|
1 |
|
2 /* |
|
3 * Copyright 2011 Google Inc. |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 #include "SkClipStack.h" |
|
9 #include "SkPath.h" |
|
10 #include "SkThread.h" |
|
11 |
|
12 #include <new> |
|
13 |
|
14 |
|
15 // 0-2 are reserved for invalid, empty & wide-open |
|
16 static const int32_t kFirstUnreservedGenID = 3; |
|
17 int32_t SkClipStack::gGenID = kFirstUnreservedGenID; |
|
18 |
|
19 SkClipStack::Element::Element(const Element& that) { |
|
20 switch (that.getType()) { |
|
21 case kEmpty_Type: |
|
22 fPath.reset(); |
|
23 break; |
|
24 case kRect_Type: // Rect uses rrect |
|
25 case kRRect_Type: |
|
26 fPath.reset(); |
|
27 fRRect = that.fRRect; |
|
28 break; |
|
29 case kPath_Type: |
|
30 fPath.set(that.getPath()); |
|
31 break; |
|
32 } |
|
33 |
|
34 fSaveCount = that.fSaveCount; |
|
35 fOp = that.fOp; |
|
36 fType = that.fType; |
|
37 fDoAA = that.fDoAA; |
|
38 fFiniteBoundType = that.fFiniteBoundType; |
|
39 fFiniteBound = that.fFiniteBound; |
|
40 fIsIntersectionOfRects = that.fIsIntersectionOfRects; |
|
41 fGenID = that.fGenID; |
|
42 } |
|
43 |
|
44 bool SkClipStack::Element::operator== (const Element& element) const { |
|
45 if (this == &element) { |
|
46 return true; |
|
47 } |
|
48 if (fOp != element.fOp || |
|
49 fType != element.fType || |
|
50 fDoAA != element.fDoAA || |
|
51 fSaveCount != element.fSaveCount) { |
|
52 return false; |
|
53 } |
|
54 switch (fType) { |
|
55 case kPath_Type: |
|
56 return this->getPath() == element.getPath(); |
|
57 case kRRect_Type: |
|
58 return fRRect == element.fRRect; |
|
59 case kRect_Type: |
|
60 return this->getRect() == element.getRect(); |
|
61 case kEmpty_Type: |
|
62 return true; |
|
63 default: |
|
64 SkDEBUGFAIL("Unexpected type."); |
|
65 return false; |
|
66 } |
|
67 } |
|
68 |
|
69 void SkClipStack::Element::invertShapeFillType() { |
|
70 switch (fType) { |
|
71 case kRect_Type: |
|
72 fPath.init(); |
|
73 fPath.get()->addRect(this->getRect()); |
|
74 fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType); |
|
75 fType = kPath_Type; |
|
76 break; |
|
77 case kRRect_Type: |
|
78 fPath.init(); |
|
79 fPath.get()->addRRect(fRRect); |
|
80 fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType); |
|
81 fType = kPath_Type; |
|
82 break; |
|
83 case kPath_Type: |
|
84 fPath.get()->toggleInverseFillType(); |
|
85 break; |
|
86 case kEmpty_Type: |
|
87 // Should this set to an empty, inverse filled path? |
|
88 break; |
|
89 } |
|
90 } |
|
91 |
|
92 void SkClipStack::Element::initPath(int saveCount, const SkPath& path, SkRegion::Op op, |
|
93 bool doAA) { |
|
94 if (!path.isInverseFillType()) { |
|
95 if (SkPath::kNone_PathAsRect != path.asRect()) { |
|
96 this->initRect(saveCount, path.getBounds(), op, doAA); |
|
97 return; |
|
98 } |
|
99 SkRect ovalRect; |
|
100 if (path.isOval(&ovalRect)) { |
|
101 SkRRect rrect; |
|
102 rrect.setOval(ovalRect); |
|
103 this->initRRect(saveCount, rrect, op, doAA); |
|
104 return; |
|
105 } |
|
106 } |
|
107 fPath.set(path); |
|
108 fType = kPath_Type; |
|
109 this->initCommon(saveCount, op, doAA); |
|
110 } |
|
111 |
|
112 void SkClipStack::Element::asPath(SkPath* path) const { |
|
113 switch (fType) { |
|
114 case kEmpty_Type: |
|
115 path->reset(); |
|
116 break; |
|
117 case kRect_Type: |
|
118 path->reset(); |
|
119 path->addRect(this->getRect()); |
|
120 break; |
|
121 case kRRect_Type: |
|
122 path->reset(); |
|
123 path->addRRect(fRRect); |
|
124 break; |
|
125 case kPath_Type: |
|
126 *path = *fPath.get(); |
|
127 break; |
|
128 } |
|
129 } |
|
130 |
|
