHead) |
|
1609 { |
|
1610 size_t lGlyfOffset = LocaLookup(nGlyphId, pLoca, lLocaSize, pHead); |
|
1611 |
|
1612 // the +1 should always work because there is a sentinel value at the end of the loca table |
|
1613 size_t lNextGlyfOffset = LocaLookup(nGlyphId + 1, pLoca, lLocaSize, pHead); |
|
1614 |
|
1615 return (lNextGlyfOffset - lGlyfOffset) == 0; |
|
1616 } |
|
1617 |
|
1618 /*---------------------------------------------------------------------------------------------- |
|
1619 Determine if a particular Glyph ID is a multi-level composite. |
|
1620 ----------------------------------------------------------------------------------------------*/ |
|
1621 bool IsDeepComposite(gid16 nGlyphId, const void * pGlyf, const void * pLoca, |
|
1622 size_t lGlyfSize, long lLocaSize, const void * pHead) |
|
1623 { |
|
1624 if (IsSpace(nGlyphId, pLoca, lLocaSize, pHead)) {return false;} |
|
1625 |
|
1626 void * pSimpleGlyf = GlyfLookup(nGlyphId, pGlyf, pLoca, lGlyfSize, lLocaSize, pHead); |
|
1627 if (pSimpleGlyf == NULL) |
|
1628 return false; // no way to really indicate an error occured here |
|
1629 |
|
1630 if (GlyfContourCount(pSimpleGlyf) >= 0) |
|
1631 return false; |
|
1632 |
|
1633 int rgnCompId[kMaxGlyphComponents]; // assumes only a limited number of glyph components |
|
1634 size_t cCompIdTotal = kMaxGlyphComponents; |
|
1635 size_t cCompId = 0; |
|
1636 |
|
1637 if (!GetComponentGlyphIds(pSimpleGlyf, rgnCompId, cCompIdTotal, cCompId)) |
|
1638 return false; |
|
1639 |
|
1640 for (size_t i = 0; i < cCompId; i++) |
|
1641 { |
|
1642 pSimpleGlyf = GlyfLookup(static_cast<gid16>(rgnCompId[i]), |
|
1643 pGlyf, pLoca, lGlyfSize, lLocaSize, pHead); |
|
1644 if (pSimpleGlyf == NULL) {return false;} |
|
1645 |
|
1646 if (GlyfContourCount(pSimpleGlyf) < 0) |
|
1647 return true; |
|
1648 } |
|
1649 |
|
1650 return false; |
|
1651 } |
|
1652 |
|
1653 /*---------------------------------------------------------------------------------------------- |
|
1654 Get the bounding box coordinates based on the given tables and Glyph ID |
|
1655 Handles both simple and composite glyphs. |
|
1656 Return true if successful, false otherwise. On false, all point values will be INT_MIN |
|
1657 False may indicate a white space glyph |
|
1658 ----------------------------------------------------------------------------------------------*/ |
|
1659 bool GlyfBox(gid16 nGlyphId, const void * pGlyf, const void * pLoca, |
|
1660 size_t lGlyfSize, size_t lLocaSize, const void * pHead, int & xMin, int & yMin, int & xMax, int & yMax) |
|
1661 { |
|
1662 xMin = yMin = xMax = yMax = INT_MIN; |
|
1663 |
|
1664 if (IsSpace(nGlyphId, pLoca, lLocaSize, pHead)) {return false;} |
|
1665 |
|
1666 void * pSimpleGlyf = GlyfLookup(nGlyphId, pGlyf, pLoca, lGlyfSize, lLocaSize, pHead); |
|
1667 if (pSimpleGlyf == NULL) {return false;} |
|
1668 |
|
1669 return GlyfBox(pSimpleGlyf, xMin, yMin, xMax, yMax); |
|
1670 } |
|
1671 |
|
1672 /*---------------------------------------------------------------------------------------------- |
|
1673 Get the number of contours based on the given tables and Glyph ID |
|
1674 Handles both simple and composite glyphs. |
|
1675 Return true if successful, false otherwise. On false, cnContours will be INT_MIN |
|
1676 False may indicate a white space glyph or a multi-level composite glyph. |
|
1677 ----------------------------------------------------------------------------------------------*/ |
|
