| |
1 |
| |
2 /* |
| |
3 * Copyright 2012 Google Inc. |
| |
4 * |
| |
5 * Use of this source code is governed by a BSD-style license that can be |
| |
6 * found in the LICENSE file. |
| |
7 */ |
| |
8 |
| |
9 #ifndef SkPathRef_DEFINED |
| |
10 #define SkPathRef_DEFINED |
| |
11 |
| |
12 #include "SkMatrix.h" |
| |
13 #include "SkPoint.h" |
| |
14 #include "SkRect.h" |
| |
15 #include "SkRefCnt.h" |
| |
16 #include "SkTDArray.h" |
| |
17 #include <stddef.h> // ptrdiff_t |
| |
18 |
| |
19 class SkRBuffer; |
| |
20 class SkWBuffer; |
| |
21 |
| |
22 /** |
| |
23 * Holds the path verbs and points. It is versioned by a generation ID. None of its public methods |
| |
24 * modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an |
| |
25 * SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs |
| |
26 * copy-on-write if the SkPathRef is shared by multiple SkPaths. The caller passes the Editor's |
| |
27 * constructor a SkAutoTUnref, which may be updated to point to a new SkPathRef after the editor's |
| |
28 * constructor returns. |
| |
29 * |
| |
30 * The points and verbs are stored in a single allocation. The points are at the begining of the |
| |
31 * allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points |
| |
32 * and verbs both grow into the middle of the allocation until the meet. To access verb i in the |
| |
33 * verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first |
| |
34 * logical verb or the last verb in memory). |
| |
35 */ |
| |
36 |
| |
37 class SK_API SkPathRef : public ::SkRefCnt { |
| |
38 public: |
| |
39 SK_DECLARE_INST_COUNT(SkPathRef); |
| |
40 |
| |
41 class Editor { |
| |
42 public: |
| |
43 Editor(SkAutoTUnref<SkPathRef>* pathRef, |
| |
44 int incReserveVerbs = 0, |
| |
45 int incReservePoints = 0); |
| |
46 |
| |
47 ~Editor() { SkDEBUGCODE(sk_atomic_dec(&fPathRef->fEditorsAttached);) } |
| |
48 |
| |
49 /** |
| |
50 * Returns the array of points. |
| |
51 */ |
| |
52 SkPoint* points() { return fPathRef->getPoints(); } |
| |
53 const SkPoint* points() const { return fPathRef->points(); } |
| |
54 |
| |
55 /** |
| |
56 * Gets the ith point. Shortcut for this->points() + i |
| |
57 */ |
| |
58 SkPoint* atPoint(int i) { |
| |
59 SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt); |
| |
60 return this->points() + i; |
| |
61 }; |
| |
62 const SkPoint* atPoint(int i) const { |
| |
63 SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt); |
| |
64 return this->points() + i; |
| |
65 }; |
| |
66 |
| |
67 /** |
| |
68 * Adds the verb and allocates space for the number of points indicated by the verb. The |
| |
69 * return value is a pointer to where the points for the verb should be written. |
| |
70 * 'weight' is only used if 'verb' is kConic_Verb |
| |
71 */ |
| |
72 SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight = 0) { |
| |
73 SkDEBUGCODE(fPathRef->validate();) |
| |
74 return fPathRef->growForVerb(verb, weight); |
| |
75 } |
| |
76 |
| |
77 /** |
| |
78 * Allocates space for multiple instances of a particular verb and the |
| |
79 * requisite points & weights. |
| |
80 * The return pointer points at the first new point (indexed normally [<i>]). |
| |
81 * If 'verb' is kConic_Verb, 'weights' will return a pointer to the |
| |
82 * space for the conic weights (indexed normally). |
| |
83 */ |
| |
84 SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, |
| |
85 int numVbs, |
| |
86 SkScalar** weights = NULL) { |
| |
87 return fPathRef->growForRepeatedVerb(verb, numVbs, weights); |
| |
88 } |
| |