131 void SkClipStack::Element::setEmpty() { |
|
132 fType = kEmpty_Type; |
|
133 fFiniteBound.setEmpty(); |
|
134 fFiniteBoundType = kNormal_BoundsType; |
|
135 fIsIntersectionOfRects = false; |
|
136 fRRect.setEmpty(); |
|
137 fPath.reset(); |
|
138 fGenID = kEmptyGenID; |
|
139 SkDEBUGCODE(this->checkEmpty();) |
|
140 } |
|
141 |
|
142 void SkClipStack::Element::checkEmpty() const { |
|
143 SkASSERT(fFiniteBound.isEmpty()); |
|
144 SkASSERT(kNormal_BoundsType == fFiniteBoundType); |
|
145 SkASSERT(!fIsIntersectionOfRects); |
|
146 SkASSERT(kEmptyGenID == fGenID); |
|
147 SkASSERT(!fPath.isValid()); |
|
148 } |
|
149 |
|
150 bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkRegion::Op op) const { |
|
151 if (kEmpty_Type == fType && |
|
152 (SkRegion::kDifference_Op == op || SkRegion::kIntersect_Op == op)) { |
|
153 return true; |
|
154 } |
|
155 // Only clips within the same save/restore frame (as captured by |
|
156 // the save count) can be merged |
|
157 return fSaveCount == saveCount && |
|
158 SkRegion::kIntersect_Op == op && |
|
159 (SkRegion::kIntersect_Op == fOp || SkRegion::kReplace_Op == fOp); |
|
160 } |
|
161 |
|
162 bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const { |
|
163 SkASSERT(kRect_Type == fType); |
|
164 |
|
165 if (fDoAA == newAA) { |
|
166 // if the AA setting is the same there is no issue |
|
167 return true; |
|
168 } |
|
169 |
|
170 if (!SkRect::Intersects(this->getRect(), newR)) { |
|
171 // The calling code will correctly set the result to the empty clip |
|
172 return true; |
|
173 } |
|
174 |
|
175 if (this->getRect().contains(newR)) { |
|
176 // if the new rect carves out a portion of the old one there is no |
|
177 // issue |
|
178 return true; |
|
179 } |
|
180 |
|
181 // So either the two overlap in some complex manner or newR contains oldR. |
|
182 // In the first, case the edges will require different AA. In the second, |
|
183 // the AA setting that would be carried forward is incorrect (e.g., oldR |
|
184 // is AA while newR is BW but since newR contains oldR, oldR will be |
|
185 // drawn BW) since the new AA setting will predominate. |
|
186 return false; |
|
187 } |
|
188 |
|
189 // a mirror of combineBoundsRevDiff |
|
190 void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) { |
|
191 switch (combination) { |
|
192 case kInvPrev_InvCur_FillCombo: |
|
193 // In this case the only pixels that can remain set |
|
194 // are inside the current clip rect since the extensions |
|
195 // to infinity of both clips cancel out and whatever |
|
196 // is outside of the current clip is removed |
|
197 fFiniteBoundType = kNormal_BoundsType; |
|
198 break; |
|
199 case kInvPrev_Cur_FillCombo: |
|
200 // In this case the current op is finite so the only pixels |
|
201 // that aren't set are whatever isn't set in the previous |
|
202 // clip and whatever this clip carves out |
|
203 fFiniteBound.join(prevFinite); |
|
204 fFiniteBoundType = kInsideOut_BoundsType; |
|
205 break; |
|
206 case kPrev_InvCur_FillCombo: |
|
207 // In this case everything outside of this clip's bound |
|
208 // is erased, so the only pixels that can remain set |
|
209 // occur w/in the intersection of the two finite bounds |
|
210 if (!fFiniteBound.intersect(prevFinite)) { |
|
211 this->setEmpty(); |
|
212 } else { |
|
213 fFiniteBoundType = kNormal_BoundsType; |
|
214 } |
|
215 break; |
|
216 case kPrev_Cur_FillCombo: |
|
217 // The most conservative result bound is that of the |
|
218 // prior clip. This could be wildly incorrect if the |
|
219 // second clip either exactly matches the first clip |