1678 bool GlyfContourCount(gid16 nGlyphId, const void * pGlyf, const void * pLoca, |
|
1679 size_t lGlyfSize, size_t lLocaSize, const void * pHead, size_t & cnContours) |
|
1680 { |
|
1681 cnContours = static_cast<size_t>(INT_MIN); |
|
1682 |
|
1683 if (IsSpace(nGlyphId, pLoca, lLocaSize, pHead)) {return false;} |
|
1684 |
|
1685 void * pSimpleGlyf = GlyfLookup(nGlyphId, pGlyf, pLoca, lGlyfSize, lLocaSize, pHead); |
|
1686 if (pSimpleGlyf == NULL) {return false;} |
|
1687 |
|
1688 int cRtnContours = GlyfContourCount(pSimpleGlyf); |
|
1689 if (cRtnContours >= 0) |
|
1690 { |
|
1691 cnContours = size_t(cRtnContours); |
|
1692 return true; |
|
1693 } |
|
1694 |
|
1695 //handle composite glyphs |
|
1696 |
|
1697 int rgnCompId[kMaxGlyphComponents]; // assumes no glyph will be made of more than 8 components |
|
1698 size_t cCompIdTotal = kMaxGlyphComponents; |
|
1699 size_t cCompId = 0; |
|
1700 |
|
1701 if (!GetComponentGlyphIds(pSimpleGlyf, rgnCompId, cCompIdTotal, cCompId)) |
|
1702 return false; |
|
1703 |
|
1704 cRtnContours = 0; |
|
1705 int cTmp = 0; |
|
1706 for (size_t i = 0; i < cCompId; i++) |
|
1707 { |
|
1708 if (IsSpace(static_cast<gid16>(rgnCompId[i]), pLoca, lLocaSize, pHead)) {return false;} |
|
1709 pSimpleGlyf = GlyfLookup(static_cast<gid16>(rgnCompId[i]), |
|
1710 pGlyf, pLoca, lGlyfSize, lLocaSize, pHead); |
|
1711 if (pSimpleGlyf == 0) {return false;} |
|
1712 // return false on multi-level composite |
|
1713 if ((cTmp = GlyfContourCount(pSimpleGlyf)) < 0) |
|
1714 return false; |
|
1715 cRtnContours += cTmp; |
|
1716 } |
|
1717 |
|
1718 cnContours = size_t(cRtnContours); |
|
1719 return true; |
|
1720 } |
|
1721 |
|
1722 /*---------------------------------------------------------------------------------------------- |
|
1723 Get the point numbers for the end points of the glyph contours based on the given tables |
|
1724 and Glyph ID |
|
1725 Handles both simple and composite glyphs. |
|
1726 cnPoints - count of contours from GlyfContourCount (same as number of end points) |
|
1727 prgnContourEndPoints - should point to a buffer large enough to hold cnPoints integers |
|
1728 Return true if successful, false otherwise. On false, all end points are INT_MIN |
|
1729 False may indicate a white space glyph or a multi-level composite glyph. |
|
1730 ----------------------------------------------------------------------------------------------*/ |
|
1731 bool GlyfContourEndPoints(gid16 nGlyphId, const void * pGlyf, const void * pLoca, |
|
1732 size_t lGlyfSize, size_t lLocaSize, const void * pHead, |
|
1733 int * prgnContourEndPoint, size_t cnPoints) |
|
1734 { |
|
1735 memset(prgnContourEndPoint, 0xFF, cnPoints * sizeof(int)); |
|
1736 // std::fill_n(prgnContourEndPoint, cnPoints, INT_MIN); |
|
1737 |
|
1738 if (IsSpace(nGlyphId, pLoca, lLocaSize, pHead)) {return false;} |
|
1739 |
|
1740 void * pSimpleGlyf = GlyfLookup(nGlyphId, pGlyf, pLoca, lGlyfSize, lLocaSize, pHead); |
|
1741 if (pSimpleGlyf == NULL) {return false;} |
|
1742 |
|
1743 int cContours = GlyfContourCount(pSimpleGlyf); |
|
1744 int cActualPts = 0; |
|
1745 if (cContours > 0) |
|
1746 return GlyfContourEndPoints(pSimpleGlyf, prgnContourEndPoint, cnPoints, cActualPts); |
|
1747 |
|
1748 // handle composite glyphs |
|
1749 |
|
1750 int rgnCompId[kMaxGlyphComponents]; // assumes no glyph will be made of more than 8 components |
|
1751 size_t cCompIdTotal = kMaxGlyphComponents; |
|
1752 size_t cCompId = 0; |
|
1753 |
|
1754 if (!GetComponentGlyphIds(pSimpleGlyf, rgnCompId, cCompIdTotal, cCompId)) |
