|
1 |
|
2 /* |
|
3 * Copyright 2012 Google Inc. |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 |
|
9 #include "SkWriteBuffer.h" |
|
10 #include "SkBitmap.h" |
|
11 #include "SkData.h" |
|
12 #include "SkPixelRef.h" |
|
13 #include "SkPtrRecorder.h" |
|
14 #include "SkStream.h" |
|
15 #include "SkTypeface.h" |
|
16 |
|
17 SkWriteBuffer::SkWriteBuffer(uint32_t flags) |
|
18 : fFlags(flags) |
|
19 , fFactorySet(NULL) |
|
20 , fNamedFactorySet(NULL) |
|
21 , fBitmapHeap(NULL) |
|
22 , fTFSet(NULL) |
|
23 , fBitmapEncoder(NULL) { |
|
24 } |
|
25 |
|
26 SkWriteBuffer::SkWriteBuffer(void* storage, size_t storageSize, uint32_t flags) |
|
27 : fFlags(flags) |
|
28 , fFactorySet(NULL) |
|
29 , fNamedFactorySet(NULL) |
|
30 , fWriter(storage, storageSize) |
|
31 , fBitmapHeap(NULL) |
|
32 , fTFSet(NULL) |
|
33 , fBitmapEncoder(NULL) { |
|
34 } |
|
35 |
|
36 SkWriteBuffer::~SkWriteBuffer() { |
|
37 SkSafeUnref(fFactorySet); |
|
38 SkSafeUnref(fNamedFactorySet); |
|
39 SkSafeUnref(fBitmapHeap); |
|
40 SkSafeUnref(fTFSet); |
|
41 } |
|
42 |
|
43 void SkWriteBuffer::writeByteArray(const void* data, size_t size) { |
|
44 fWriter.write32(SkToU32(size)); |
|
45 fWriter.writePad(data, size); |
|
46 } |
|
47 |
|
48 void SkWriteBuffer::writeBool(bool value) { |
|
49 fWriter.writeBool(value); |
|
50 } |
|
51 |
|
52 void SkWriteBuffer::writeFixed(SkFixed value) { |
|
53 fWriter.write32(value); |
|
54 } |
|
55 |
|
56 void SkWriteBuffer::writeScalar(SkScalar value) { |
|
57 fWriter.writeScalar(value); |
|
58 } |
|
59 |
|
60 void SkWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { |
|
61 fWriter.write32(count); |
|
62 fWriter.write(value, count * sizeof(SkScalar)); |
|
63 } |
|
64 |
|
65 void SkWriteBuffer::writeInt(int32_t value) { |
|
66 fWriter.write32(value); |
|
67 } |
|
68 |
|
69 void SkWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { |
|
70 fWriter.write32(count); |
|
71 fWriter.write(value, count * sizeof(int32_t)); |
|
72 } |
|
73 |
|
74 void SkWriteBuffer::writeUInt(uint32_t value) { |
|
75 fWriter.write32(value); |
|
76 } |
|
77 |
|
78 void SkWriteBuffer::write32(int32_t value) { |
|
79 fWriter.write32(value); |
|
80 } |
|
81 |
|
82 void SkWriteBuffer::writeString(const char* value) { |
|
83 fWriter.writeString(value); |
|
84 } |
|
85 |
|
86 void SkWriteBuffer::writeEncodedString(const void* value, size_t byteLength, |
|
87 SkPaint::TextEncoding encoding) { |
|
88 fWriter.writeInt(encoding); |
|
89 fWriter.writeInt(SkToU32(byteLength)); |
|
90 fWriter.write(value, byteLength); |
|
91 } |
|
92 |
|
93 |
|
94 void SkWriteBuffer::writeColor(const SkColor& color) { |
|
95 fWriter.write32(color); |
|
96 } |
|
97 |
|
98 void SkWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { |
|
99 fWriter.write32(count); |
|
100 fWriter.write(color, count * sizeof(SkColor)); |
|
101 } |
|
102 |
|
103 void SkWriteBuffer::writePoint(const SkPoint& point) { |
|
104 fWriter.writeScalar(point.fX); |
|
105 fWriter.writeScalar(point.fY); |
|
106 } |
|
107 |
|
108 void SkWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { |
|
109 fWriter.write32(count); |
|
110 fWriter.write(point, count * sizeof(SkPoint)); |
|
111 } |
|
112 |
|
113 void SkWriteBuffer::writeMatrix(const SkMatrix& matrix) { |
|
114 fWriter.writeMatrix(matrix); |
|
115 } |
|
116 |
|
117 void SkWriteBuffer::writeIRect(const SkIRect& rect) { |
|
118 fWriter.write(&rect, sizeof(SkIRect)); |
|
119 } |
|
120 |
|
121 void SkWriteBuffer::writeRect(const SkRect& rect) { |
|
122 fWriter.writeRect(rect); |
|
123 } |
|
124 |
|
125 void SkWriteBuffer::writeRegion(const SkRegion& region) { |
|
126 fWriter.writeRegion(region); |
|
127 } |
|
128 |
|
129 void SkWriteBuffer::writePath(const SkPath& path) { |
|
130 fWriter.writePath(path); |
|
131 } |
|
132 |
|
133 size_t SkWriteBuffer::writeStream(SkStream* stream, size_t length) { |
|
134 fWriter.write32(SkToU32(length)); |
|
135 size_t bytesWritten = fWriter.readFromStream(stream, length); |
|
136 if (bytesWritten < length) { |
|
137 fWriter.reservePad(length - bytesWritten); |
|
138 } |
|
139 return bytesWritten; |
|
140 } |
|
141 |
|
142 bool SkWriteBuffer::writeToStream(SkWStream* stream) { |