|
220 // (which should yield the empty set) or reduces the |
|
221 // size of the prior bound (e.g., if the second clip |
|
222 // exactly matched the bottom half of the prior clip). |
|
223 // We ignore these two possibilities. |
|
224 fFiniteBound = prevFinite; |
|
225 break; |
|
226 default: |
|
227 SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination"); |
|
228 break; |
|
229 } |
|
230 } |
|
231 |
|
232 void SkClipStack::Element::combineBoundsXOR(int combination, const SkRect& prevFinite) { |
|
233 |
|
234 switch (combination) { |
|
235 case kInvPrev_Cur_FillCombo: // fall through |
|
236 case kPrev_InvCur_FillCombo: |
|
237 // With only one of the clips inverted the result will always |
|
238 // extend to infinity. The only pixels that may be un-writeable |
|
239 // lie within the union of the two finite bounds |
|
240 fFiniteBound.join(prevFinite); |
|
241 fFiniteBoundType = kInsideOut_BoundsType; |
|
242 break; |
|
243 case kInvPrev_InvCur_FillCombo: |
|
244 // The only pixels that can survive are within the |
|
245 // union of the two bounding boxes since the extensions |
|
246 // to infinity of both clips cancel out |
|
247 // fall through! |
|
248 case kPrev_Cur_FillCombo: |
|
249 // The most conservative bound for xor is the |
|
250 // union of the two bounds. If the two clips exactly overlapped |
|
251 // the xor could yield the empty set. Similarly the xor |
|
252 // could reduce the size of the original clip's bound (e.g., |
|
253 // if the second clip exactly matched the bottom half of the |
|
254 // first clip). We ignore these two cases. |
|
255 fFiniteBound.join(prevFinite); |
|
256 fFiniteBoundType = kNormal_BoundsType; |
|
257 break; |
|
258 default: |
|
259 SkDEBUGFAIL("SkClipStack::Element::combineBoundsXOR Invalid fill combination"); |
|
260 break; |
|
261 } |
|
262 } |
|
263 |
|
264 // a mirror of combineBoundsIntersection |
|
265 void SkClipStack::Element::combineBoundsUnion(int combination, const SkRect& prevFinite) { |
|
266 |
|
267 switch (combination) { |
|
268 case kInvPrev_InvCur_FillCombo: |
|
269 if (!fFiniteBound.intersect(prevFinite)) { |
|
270 fFiniteBound.setEmpty(); |
|
271 fGenID = kWideOpenGenID; |
|
272 } |
|
273 fFiniteBoundType = kInsideOut_BoundsType; |
|
274 break; |
|
275 case kInvPrev_Cur_FillCombo: |
|
276 // The only pixels that won't be drawable are inside |
|
277 // the prior clip's finite bound |
|
278 fFiniteBound = prevFinite; |
|
279 fFiniteBoundType = kInsideOut_BoundsType; |
|
280 break; |
|
281 case kPrev_InvCur_FillCombo: |
|
282 // The only pixels that won't be drawable are inside |
|
283 // this clip's finite bound |
|
284 break; |
|
285 case kPrev_Cur_FillCombo: |
|
286 fFiniteBound.join(prevFinite); |
|
287 break; |
|
288 default: |
|
289 SkDEBUGFAIL("SkClipStack::Element::combineBoundsUnion Invalid fill combination"); |
|
290 break; |
|
291 } |
|
292 } |
|
293 |
|
294 // a mirror of combineBoundsUnion |
|
295 void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) { |
|
296 |
|
297 switch (combination) { |
|
298 case kInvPrev_InvCur_FillCombo: |
|
299 // The only pixels that aren't writable in this case |
|
300 // occur in the union of the two finite bounds |
|
301 fFiniteBound.join(prevFinite); |
|
302 fFiniteBoundType = kInsideOut_BoundsType; |
|
303 break; |
|
304 case kInvPrev_Cur_FillCombo: |
|
305 // In this case the only pixels that will remain writeable |
|
306 // are within the current clip |
|
307 break; |
|
308 case kPrev_InvCur_FillCombo: |
|
309 // In this case the only pixels that will remain writeable |