89 |
| |
90 /** |
| |
91 * Resets the path ref to a new verb and point count. The new verbs and points are |
| |
92 * uninitialized. |
| |
93 */ |
| |
94 void resetToSize(int newVerbCnt, int newPointCnt, int newConicCount) { |
| |
95 fPathRef->resetToSize(newVerbCnt, newPointCnt, newConicCount); |
| |
96 } |
| |
97 |
| |
98 /** |
| |
99 * Gets the path ref that is wrapped in the Editor. |
| |
100 */ |
| |
101 SkPathRef* pathRef() { return fPathRef; } |
| |
102 |
| |
103 void setIsOval(bool isOval) { fPathRef->setIsOval(isOval); } |
| |
104 |
| |
105 void setBounds(const SkRect& rect) { fPathRef->setBounds(rect); } |
| |
106 |
| |
107 private: |
| |
108 SkPathRef* fPathRef; |
| |
109 }; |
| |
110 |
| |
111 public: |
| |
112 /** |
| |
113 * Gets a path ref with no verbs or points. |
| |
114 */ |
| |
115 static SkPathRef* CreateEmpty(); |
| |
116 |
| |
117 /** |
| |
118 * Returns true if all of the points in this path are finite, meaning there |
| |
119 * are no infinities and no NaNs. |
| |
120 */ |
| |
121 bool isFinite() const { |
| |
122 if (fBoundsIsDirty) { |
| |
123 this->computeBounds(); |
| |
124 } |
| |
125 return SkToBool(fIsFinite); |
| |
126 } |
| |
127 |
| |
128 /** |
| |
129 * Returns a mask, where each bit corresponding to a SegmentMask is |
| |
130 * set if the path contains 1 or more segments of that type. |
| |
131 * Returns 0 for an empty path (no segments). |
| |
132 */ |
| |
133 uint32_t getSegmentMasks() const { return fSegmentMask; } |
| |
134 |
| |
135 /** Returns true if the path is an oval. |
| |
136 * |
| |
137 * @param rect returns the bounding rect of this oval. It's a circle |
| |
138 * if the height and width are the same. |
| |
139 * |
| |
140 * @return true if this path is an oval. |
| |
141 * Tracking whether a path is an oval is considered an |
| |
142 * optimization for performance and so some paths that are in |
| |
143 * fact ovals can report false. |
| |
144 */ |
| |
145 bool isOval(SkRect* rect) const { |
| |
146 if (fIsOval && NULL != rect) { |
| |
147 *rect = getBounds(); |
| |
148 } |
| |
149 |
| |
150 return SkToBool(fIsOval); |
| |
151 } |
| |
152 |
| |
153 bool hasComputedBounds() const { |
| |
154 return !fBoundsIsDirty; |
| |
155 } |
| |
156 |
| |
157 /** Returns the bounds of the path's points. If the path contains 0 or 1 |
| |
158 points, the bounds is set to (0,0,0,0), and isEmpty() will return true. |
| |
159 Note: this bounds may be larger than the actual shape, since curves |
| |
160 do not extend as far as their control points. |
| |
161 */ |
| |
162 const SkRect& getBounds() const { |
| |
163 if (fBoundsIsDirty) { |
| |
164 this->computeBounds(); |
| |
165 } |
| |
166 return fBounds; |
| |
167 } |
| |
168 |
| |
169 /** |
| |
170 * Transforms a path ref by a matrix, allocating a new one only if necessary. |
| |
171 */ |
| |
172 static void CreateTransformedCopy(SkAutoTUnref<SkPathRef>* dst, |
| |
173 const SkPathRef& src, |
| |
174 const SkMatrix& matrix); |
| |
175 |
| |
176 static SkPathRef* CreateFromBuffer(SkRBuffer* buffer); |
| |
177 |
| |
178 /** |
| |
179 * Rollsback a path ref to zero verbs and points with the assumption that the path ref will be |
| |
180 * repopulated with approximately the same number of verbs and points. A new path ref is created |
| |
181 * only if necessary. |
| |
182 */ |
| |
183 static void Rewind(SkAutoTUnref<SkPathRef>* pathRef); |
| |
184 |
| |
185 virtual ~SkPathRef() { |
| |
186 SkDEBUGCODE(this->validate();) |
| |
187 sk_free(fPoints); |
| |
188 |
| |
