|
1 float4x4 mLayerTransform; |
|
2 float4 vRenderTargetOffset; |
|
3 float4x4 mProjection; |
|
4 |
|
5 typedef float4 rect; |
|
6 rect vTextureCoords; |
|
7 rect vLayerQuad; |
|
8 rect vMaskQuad; |
|
9 |
|
10 texture tex0; |
|
11 sampler s2D; |
|
12 sampler s2DWhite; |
|
13 sampler s2DY; |
|
14 sampler s2DCb; |
|
15 sampler s2DCr; |
|
16 sampler s2DMask; |
|
17 |
|
18 |
|
19 float fLayerOpacity; |
|
20 float4 fLayerColor; |
|
21 |
|
22 struct VS_INPUT { |
|
23 float4 vPosition : POSITION; |
|
24 }; |
|
25 |
|
26 struct VS_OUTPUT { |
|
27 float4 vPosition : POSITION; |
|
28 float2 vTexCoords : TEXCOORD0; |
|
29 }; |
|
30 |
|
31 struct VS_OUTPUT_MASK { |
|
32 float4 vPosition : POSITION; |
|
33 float2 vTexCoords : TEXCOORD0; |
|
34 float2 vMaskCoords : TEXCOORD1; |
|
35 }; |
|
36 |
|
37 struct VS_OUTPUT_MASK_3D { |
|
38 float4 vPosition : POSITION; |
|
39 float2 vTexCoords : TEXCOORD0; |
|
40 float3 vMaskCoords : TEXCOORD1; |
|
41 }; |
|
42 |
|
43 VS_OUTPUT LayerQuadVS(const VS_INPUT aVertex) |
|
44 { |
|
45 VS_OUTPUT outp; |
|
46 outp.vPosition = aVertex.vPosition; |
|
47 |
|
48 // We use 4 component floats to uniquely describe a rectangle, by the structure |
|
49 // of x, y, width, height. This allows us to easily generate the 4 corners |
|
50 // of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the |
|
51 // stream source for our LayerQuad vertex shader. We do this by doing: |
|
52 // Xout = x + Xin * width |
|
53 // Yout = y + Yin * height |
|
54 float2 position = vLayerQuad.xy; |
|
55 float2 size = vLayerQuad.zw; |
|
56 outp.vPosition.x = position.x + outp.vPosition.x * size.x; |
|
57 outp.vPosition.y = position.y + outp.vPosition.y * size.y; |
|
58 |
|
59 outp.vPosition = mul(mLayerTransform, outp.vPosition); |
|
60 outp.vPosition.xyz /= outp.vPosition.w; |
|
61 outp.vPosition = outp.vPosition - vRenderTargetOffset; |
|
62 outp.vPosition.xyz *= outp.vPosition.w; |
|
63 |
|
64 // adjust our vertices to match d3d9's pixel coordinate system |
|
65 // which has pixel centers at integer locations |
|
66 outp.vPosition.xy -= 0.5; |
|
67 |
|
68 outp.vPosition = mul(mProjection, outp.vPosition); |
|
69 |
|
70 position = vTextureCoords.xy; |
|
71 size = vTextureCoords.zw; |
|
72 outp.vTexCoords.x = position.x + aVertex.vPosition.x * size.x; |
|
73 outp.vTexCoords.y = position.y + aVertex.vPosition.y * size.y; |
|
74 |
|
75 return outp; |
|
76 } |
|
77 |
|
78 VS_OUTPUT_MASK LayerQuadVSMask(const VS_INPUT aVertex) |
|
79 { |
|
80 VS_OUTPUT_MASK outp; |
|
81 float4 position = float4(0, 0, 0, 1); |
|
82 |
|
83 // We use 4 component floats to uniquely describe a rectangle, by the structure |
|
84 // of x, y, width, height. This allows us to easily generate the 4 corners |
|
85 // of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the |
|
86 // stream source for our LayerQuad vertex shader. We do this by doing: |
|
87 // Xout = x + Xin * width |
|
88 // Yout = y + Yin * height |
|
89 float2 size = vLayerQuad.zw; |
|
90 position.x = vLayerQuad.x + aVertex.vPosition.x * size.x; |
|
91 position.y = vLayerQuad.y + aVertex.vPosition.y * size.y; |
|
92 |
|
93 position = mul(mLayerTransform, position); |
|
94 outp.vPosition.w = position.w; |
|
95 outp.vPosition.xyz = position.xyz / position.w; |
|
96 outp.vPosition = outp.vPosition - vRenderTargetOffset; |
|
97 outp.vPosition.xyz *= outp.vPosition.w; |
|
98 |
|