|
310 // are with the previous clip |
|
311 fFiniteBound = prevFinite; |
|
312 fFiniteBoundType = kNormal_BoundsType; |
|
313 break; |
|
314 case kPrev_Cur_FillCombo: |
|
315 if (!fFiniteBound.intersect(prevFinite)) { |
|
316 this->setEmpty(); |
|
317 } |
|
318 break; |
|
319 default: |
|
320 SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination"); |
|
321 break; |
|
322 } |
|
323 } |
|
324 |
|
325 // a mirror of combineBoundsDiff |
|
326 void SkClipStack::Element::combineBoundsRevDiff(int combination, const SkRect& prevFinite) { |
|
327 |
|
328 switch (combination) { |
|
329 case kInvPrev_InvCur_FillCombo: |
|
330 // The only pixels that can survive are in the |
|
331 // previous bound since the extensions to infinity in |
|
332 // both clips cancel out |
|
333 fFiniteBound = prevFinite; |
|
334 fFiniteBoundType = kNormal_BoundsType; |
|
335 break; |
|
336 case kInvPrev_Cur_FillCombo: |
|
337 if (!fFiniteBound.intersect(prevFinite)) { |
|
338 this->setEmpty(); |
|
339 } else { |
|
340 fFiniteBoundType = kNormal_BoundsType; |
|
341 } |
|
342 break; |
|
343 case kPrev_InvCur_FillCombo: |
|
344 fFiniteBound.join(prevFinite); |
|
345 fFiniteBoundType = kInsideOut_BoundsType; |
|
346 break; |
|
347 case kPrev_Cur_FillCombo: |
|
348 // Fall through - as with the kDifference_Op case, the |
|
349 // most conservative result bound is the bound of the |
|
350 // current clip. The prior clip could reduce the size of this |
|
351 // bound (as in the kDifference_Op case) but we are ignoring |
|
352 // those cases. |
|
353 break; |
|
354 default: |
|
355 SkDEBUGFAIL("SkClipStack::Element::combineBoundsRevDiff Invalid fill combination"); |
|
356 break; |
|
357 } |
|
358 } |
|
359 |
|
360 void SkClipStack::Element::updateBoundAndGenID(const Element* prior) { |
|
361 // We set this first here but we may overwrite it later if we determine that the clip is |
|
362 // either wide-open or empty. |
|
363 fGenID = GetNextGenID(); |
|
364 |
|
365 // First, optimistically update the current Element's bound information |
|
366 // with the current clip's bound |
|
367 fIsIntersectionOfRects = false; |
|
368 switch (fType) { |
|
369 case kRect_Type: |
|
370 fFiniteBound = this->getRect(); |
|
371 fFiniteBoundType = kNormal_BoundsType; |
|
372 |
|
373 if (SkRegion::kReplace_Op == fOp || |
|
374 (SkRegion::kIntersect_Op == fOp && NULL == prior) || |
|
375 (SkRegion::kIntersect_Op == fOp && prior->fIsIntersectionOfRects && |
|
376 prior->rectRectIntersectAllowed(this->getRect(), fDoAA))) { |
|
377 fIsIntersectionOfRects = true; |
|
378 } |
|
379 break; |
|
380 case kRRect_Type: |
|
381 fFiniteBound = fRRect.getBounds(); |
|
382 fFiniteBoundType = kNormal_BoundsType; |
|
383 break; |
|
384 case kPath_Type: |
|
385 fFiniteBound = fPath.get()->getBounds(); |
|
386 |
|
387 if (fPath.get()->isInverseFillType()) { |
|
388 fFiniteBoundType = kInsideOut_BoundsType; |
|
389 } else { |
|
390 fFiniteBoundType = kNormal_BoundsType; |
|
391 } |
|
392 break; |
|
393 case kEmpty_Type: |
|
394 SkDEBUGFAIL("We shouldn't get here with an empty element."); |
|
395 break; |
|
396 } |
|
397 |
|
398 if (!fDoAA) { |
|
399 // Here we mimic a non-anti-aliased scanline system. If there is |
|
400 // no anti-aliasing we can integerize the bounding box to exclude |
|
401 // fractional parts that won't be rendered. |
|
402 // Note: the left edge is handled slightly differently below. We |
|
403 // are a bit more generous in the rounding since we don't want to |
|
404 // risk missing the left pixels when fLeft is very close to .5 |