189 SkDEBUGCODE(fPoints = NULL;) |
| |
190 SkDEBUGCODE(fVerbs = NULL;) |
| |
191 SkDEBUGCODE(fVerbCnt = 0x9999999;) |
| |
192 SkDEBUGCODE(fPointCnt = 0xAAAAAAA;) |
| |
193 SkDEBUGCODE(fPointCnt = 0xBBBBBBB;) |
| |
194 SkDEBUGCODE(fGenerationID = 0xEEEEEEEE;) |
| |
195 SkDEBUGCODE(fEditorsAttached = 0x7777777;) |
| |
196 } |
| |
197 |
| |
198 int countPoints() const { SkDEBUGCODE(this->validate();) return fPointCnt; } |
| |
199 int countVerbs() const { SkDEBUGCODE(this->validate();) return fVerbCnt; } |
| |
200 int countWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.count(); } |
| |
201 |
| |
202 /** |
| |
203 * Returns a pointer one beyond the first logical verb (last verb in memory order). |
| |
204 */ |
| |
205 const uint8_t* verbs() const { SkDEBUGCODE(this->validate();) return fVerbs; } |
| |
206 |
| |
207 /** |
| |
208 * Returns a const pointer to the first verb in memory (which is the last logical verb). |
| |
209 */ |
| |
210 const uint8_t* verbsMemBegin() const { return this->verbs() - fVerbCnt; } |
| |
211 |
| |
212 /** |
| |
213 * Returns a const pointer to the first point. |
| |
214 */ |
| |
215 const SkPoint* points() const { SkDEBUGCODE(this->validate();) return fPoints; } |
| |
216 |
| |
217 /** |
| |
218 * Shortcut for this->points() + this->countPoints() |
| |
219 */ |
| |
220 const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); } |
| |
221 |
| |
222 const SkScalar* conicWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.begin(); } |
| |
223 const SkScalar* conicWeightsEnd() const { SkDEBUGCODE(this->validate();) return fConicWeights.end(); } |
| |
224 |
| |
225 /** |
| |
226 * Convenience methods for getting to a verb or point by index. |
| |
227 */ |
| |
228 uint8_t atVerb(int index) const { |
| |
229 SkASSERT((unsigned) index < (unsigned) fVerbCnt); |
| |
230 return this->verbs()[~index]; |
| |
231 } |
| |
232 const SkPoint& atPoint(int index) const { |
| |
233 SkASSERT((unsigned) index < (unsigned) fPointCnt); |
| |
234 return this->points()[index]; |
| |
235 } |
| |
236 |
| |
237 bool operator== (const SkPathRef& ref) const; |
| |
238 |
| |
239 /** |
| |
240 * Writes the path points and verbs to a buffer. |
| |
241 */ |
| |
242 void writeToBuffer(SkWBuffer* buffer) const; |
| |
243 |
| |
244 /** |
| |
245 * Gets the number of bytes that would be written in writeBuffer() |
| |
246 */ |
| |
247 uint32_t writeSize() const; |
| |
248 |
| |
249 /** |
| |
250 * Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the |
| |
251 * same ID then they have the same verbs and points. However, two path refs may have the same |
| |
252 * contents but different genIDs. |
| |
253 */ |
| |
254 uint32_t genID() const; |
| |
255 |
| |
256 private: |
| |
257 enum SerializationOffsets { |
| |
258 kIsFinite_SerializationShift = 25, // requires 1 bit |
| |
259 kIsOval_SerializationShift = 24, // requires 1 bit |
| |
260 kSegmentMask_SerializationShift = 0 // requires 4 bits |
| |
261 }; |
| |
262 |
| |
263 SkPathRef() { |
| |
264 fBoundsIsDirty = true; // this also invalidates fIsFinite |
| |
265 fPointCnt = 0; |
| |
266 fVerbCnt = 0; |
| |
267 fVerbs = NULL; |
| |
268 fPoints = NULL; |
| |
269 fFreeSpace = 0; |
| |
270 fGenerationID = kEmptyGenID; |
| |
271 fSegmentMask = 0; |
| |
272 fIsOval = false; |
| |
273 SkDEBUGCODE(fEditorsAttached = 0;) |
| |
274 SkDEBUGCODE(this->validate();) |
| |
275 } |
| |
276 |
| |
277 void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints); |
| |
278 |
| |
279 // Return true if the computed bounds are finite. |
| |