|
1755 return false; |
|
1756 |
|
1757 int * prgnCurrentEndPoint = prgnContourEndPoint; |
|
1758 int cCurrentPoints = cnPoints; |
|
1759 int nPrevPt = 0; |
|
1760 for (size_t i = 0; i < cCompId; i++) |
|
1761 { |
|
1762 if (IsSpace(static_cast<gid16>(rgnCompId[i]), pLoca, lLocaSize, pHead)) {return false;} |
|
1763 pSimpleGlyf = GlyfLookup(static_cast<gid16>(rgnCompId[i]), pGlyf, pLoca, lGlyfSize, lLocaSize, pHead); |
|
1764 if (pSimpleGlyf == NULL) {return false;} |
|
1765 // returns false on multi-level composite |
|
1766 if (!GlyfContourEndPoints(pSimpleGlyf, prgnCurrentEndPoint, cCurrentPoints, cActualPts)) |
|
1767 return false; |
|
1768 // points in composite are numbered sequentially as components are added |
|
1769 // must adjust end point numbers for new point numbers |
|
1770 for (int j = 0; j < cActualPts; j++) |
|
1771 prgnCurrentEndPoint[j] += nPrevPt; |
|
1772 nPrevPt = prgnCurrentEndPoint[cActualPts - 1] + 1; |
|
1773 |
|
1774 prgnCurrentEndPoint += cActualPts; |
|
1775 cCurrentPoints -= cActualPts; |
|
1776 } |
|
1777 |
|
1778 return true; |
|
1779 } |
|
1780 |
|
1781 /*---------------------------------------------------------------------------------------------- |
|
1782 Get the points for a glyph based on the given tables and Glyph ID |
|
1783 Handles both simple and composite glyphs. |
|
1784 cnPoints - count of points from largest end point obtained from GlyfContourEndPoints |
|
1785 prgnX & prgnY - should point to buffers large enough to hold cnPoints integers |
|
1786 The ranges are parallel so that coordinates for point(n) are found at offset n in |
|
1787 both ranges. These points are in absolute coordinates. |
|
1788 prgfOnCurve - should point to a buffer a large enough to hold cnPoints bytes (bool) |
|
1789 This range is parallel to the prgnX & prgnY |
|
1790 Return true if successful, false otherwise. On false, all points may be INT_MIN |
|
1791 False may indicate a white space glyph, a multi-level composite, or a corrupt font |
|
1792 // TODO: doesn't support composite glyphs whose components are themselves components |
|
1793 It's not clear from the TTF spec when the transforms should be applied. Should the |
|
1794 transform be done before or after attachment point calcs? (current code - before) |
|
1795 Should the transform be applied to other offsets? (currently - no; however commented |
|
1796 out code is in place so that if CompoundGlyph::UnscaledOffset on the MS rasterizer is |
|
1797 clear (typical) then yes, and if CompoundGlyph::ScaledOffset on the Apple rasterizer is |
|
1798 clear (typical?) then no). See GetComponentTransform. |
|
1799 It's also unclear where point numbering with attachment poinst starts |
|
1800 (currently - first point number is relative to whole glyph, second point number is |
|
1801 relative to current glyph). |
|
1802 ----------------------------------------------------------------------------------------------*/ |
|
1803 bool GlyfPoints(gid16 nGlyphId, const void * pGlyf, |
|
1804 const void * pLoca, size_t lGlyfSize, size_t lLocaSize, const void * pHead, |
|
1805 const int * /*prgnContourEndPoint*/, size_t /*cnEndPoints*/, |
|
1806 int * prgnX, int * prgnY, bool * prgfOnCurve, size_t cnPoints) |
|
1807 { |
|
1808 memset(prgnX, 0x7F, cnPoints * sizeof(int)); |
|
1809 memset(prgnY, 0x7F, cnPoints * sizeof(int)); |
|
1810 |
|
1811 if (IsSpace(nGlyphId, pLoca, lLocaSize, pHead)) |
|
1812 return false; |
|
1813 |
|