|
405 fFiniteBound.set(SkScalarFloorToScalar(fFiniteBound.fLeft+0.45f), |
|
406 SkScalarRoundToScalar(fFiniteBound.fTop), |
|
407 SkScalarRoundToScalar(fFiniteBound.fRight), |
|
408 SkScalarRoundToScalar(fFiniteBound.fBottom)); |
|
409 } |
|
410 |
|
411 // Now determine the previous Element's bound information taking into |
|
412 // account that there may be no previous clip |
|
413 SkRect prevFinite; |
|
414 SkClipStack::BoundsType prevType; |
|
415 |
|
416 if (NULL == prior) { |
|
417 // no prior clip means the entire plane is writable |
|
418 prevFinite.setEmpty(); // there are no pixels that cannot be drawn to |
|
419 prevType = kInsideOut_BoundsType; |
|
420 } else { |
|
421 prevFinite = prior->fFiniteBound; |
|
422 prevType = prior->fFiniteBoundType; |
|
423 } |
|
424 |
|
425 FillCombo combination = kPrev_Cur_FillCombo; |
|
426 if (kInsideOut_BoundsType == fFiniteBoundType) { |
|
427 combination = (FillCombo) (combination | 0x01); |
|
428 } |
|
429 if (kInsideOut_BoundsType == prevType) { |
|
430 combination = (FillCombo) (combination | 0x02); |
|
431 } |
|
432 |
|
433 SkASSERT(kInvPrev_InvCur_FillCombo == combination || |
|
434 kInvPrev_Cur_FillCombo == combination || |
|
435 kPrev_InvCur_FillCombo == combination || |
|
436 kPrev_Cur_FillCombo == combination); |
|
437 |
|
438 // Now integrate with clip with the prior clips |
|
439 switch (fOp) { |
|
440 case SkRegion::kDifference_Op: |
|
441 this->combineBoundsDiff(combination, prevFinite); |
|
442 break; |
|
443 case SkRegion::kXOR_Op: |
|
444 this->combineBoundsXOR(combination, prevFinite); |
|
445 break; |
|
446 case SkRegion::kUnion_Op: |
|
447 this->combineBoundsUnion(combination, prevFinite); |
|
448 break; |
|
449 case SkRegion::kIntersect_Op: |
|
450 this->combineBoundsIntersection(combination, prevFinite); |
|
451 break; |
|
452 case SkRegion::kReverseDifference_Op: |
|
453 this->combineBoundsRevDiff(combination, prevFinite); |
|
454 break; |
|
455 case SkRegion::kReplace_Op: |
|
456 // Replace just ignores everything prior |
|
457 // The current clip's bound information is already filled in |
|
458 // so nothing to do |
|
459 break; |
|
460 default: |
|
461 SkDebugf("SkRegion::Op error\n"); |
|
462 SkASSERT(0); |
|
463 break; |
|
464 } |
|
465 } |
|
466 |
|
467 // This constant determines how many Element's are allocated together as a block in |
|
468 // the deque. As such it needs to balance allocating too much memory vs. |
|
469 // incurring allocation/deallocation thrashing. It should roughly correspond to |
|
470 // the deepest save/restore stack we expect to see. |
|
471 static const int kDefaultElementAllocCnt = 8; |
|
472 |
|
473 SkClipStack::SkClipStack() |
|
474 : fDeque(sizeof(Element), kDefaultElementAllocCnt) |
|
475 , fSaveCount(0) { |
|
476 } |
|
477 |
|
478 SkClipStack::SkClipStack(const SkClipStack& b) |
|
479 : fDeque(sizeof(Element), kDefaultElementAllocCnt) { |
|
480 *this = b; |
|
481 } |
|
482 |
|
483 SkClipStack::SkClipStack(const SkRect& r) |
|
484 : fDeque(sizeof(Element), kDefaultElementAllocCnt) |
|
485 , fSaveCount(0) { |
|
486 if (!r.isEmpty()) { |
|
487 this->clipDevRect(r, SkRegion::kReplace_Op, false); |
|
488 } |
|
489 } |
|
490 |
|
491 SkClipStack::SkClipStack(const SkIRect& r) |
|
492 : fDeque(sizeof(Element), kDefaultElementAllocCnt) |
|
493 , fSaveCount(0) { |
|
494 if (!r.isEmpty()) { |
|
495 SkRect temp; |
|
496 temp.set(r); |
|
497 this->clipDevRect(temp, SkRegion::kReplace_Op, false); |
|
498 } |
|
499 } |
|
500 |
|
501 SkClipStack::~SkClipStack() { |
|
502 reset(); |
|
503 } |