280 static bool ComputePtBounds(SkRect* bounds, const SkPathRef& ref) { |
| |
281 int count = ref.countPoints(); |
| |
282 if (count <= 1) { // we ignore just 1 point (moveto) |
| |
283 bounds->setEmpty(); |
| |
284 return count ? ref.points()->isFinite() : true; |
| |
285 } else { |
| |
286 return bounds->setBoundsCheck(ref.points(), count); |
| |
287 } |
| |
288 } |
| |
289 |
| |
290 // called, if dirty, by getBounds() |
| |
291 void computeBounds() const { |
| |
292 SkDEBUGCODE(this->validate();) |
| |
293 SkASSERT(fBoundsIsDirty); |
| |
294 |
| |
295 fIsFinite = ComputePtBounds(&fBounds, *this); |
| |
296 fBoundsIsDirty = false; |
| |
297 } |
| |
298 |
| |
299 void setBounds(const SkRect& rect) { |
| |
300 SkASSERT(rect.fLeft <= rect.fRight && rect.fTop <= rect.fBottom); |
| |
301 fBounds = rect; |
| |
302 fBoundsIsDirty = false; |
| |
303 fIsFinite = fBounds.isFinite(); |
| |
304 } |
| |
305 |
| |
306 /** Makes additional room but does not change the counts or change the genID */ |
| |
307 void incReserve(int additionalVerbs, int additionalPoints) { |
| |
308 SkDEBUGCODE(this->validate();) |
| |
309 size_t space = additionalVerbs * sizeof(uint8_t) + additionalPoints * sizeof (SkPoint); |
| |
310 this->makeSpace(space); |
| |
311 SkDEBUGCODE(this->validate();) |
| |
312 } |
| |
313 |
| |
314 /** Resets the path ref with verbCount verbs and pointCount points, all uninitialized. Also |
| |
315 * allocates space for reserveVerb additional verbs and reservePoints additional points.*/ |
| |
316 void resetToSize(int verbCount, int pointCount, int conicCount, |
| |
317 int reserveVerbs = 0, int reservePoints = 0) { |
| |
318 SkDEBUGCODE(this->validate();) |
| |
319 fBoundsIsDirty = true; // this also invalidates fIsFinite |
| |
320 fGenerationID = 0; |
| |
321 |
| |
322 fSegmentMask = 0; |
| |
323 fIsOval = false; |
| |
324 |
| |
325 size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount; |
| |
326 size_t newReserve = sizeof(uint8_t) * reserveVerbs + sizeof(SkPoint) * reservePoints; |
| |
327 size_t minSize = newSize + newReserve; |
| |
328 |
| |
329 ptrdiff_t sizeDelta = this->currSize() - minSize; |
| |
330 |
| |
331 if (sizeDelta < 0 || static_cast<size_t>(sizeDelta) >= 3 * minSize) { |
| |
332 sk_free(fPoints); |
| |
333 fPoints = NULL; |
| |
334 fVerbs = NULL; |
| |
335 fFreeSpace = 0; |
| |
336 fVerbCnt = 0; |
| |
337 fPointCnt = 0; |
| |
338 this->makeSpace(minSize); |
| |
339 fVerbCnt = verbCount; |
| |
340 fPointCnt = pointCount; |
| |
341 fFreeSpace -= newSize; |
| |
342 } else { |
| |
343 fPointCnt = pointCount; |
| |
344 fVerbCnt = verbCount; |
| |
345 fFreeSpace = this->currSize() - minSize; |
| |
346 } |
| |
347 fConicWeights.setCount(conicCount); |
| |
348 SkDEBUGCODE(this->validate();) |
| |
349 } |
| |
350 |
| |
351 /** |
| |
352 * Increases the verb count by numVbs and point count by the required amount. |
| |
353 * The new points are uninitialized. All the new verbs are set to the specified |
| |
354 * verb. If 'verb' is kConic_Verb, 'weights' will return a pointer to the |
| |
355 * uninitialized conic weights. |
| |
356 */ |
| |
357 SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights); |
| |
358 |
| |
359 /** |
| |
360 * Increases the verb count 1, records the new verb, and creates room for the requisite number |
| |
361 * of additional points. A pointer to the first point is returned. Any new points are |
| |
362 * uninitialized. |
| |
363 */ |
| |
364 SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight); |
| |