1814 void * pSimpleGlyf = GlyfLookup(nGlyphId, pGlyf, pLoca, lGlyfSize, lLocaSize, pHead); |
|
1815 if (pSimpleGlyf == NULL) |
|
1816 return false; |
|
1817 |
|
1818 int cContours = GlyfContourCount(pSimpleGlyf); |
|
1819 int cActualPts; |
|
1820 if (cContours > 0) |
|
1821 { |
|
1822 if (!GlyfPoints(pSimpleGlyf, prgnX, prgnY, (char *)prgfOnCurve, cnPoints, cActualPts)) |
|
1823 return false; |
|
1824 CalcAbsolutePoints(prgnX, prgnY, cnPoints); |
|
1825 SimplifyFlags((char *)prgfOnCurve, cnPoints); |
|
1826 return true; |
|
1827 } |
|
1828 |
|
1829 // handle composite glyphs |
|
1830 int rgnCompId[kMaxGlyphComponents]; // assumes no glyph will be made of more than 8 components |
|
1831 size_t cCompIdTotal = kMaxGlyphComponents; |
|
1832 size_t cCompId = 0; |
|
1833 |
|
1834 // this will fail if there are more components than there is room for |
|
1835 if (!GetComponentGlyphIds(pSimpleGlyf, rgnCompId, cCompIdTotal, cCompId)) |
|
1836 return false; |
|
1837 |
|
1838 int * prgnCurrentX = prgnX; |
|
1839 int * prgnCurrentY = prgnY; |
|
1840 char * prgbCurrentFlag = (char *)prgfOnCurve; // converting bool to char should be safe |
|
1841 int cCurrentPoints = cnPoints; |
|
1842 bool fOffset = true, fTransOff = true; |
|
1843 int a, b; |
|
1844 float flt11, flt12, flt21, flt22; |
|
1845 // int * prgnPrevX = prgnX; // in case first att pt number relative to preceding glyph |
|
1846 // int * prgnPrevY = prgnY; |
|
1847 for (size_t i = 0; i < cCompId; i++) |
|
1848 { |
|
1849 if (IsSpace(static_cast<gid16>(rgnCompId[i]), pLoca, lLocaSize, pHead)) {return false;} |
|
1850 void * pCompGlyf = GlyfLookup(static_cast<gid16>(rgnCompId[i]), pGlyf, pLoca, lGlyfSize, lLocaSize, pHead); |
|
1851 if (pCompGlyf == NULL) {return false;} |
|
1852 // returns false on multi-level composite |
|
1853 if (!GlyfPoints(pCompGlyf, prgnCurrentX, prgnCurrentY, prgbCurrentFlag, |
|
1854 cCurrentPoints, cActualPts)) |
|
1855 return false; |
|
1856 if (!GetComponentPlacement(pSimpleGlyf, rgnCompId[i], fOffset, a, b)) |
|
1857 return false; |
|
1858 if (!GetComponentTransform(pSimpleGlyf, rgnCompId[i], |
|
1859 flt11, flt12, flt21, flt22, fTransOff)) |
|
1860 return false; |
|
1861 bool fIdTrans = flt11 == 1.0 && flt12 == 0.0 && flt21 == 0.0 && flt22 == 1.0; |
|
1862 |
|
1863 // convert points to absolute coordinates |
|
1864 // do before transform and attachment point placement are applied |
|
1865 CalcAbsolutePoints(prgnCurrentX, prgnCurrentY, cActualPts); |
|
1866 |
|
1867 // apply transform - see main method note above |
|
1868 // do before attachment point calcs |
|
1869 if (!fIdTrans) |
|
1870 for (int j = 0; j < cActualPts; j++) |
|
1871 { |
|
1872 int x = prgnCurrentX[j]; // store before transform applied |
|
1873 int y = prgnCurrentY[j]; |
|
1874 prgnCurrentX[j] = (int)(x * flt11 + y * flt12); |
|
1875 prgnCurrentY[j] = (int)(x * flt21 + y * flt22); |
|
1876 } |
|
1877 |
|
1878 // apply placement - see main method note above |
|
1879 int nXOff, nYOff; |
|
1880 if (fOffset) // explicit x & y offsets |
|
1881 { |
|
1882 /* ignore fTransOff for now |
|
1883 if (fTransOff && !fIdTrans) |
|
1884 { // transform x & y offsets |
|
1885 nXOff = (int)(a * flt11 + b * flt12); |
|
1886 nYOff = (int)(a * flt21 + b * flt22); |
|
1887 } |
|
1888 else */ |
|
1889 { // don't transform offset |
|
1890 nXOff = a; |
|
1891 nYOff = b; |
|
1892 } |
|
1893 } |
|
1894 else // attachment points |
|
1895 { // in case first point is relative to preceding glyph and second relative to current |