|
504 |
|
505 SkClipStack& SkClipStack::operator=(const SkClipStack& b) { |
|
506 if (this == &b) { |
|
507 return *this; |
|
508 } |
|
509 reset(); |
|
510 |
|
511 fSaveCount = b.fSaveCount; |
|
512 SkDeque::F2BIter recIter(b.fDeque); |
|
513 for (const Element* element = (const Element*)recIter.next(); |
|
514 element != NULL; |
|
515 element = (const Element*)recIter.next()) { |
|
516 new (fDeque.push_back()) Element(*element); |
|
517 } |
|
518 |
|
519 return *this; |
|
520 } |
|
521 |
|
522 bool SkClipStack::operator==(const SkClipStack& b) const { |
|
523 if (this->getTopmostGenID() == b.getTopmostGenID()) { |
|
524 return true; |
|
525 } |
|
526 if (fSaveCount != b.fSaveCount || |
|
527 fDeque.count() != b.fDeque.count()) { |
|
528 return false; |
|
529 } |
|
530 SkDeque::F2BIter myIter(fDeque); |
|
531 SkDeque::F2BIter bIter(b.fDeque); |
|
532 const Element* myElement = (const Element*)myIter.next(); |
|
533 const Element* bElement = (const Element*)bIter.next(); |
|
534 |
|
535 while (myElement != NULL && bElement != NULL) { |
|
536 if (*myElement != *bElement) { |
|
537 return false; |
|
538 } |
|
539 myElement = (const Element*)myIter.next(); |
|
540 bElement = (const Element*)bIter.next(); |
|
541 } |
|
542 return myElement == NULL && bElement == NULL; |
|
543 } |
|
544 |
|
545 void SkClipStack::reset() { |
|
546 // We used a placement new for each object in fDeque, so we're responsible |
|
547 // for calling the destructor on each of them as well. |
|
548 while (!fDeque.empty()) { |
|
549 Element* element = (Element*)fDeque.back(); |
|
550 element->~Element(); |
|
551 fDeque.pop_back(); |
|
552 } |
|
553 |
|
554 fSaveCount = 0; |
|
555 } |
|
556 |
|
557 void SkClipStack::save() { |
|
558 fSaveCount += 1; |
|
559 } |
|
560 |
|
561 void SkClipStack::restore() { |
|
562 fSaveCount -= 1; |
|
563 restoreTo(fSaveCount); |
|
564 } |
|
565 |
|
566 void SkClipStack::restoreTo(int saveCount) { |
|
567 while (!fDeque.empty()) { |
|
568 Element* element = (Element*)fDeque.back(); |
|
569 if (element->fSaveCount <= saveCount) { |
|
570 break; |
|
571 } |
|
572 element->~Element(); |
|
573 fDeque.pop_back(); |
|
574 } |
|
575 } |
|
576 |
|
577 void SkClipStack::getBounds(SkRect* canvFiniteBound, |
|
578 BoundsType* boundType, |
|
579 bool* isIntersectionOfRects) const { |
|
580 SkASSERT(NULL != canvFiniteBound && NULL != boundType); |
|
581 |
|
582 Element* element = (Element*)fDeque.back(); |
|
583 |
|
584 if (NULL == element) { |
|
585 // the clip is wide open - the infinite plane w/ no pixels un-writeable |
|
586 canvFiniteBound->setEmpty(); |
|
587 *boundType = kInsideOut_BoundsType; |
|
588 if (NULL != isIntersectionOfRects) { |
|
589 *isIntersectionOfRects = false; |
|
590 } |
|
591 return; |
|
592 } |
|
593 |
|
594 *canvFiniteBound = element->fFiniteBound; |
|
595 *boundType = element->fFiniteBoundType; |
|
596 if (NULL != isIntersectionOfRects) { |
|
597 *isIntersectionOfRects = element->fIsIntersectionOfRects; |
|
598 } |
|
599 } |
|
600 |
|
601 bool SkClipStack::intersectRectWithClip(SkRect* rect) const { |
|
602 SkASSERT(NULL != rect); |
|
603 |
|
604 SkRect bounds; |
|
605 SkClipStack::BoundsType bt; |
|
606 this->getBounds(&bounds, &bt); |
|
607 if (bt == SkClipStack::kInsideOut_BoundsType) { |
|
608 if (bounds.contains(*rect)) { |
|
609 return false; |
|
610 } else { |
|
611 // If rect's x values are both within bound's x range we |
|
612 // could clip here. Same for y. But we don't bother to check. |
|
613 return true; |
|
614 } |
|
615 } else { |
|
616 return rect->intersect(bounds); |