365 |
| |
366 /** |
| |
367 * Ensures that the free space available in the path ref is >= size. The verb and point counts |
| |
368 * are not changed. |
| |
369 */ |
| |
370 void makeSpace(size_t size) { |
| |
371 SkDEBUGCODE(this->validate();) |
| |
372 ptrdiff_t growSize = size - fFreeSpace; |
| |
373 if (growSize <= 0) { |
| |
374 return; |
| |
375 } |
| |
376 size_t oldSize = this->currSize(); |
| |
377 // round to next multiple of 8 bytes |
| |
378 growSize = (growSize + 7) & ~static_cast<size_t>(7); |
| |
379 // we always at least double the allocation |
| |
380 if (static_cast<size_t>(growSize) < oldSize) { |
| |
381 growSize = oldSize; |
| |
382 } |
| |
383 if (growSize < kMinSize) { |
| |
384 growSize = kMinSize; |
| |
385 } |
| |
386 size_t newSize = oldSize + growSize; |
| |
387 // Note that realloc could memcpy more than we need. It seems to be a win anyway. TODO: |
| |
388 // encapsulate this. |
| |
389 fPoints = reinterpret_cast<SkPoint*>(sk_realloc_throw(fPoints, newSize)); |
| |
390 size_t oldVerbSize = fVerbCnt * sizeof(uint8_t); |
| |
391 void* newVerbsDst = reinterpret_cast<void*>( |
| |
392 reinterpret_cast<intptr_t>(fPoints) + newSize - oldVerbSize); |
| |
393 void* oldVerbsSrc = reinterpret_cast<void*>( |
| |
394 reinterpret_cast<intptr_t>(fPoints) + oldSize - oldVerbSize); |
| |
395 memmove(newVerbsDst, oldVerbsSrc, oldVerbSize); |
| |
396 fVerbs = reinterpret_cast<uint8_t*>(reinterpret_cast<intptr_t>(fPoints) + newSize); |
| |
397 fFreeSpace += growSize; |
| |
398 SkDEBUGCODE(this->validate();) |
| |
399 } |
| |
400 |
| |
401 /** |
| |
402 * Private, non-const-ptr version of the public function verbsMemBegin(). |
| |
403 */ |
| |
404 uint8_t* verbsMemWritable() { |
| |
405 SkDEBUGCODE(this->validate();) |
| |
406 return fVerbs - fVerbCnt; |
| |
407 } |
| |
408 |
| |
409 /** |
| |
410 * Gets the total amount of space allocated for verbs, points, and reserve. |
| |
411 */ |
| |
412 size_t currSize() const { |
| |
413 return reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints); |
| |
414 } |
| |
415 |
| |
416 SkDEBUGCODE(void validate() const;) |
| |
417 |
| |
418 /** |
| |
419 * Called the first time someone calls CreateEmpty to actually create the singleton. |
| |
420 */ |
| |
421 static void CreateEmptyImpl(int/*unused*/); |
| |
422 |
| |
423 void setIsOval(bool isOval) { fIsOval = isOval; } |
| |
424 |
| |
425 SkPoint* getPoints() { |
| |
426 SkDEBUGCODE(this->validate();) |
| |
427 fIsOval = false; |
| |
428 return fPoints; |
| |
429 } |
| |
430 |
| |
431 enum { |
| |
432 kMinSize = 256, |
| |
433 }; |
| |
434 |
| |
435 mutable SkRect fBounds; |
| |
436 uint8_t fSegmentMask; |
| |
437 mutable uint8_t fBoundsIsDirty; |
| |
438 mutable SkBool8 fIsFinite; // only meaningful if bounds are valid |
| |
439 mutable SkBool8 fIsOval; |
| |
440 |
| |
441 SkPoint* fPoints; // points to begining of the allocation |
| |
442 uint8_t* fVerbs; // points just past the end of the allocation (verbs grow backwards) |
| |
443 int fVerbCnt; |
| |
444 int fPointCnt; |
| |
445 size_t fFreeSpace; // redundant but saves computation |
| |
446 SkTDArray<SkScalar> fConicWeights; |
| |
447 |
| |
448 enum { |
| |
449 kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs. |
| |
450 }; |
| |
451 mutable uint32_t fGenerationID; |
| |
452 SkDEBUGCODE(int32_t fEditorsAttached;) // assert that only one editor in use at any time. |
| |
453 |
| |
454 friend class PathRefTest_Private; |
| |
455 typedef SkRefCnt INHERITED; |
| |
456 }; |
| |
457 |
| |
458 #endif |