99 // adjust our vertices to match d3d9's pixel coordinate system |
|
100 // which has pixel centers at integer locations |
|
101 outp.vPosition.xy -= 0.5; |
|
102 |
|
103 outp.vPosition = mul(mProjection, outp.vPosition); |
|
104 |
|
105 // calculate the position on the mask texture |
|
106 outp.vMaskCoords.x = (position.x - vMaskQuad.x) / vMaskQuad.z; |
|
107 outp.vMaskCoords.y = (position.y - vMaskQuad.y) / vMaskQuad.w; |
|
108 |
|
109 size = vTextureCoords.zw; |
|
110 outp.vTexCoords.x = vTextureCoords.x + aVertex.vPosition.x * size.x; |
|
111 outp.vTexCoords.y = vTextureCoords.y + aVertex.vPosition.y * size.y; |
|
112 |
|
113 return outp; |
|
114 } |
|
115 |
|
116 VS_OUTPUT_MASK_3D LayerQuadVSMask3D(const VS_INPUT aVertex) |
|
117 { |
|
118 VS_OUTPUT_MASK_3D outp; |
|
119 float4 position = float4(0, 0, 0, 1); |
|
120 |
|
121 // We use 4 component floats to uniquely describe a rectangle, by the structure |
|
122 // of x, y, width, height. This allows us to easily generate the 4 corners |
|
123 // of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the |
|
124 // stream source for our LayerQuad vertex shader. We do this by doing: |
|
125 // Xout = x + Xin * width |
|
126 // Yout = y + Yin * height |
|
127 float2 size = vLayerQuad.zw; |
|
128 position.x = vLayerQuad.x + aVertex.vPosition.x * size.x; |
|
129 position.y = vLayerQuad.y + aVertex.vPosition.y * size.y; |
|
130 |
|
131 position = mul(mLayerTransform, position); |
|
132 outp.vPosition.w = position.w; |
|
133 outp.vPosition.xyz = position.xyz / position.w; |
|
134 outp.vPosition = outp.vPosition - vRenderTargetOffset; |
|
135 outp.vPosition.xyz *= outp.vPosition.w; |
|
136 |
|
137 // adjust our vertices to match d3d9's pixel coordinate system |
|
138 // which has pixel centers at integer locations |
|
139 outp.vPosition.xy -= 0.5; |
|
140 |
|
141 outp.vPosition = mul(mProjection, outp.vPosition); |
|
142 |
|
143 // calculate the position on the mask texture |
|
144 position.xyz /= position.w; |
|
145 outp.vMaskCoords.x = (position.x - vMaskQuad.x) / vMaskQuad.z; |
|
146 outp.vMaskCoords.y = (position.y - vMaskQuad.y) / vMaskQuad.w; |
|
147 // correct for perspective correct interpolation, see comment in D3D10 shader |
|
148 outp.vMaskCoords.z = 1; |
|
149 outp.vMaskCoords *= position.w; |
|
150 |
|
151 size = vTextureCoords.zw; |
|
152 outp.vTexCoords.x = vTextureCoords.x + aVertex.vPosition.x * size.x; |
|
153 outp.vTexCoords.y = vTextureCoords.y + aVertex.vPosition.y * size.y; |
|
154 |
|
155 return outp; |
|
156 } |
|
157 |
|
158 float4 ComponentPass1Shader(const VS_OUTPUT aVertex) : COLOR |
|
159 { |
|
160 float4 src = tex2D(s2D, aVertex.vTexCoords); |
|
161 float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src; |
|
162 alphas.a = alphas.g; |
|
163 return alphas * fLayerOpacity; |
|
164 } |
|
165 |
|
166 float4 ComponentPass2Shader(const VS_OUTPUT aVertex) : COLOR |
|
167 { |
|
168 float4 src = tex2D(s2D, aVertex.vTexCoords); |
|
169 float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src; |
|
170 src.a = alphas.g; |
|
171 return src * fLayerOpacity; |
|
172 } |
|
173 |
|
174 float4 RGBAShader(const VS_OUTPUT aVertex) : COLOR |
|
175 { |
|
176 return tex2D(s2D, aVertex.vTexCoords) * fLayerOpacity; |
|
177 } |
|
178 |
|
179 float4 RGBShader(const VS_OUTPUT aVertex) : COLOR |
|
180 { |
|
181 float4 result; |
|
182 result = tex2D(s2D, aVertex.vTexCoords); |
|
183 result.a = 1.0; |