|
617 } |
|
618 } |
|
619 |
|
620 bool SkClipStack::quickContains(const SkRect& rect) const { |
|
621 |
|
622 Iter iter(*this, Iter::kTop_IterStart); |
|
623 const Element* element = iter.prev(); |
|
624 while (element != NULL) { |
|
625 if (SkRegion::kIntersect_Op != element->getOp() && SkRegion::kReplace_Op != element->getOp()) |
|
626 return false; |
|
627 if (element->isInverseFilled()) { |
|
628 // Part of 'rect' could be trimmed off by the inverse-filled clip element |
|
629 if (SkRect::Intersects(element->getBounds(), rect)) { |
|
630 return false; |
|
631 } |
|
632 } else { |
|
633 if (!element->contains(rect)) { |
|
634 return false; |
|
635 } |
|
636 } |
|
637 if (SkRegion::kReplace_Op == element->getOp()) { |
|
638 break; |
|
639 } |
|
640 element = iter.prev(); |
|
641 } |
|
642 return true; |
|
643 } |
|
644 |
|
645 void SkClipStack::pushElement(const Element& element) { |
|
646 // Use reverse iterator instead of back because Rect path may need previous |
|
647 SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart); |
|
648 Element* prior = (Element*) iter.prev(); |
|
649 |
|
650 if (NULL != prior) { |
|
651 if (prior->canBeIntersectedInPlace(fSaveCount, element.getOp())) { |
|
652 switch (prior->fType) { |
|
653 case Element::kEmpty_Type: |
|
654 SkDEBUGCODE(prior->checkEmpty();) |
|
655 return; |
|
656 case Element::kRect_Type: |
|
657 if (Element::kRect_Type == element.getType()) { |
|
658 if (prior->rectRectIntersectAllowed(element.getRect(), element.isAA())) { |
|
659 SkRect isectRect; |
|
660 if (!isectRect.intersect(prior->getRect(), element.getRect())) { |
|
661 prior->setEmpty(); |
|
662 return; |
|
663 } |
|
664 |
|
665 prior->fRRect.setRect(isectRect); |
|
666 prior->fDoAA = element.isAA(); |
|
667 Element* priorPrior = (Element*) iter.prev(); |
|
668 prior->updateBoundAndGenID(priorPrior); |
|
669 return; |
|
670 } |
|
671 break; |
|
672 } |
|
673 // fallthrough |
|
674 default: |
|
675 if (!SkRect::Intersects(prior->getBounds(), element.getBounds())) { |
|
676 prior->setEmpty(); |
|
677 return; |
|
678 } |
|
679 break; |
|
680 } |
|
681 } else if (SkRegion::kReplace_Op == element.getOp()) { |
|
682 this->restoreTo(fSaveCount - 1); |
|
683 prior = (Element*) fDeque.back(); |
|
684 } |
|
685 } |
|
686 Element* newElement = SkNEW_PLACEMENT_ARGS(fDeque.push_back(), Element, (element)); |
|
687 newElement->updateBoundAndGenID(prior); |
|
688 } |
|
689 |
|
690 void SkClipStack::clipDevRRect(const SkRRect& rrect, SkRegion::Op op, bool doAA) { |
|
691 Element element(fSaveCount, rrect, op, doAA); |
|
692 this->pushElement(element); |
|
693 } |
|
694 |
|
695 void SkClipStack::clipDevRect(const SkRect& rect, SkRegion::Op op, bool doAA) { |
|
696 Element element(fSaveCount, rect, op, doAA); |
|
697 this->pushElement(element); |
|
698 } |
|
699 |
|
700 void SkClipStack::clipDevPath(const SkPath& path, SkRegion::Op op, bool doAA) { |
|
701 Element element(fSaveCount, path, op, doAA); |
|
702 this->pushElement(element); |
|
703 } |
|
704 |
|
705 void SkClipStack::clipEmpty() { |
|
706 Element* element = (Element*) fDeque.back(); |
|
707 |
|
708 if (element && element->canBeIntersectedInPlace(fSaveCount, SkRegion::kIntersect_Op)) { |
|
709 element->setEmpty(); |
|
710 } |
|
711 new (fDeque.push_back()) Element(fSaveCount); |
|
712 |
|
713 ((Element*)fDeque.back())->fGenID = kEmptyGenID; |
|
714 } |
|
715 |
|
716 bool SkClipStack::isWideOpen() const { |
|
717 return this->getTopmostGenID() == kWideOpenGenID; |
|
718 } |
|
719 |
|