|
1896 // nXOff = prgnPrevX[a] - prgnCurrentX[b]; |
|
1897 // nYOff = prgnPrevY[a] - prgnCurrentY[b]; |
|
1898 // first point number relative to whole composite, second relative to current glyph |
|
1899 nXOff = prgnX[a] - prgnCurrentX[b]; |
|
1900 nYOff = prgnY[a] - prgnCurrentY[b]; |
|
1901 } |
|
1902 for (int j = 0; j < cActualPts; j++) |
|
1903 { |
|
1904 prgnCurrentX[j] += nXOff; |
|
1905 prgnCurrentY[j] += nYOff; |
|
1906 } |
|
1907 |
|
1908 // prgnPrevX = prgnCurrentX; |
|
1909 // prgnPrevY = prgnCurrentY; |
|
1910 prgnCurrentX += cActualPts; |
|
1911 prgnCurrentY += cActualPts; |
|
1912 prgbCurrentFlag += cActualPts; |
|
1913 cCurrentPoints -= cActualPts; |
|
1914 } |
|
1915 |
|
1916 SimplifyFlags((char *)prgfOnCurve, cnPoints); |
|
1917 |
|
1918 return true; |
|
1919 } |
|
1920 |
|
1921 /*---------------------------------------------------------------------------------------------- |
|
1922 Simplify the meaning of flags to just indicate whether point is on-curve or off-curve. |
|
1923 ---------------------------------------------------------------------------------------------*/ |
|
1924 bool SimplifyFlags(char * prgbFlags, int cnPoints) |
|
1925 { |
|
1926 for (int i = 0; i < cnPoints; i++) |
|
1927 prgbFlags[i] = static_cast<char>(prgbFlags[i] & Sfnt::SimpleGlyph::OnCurve); |
|
1928 return true; |
|
1929 } |
|
1930 |
|
1931 /*---------------------------------------------------------------------------------------------- |
|
1932 Convert relative point coordinates to absolute coordinates |
|
1933 Points are stored in the font such that they are offsets from one another except for the |
|
1934 first point of a glyph. |
|
1935 ---------------------------------------------------------------------------------------------*/ |
|
1936 bool CalcAbsolutePoints(int * prgnX, int * prgnY, int cnPoints) |
|
1937 { |
|
1938 int nX = prgnX[0]; |
|
1939 int nY = prgnY[0]; |
|
1940 for (int i = 1; i < cnPoints; i++) |
|
1941 { |
|
1942 prgnX[i] += nX; |
|
1943 nX = prgnX[i]; |
|
1944 prgnY[i] += nY; |
|
1945 nY = prgnY[i]; |
|
1946 } |
|
1947 |
|
1948 return true; |
|
1949 } |
|
1950 #endif |
|
1951 |
|
1952 /*---------------------------------------------------------------------------------------------- |
|
1953 Return the length of the 'name' table in bytes. |
|
1954 Currently used. |
|
1955 ---------------------------------------------------------------------------------------------*/ |
|
1956 #if 0 |
|
1957 size_t NameTableLength(const byte * pTable) |
|
1958 { |
|
1959 byte * pb = (const_cast<byte *>(pTable)) + 2; // skip format |
|
1960 size_t cRecords = *pb++ << 8; cRecords += *pb++; |
|
1961 int dbStringOffset0 = (*pb++) << 8; dbStringOffset0 += *pb++; |
|
1962 int dbMaxStringOffset = 0; |
|
1963 for (size_t irec = 0; irec < cRecords; irec++) |
|
1964 { |
|
1965 int nPlatform = (*pb++) << 8; nPlatform += *pb++; |
|
1966 int nEncoding = (*pb++) << 8; nEncoding += *pb++; |
|
1967 int nLanguage = (*pb++) << 8; nLanguage += *pb++; |
|
1968 int nName = (*pb++) << 8; nName += *pb++; |
|
1969 int cbStringLen = (*pb++) << 8; cbStringLen += *pb++; |
|
1970 int dbStringOffset = (*pb++) << 8; dbStringOffset += *pb++; |
|
1971 if (dbMaxStringOffset < dbStringOffset + cbStringLen) |
|
1972 dbMaxStringOffset = dbStringOffset + cbStringLen; |
|
1973 } |
|
1974 return dbStringOffset0 + dbMaxStringOffset; |
|
1975 } |
|
1976 #endif |
|
1977 |
|
1978 } // end of namespace TtfUtil |
|
1979 } // end of namespace graphite |