|
184 return result * fLayerOpacity; |
|
185 } |
|
186 |
|
187 float4 YCbCrShader(const VS_OUTPUT aVertex) : COLOR |
|
188 { |
|
189 float4 yuv; |
|
190 float4 color; |
|
191 |
|
192 yuv.r = tex2D(s2DCr, aVertex.vTexCoords).a - 0.5; |
|
193 yuv.g = tex2D(s2DY, aVertex.vTexCoords).a - 0.0625; |
|
194 yuv.b = tex2D(s2DCb, aVertex.vTexCoords).a - 0.5; |
|
195 |
|
196 color.r = yuv.g * 1.164 + yuv.r * 1.596; |
|
197 color.g = yuv.g * 1.164 - 0.813 * yuv.r - 0.391 * yuv.b; |
|
198 color.b = yuv.g * 1.164 + yuv.b * 2.018; |
|
199 color.a = 1.0f; |
|
200 |
|
201 return color * fLayerOpacity; |
|
202 } |
|
203 |
|
204 float4 SolidColorShader(const VS_OUTPUT aVertex) : COLOR |
|
205 { |
|
206 return fLayerColor; |
|
207 } |
|
208 |
|
209 float4 ComponentPass1ShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR |
|
210 { |
|
211 float4 src = tex2D(s2D, aVertex.vTexCoords); |
|
212 float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src; |
|
213 alphas.a = alphas.g; |
|
214 float2 maskCoords = aVertex.vMaskCoords; |
|
215 float mask = tex2D(s2DMask, maskCoords).a; |
|
216 return alphas * fLayerOpacity * mask; |
|
217 } |
|
218 |
|
219 float4 ComponentPass2ShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR |
|
220 { |
|
221 float4 src = tex2D(s2D, aVertex.vTexCoords); |
|
222 float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src; |
|
223 src.a = alphas.g; |
|
224 float2 maskCoords = aVertex.vMaskCoords; |
|
225 float mask = tex2D(s2DMask, maskCoords).a; |
|
226 return src * fLayerOpacity * mask; |
|
227 } |
|
228 |
|
229 float4 RGBAShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR |
|
230 { |
|
231 float2 maskCoords = aVertex.vMaskCoords; |
|
232 float mask = tex2D(s2DMask, maskCoords).a; |
|
233 return tex2D(s2D, aVertex.vTexCoords) * fLayerOpacity * mask; |
|
234 } |
|
235 |
|
236 float4 RGBAShaderMask3D(const VS_OUTPUT_MASK_3D aVertex) : COLOR |
|
237 { |
|
238 float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z; |
|
239 float mask = tex2D(s2DMask, maskCoords).a; |
|
240 return tex2D(s2D, aVertex.vTexCoords) * fLayerOpacity * mask; |
|
241 } |
|
242 |
|
243 float4 RGBShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR |
|
244 { |
|
245 float4 result; |
|
246 result = tex2D(s2D, aVertex.vTexCoords); |
|
247 result.a = 1.0; |
|
248 float2 maskCoords = aVertex.vMaskCoords; |
|
249 float mask = tex2D(s2DMask, maskCoords).a; |
|
250 return result * fLayerOpacity * mask; |
|
251 } |
|
252 |
|
253 float4 YCbCrShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR |
|
254 { |
|
255 float4 yuv; |
|
256 float4 color; |
|
257 |
|
258 yuv.r = tex2D(s2DCr, aVertex.vTexCoords).a - 0.5; |
|
259 yuv.g = tex2D(s2DY, aVertex.vTexCoords).a - 0.0625; |
|
260 yuv.b = tex2D(s2DCb, aVertex.vTexCoords).a - 0.5; |
|
261 |
|
262 color.r = yuv.g * 1.164 + yuv.r * 1.596; |
|
263 color.g = yuv.g * 1.164 - 0.813 * yuv.r - 0.391 * yuv.b; |
|
264 color.b = yuv.g * 1.164 + yuv.b * 2.018; |
|
265 color.a = 1.0f; |
|
266 |
|
267 float2 maskCoords = aVertex.vMaskCoords; |
|
268 float mask = tex2D(s2DMask, maskCoords).a; |
|
269 return color * fLayerOpacity * mask; |
|
270 } |
|
271 |
|
272 float4 SolidColorShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR |
|
273 { |
|
274 float2 maskCoords = aVertex.vMaskCoords; |
|
275 float mask = tex2D(s2DMask, maskCoords).a; |
|
276 return fLayerColor * mask; |
|
277 } |