720 /////////////////////////////////////////////////////////////////////////////// |
|
721 |
|
722 SkClipStack::Iter::Iter() : fStack(NULL) { |
|
723 } |
|
724 |
|
725 SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc) |
|
726 : fStack(&stack) { |
|
727 this->reset(stack, startLoc); |
|
728 } |
|
729 |
|
730 const SkClipStack::Element* SkClipStack::Iter::next() { |
|
731 return (const SkClipStack::Element*)fIter.next(); |
|
732 } |
|
733 |
|
734 const SkClipStack::Element* SkClipStack::Iter::prev() { |
|
735 return (const SkClipStack::Element*)fIter.prev(); |
|
736 } |
|
737 |
|
738 const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkRegion::Op op) { |
|
739 |
|
740 if (NULL == fStack) { |
|
741 return NULL; |
|
742 } |
|
743 |
|
744 fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart); |
|
745 |
|
746 const SkClipStack::Element* element = NULL; |
|
747 |
|
748 for (element = (const SkClipStack::Element*) fIter.prev(); |
|
749 NULL != element; |
|
750 element = (const SkClipStack::Element*) fIter.prev()) { |
|
751 |
|
752 if (op == element->fOp) { |
|
753 // The Deque's iterator is actually one pace ahead of the |
|
754 // returned value. So while "element" is the element we want to |
|
755 // return, the iterator is actually pointing at (and will |
|
756 // return on the next "next" or "prev" call) the element |
|
757 // in front of it in the deque. Bump the iterator forward a |
|
758 // step so we get the expected result. |
|
759 if (NULL == fIter.next()) { |
|
760 // The reverse iterator has run off the front of the deque |
|
761 // (i.e., the "op" clip is the first clip) and can't |
|
762 // recover. Reset the iterator to start at the front. |
|
763 fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); |
|
764 } |
|
765 break; |
|
766 } |
|
767 } |
|
768 |
|
769 if (NULL == element) { |
|
770 // There were no "op" clips |
|
771 fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); |
|
772 } |
|
773 |
|
774 return this->next(); |
|
775 } |
|
776 |
|
777 void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) { |
|
778 fStack = &stack; |
|
779 fIter.reset(stack.fDeque, static_cast<SkDeque::Iter::IterStart>(startLoc)); |
|
780 } |
|
781 |
|
782 // helper method |
|
783 void SkClipStack::getConservativeBounds(int offsetX, |
|
784 int offsetY, |
|
785 int maxWidth, |
|
786 int maxHeight, |
|
787 SkRect* devBounds, |
|
788 bool* isIntersectionOfRects) const { |
|
789 SkASSERT(NULL != devBounds); |
|
790 |
|
791 devBounds->setLTRB(0, 0, |
|
792 SkIntToScalar(maxWidth), SkIntToScalar(maxHeight)); |
|
793 |
|
794 SkRect temp; |
|
795 SkClipStack::BoundsType boundType; |
|
796 |
|
797 // temp starts off in canvas space here |
|
798 this->getBounds(&temp, &boundType, isIntersectionOfRects); |
|
799 if (SkClipStack::kInsideOut_BoundsType == boundType) { |
|
800 return; |
|
801 } |
|
802 |
|
803 // but is converted to device space here |
|
804 temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY)); |
|
805 |
|
806 if (!devBounds->intersect(temp)) { |
|
807 devBounds->setEmpty(); |
|
808 } |
|
809 } |
|
810 |
|
811 int32_t SkClipStack::GetNextGenID() { |
|
812 // TODO: handle overflow. |
|
813 return sk_atomic_inc(&gGenID); |
|
814 } |
|
815 |
|
816 int32_t SkClipStack::getTopmostGenID() const { |
|
817 if (fDeque.empty()) { |
|
818 return kWideOpenGenID; |
|
819 } |
|
820 |
|
821 const Element* back = static_cast<const Element*>(fDeque.back()); |
|
822 if (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty()) { |
|
823 return kWideOpenGenID; |
|
824 } |
|
825 |
|
826 return back->getGenID(); |
|
827 } |