|
143 return fWriter.writeToStream(stream); |
|
144 } |
|
145 |
|
146 static void write_encoded_bitmap(SkWriteBuffer* buffer, SkData* data, |
|
147 const SkIPoint& origin) { |
|
148 buffer->writeUInt(SkToU32(data->size())); |
|
149 buffer->getWriter32()->writePad(data->data(), data->size()); |
|
150 buffer->write32(origin.fX); |
|
151 buffer->write32(origin.fY); |
|
152 } |
|
153 |
|
154 void SkWriteBuffer::writeBitmap(const SkBitmap& bitmap) { |
|
155 // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the |
|
156 // right size. |
|
157 this->writeInt(bitmap.width()); |
|
158 this->writeInt(bitmap.height()); |
|
159 |
|
160 // Record information about the bitmap in one of three ways, in order of priority: |
|
161 // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoid serializing the |
|
162 // bitmap entirely or serialize it later as desired. A boolean value of true will be written |
|
163 // to the stream to signify that a heap was used. |
|
164 // 2. If there is a function for encoding bitmaps, use it to write an encoded version of the |
|
165 // bitmap. After writing a boolean value of false, signifying that a heap was not used, write |
|
166 // the size of the encoded data. A non-zero size signifies that encoded data was written. |
|
167 // 3. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was |
|
168 // not used, write a zero to signify that the data was not encoded. |
|
169 bool useBitmapHeap = fBitmapHeap != NULL; |
|
170 // Write a bool: true if the SkBitmapHeap is to be used, in which case the reader must use an |
|
171 // SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serialized another way. |
|
172 this->writeBool(useBitmapHeap); |
|
173 if (useBitmapHeap) { |
|
174 SkASSERT(NULL == fBitmapEncoder); |
|
175 int32_t slot = fBitmapHeap->insert(bitmap); |
|
176 fWriter.write32(slot); |
|
177 // crbug.com/155875 |
|
178 // The generation ID is not required information. We write it to prevent collisions |
|
179 // in SkFlatDictionary. It is possible to get a collision when a previously |
|
180 // unflattened (i.e. stale) instance of a similar flattenable is in the dictionary |
|
181 // and the instance currently being written is re-using the same slot from the |
|
182 // bitmap heap. |
|
183 fWriter.write32(bitmap.getGenerationID()); |
|
184 return; |
|
185 } |
|
186 |
|
187 // see if the pixelref already has an encoded version |
|
188 if (bitmap.pixelRef()) { |
|
189 SkAutoDataUnref data(bitmap.pixelRef()->refEncodedData()); |
|
190 if (data.get() != NULL) { |
|
191 write_encoded_bitmap(this, data, bitmap.pixelRefOrigin()); |
|
192 return; |
|
193 } |
|
194 } |
|
195 |
|
196 // see if the caller wants to manually encode |
|
197 if (fBitmapEncoder != NULL) { |
|
198 SkASSERT(NULL == fBitmapHeap); |
|
199 size_t offset = 0; // this parameter is deprecated/ignored |
|
200 // if we have to "encode" the bitmap, then we assume there is no |
|
201 // offset to share, since we are effectively creating a new pixelref |
|
202 SkAutoDataUnref data(fBitmapEncoder(&offset, bitmap)); |
|
203 if (data.get() != NULL) { |
|
204 write_encoded_bitmap(this, data, SkIPoint::Make(0, 0)); |
|
205 return; |
|
206 } |
|
207 } |
|
208 |
|
209 // Bitmap was not encoded. Record a zero, implying that the reader need not decode. |
|
210 this->writeUInt(0); |
|
211 bitmap.flatten(*this); |
|
212 } |
|
213 |
|
214 void SkWriteBuffer::writeTypeface(SkTypeface* obj) { |
|
215 if (NULL == obj || NULL == fTFSet) { |
|
216 fWriter.write32(0); |
|
217 } else { |
|
218 fWriter.write32(fTFSet->add(obj)); |
|
219 } |
|
220 } |
|
221 |
|
222 SkFactorySet* SkWriteBuffer::setFactoryRecorder(SkFactorySet* rec) { |
|
223 SkRefCnt_SafeAssign(fFactorySet, rec); |
|
224 if (fNamedFactorySet != NULL) { |
|
225 fNamedFactorySet->unref(); |
|
226 fNamedFactorySet = NULL; |
|
227 } |
|
228 return rec; |
|
229 } |
|
230 |
|
231 SkNamedFactorySet* SkWriteBuffer::setNamedFactoryRecorder(SkNamedFactorySet* rec) { |
|
232 SkRefCnt_SafeAssign(fNamedFactorySet, rec); |
|
233 if (fFactorySet != NULL) { |
|
234 fFactorySet->unref(); |
|
235 fFactorySet = NULL; |
|
236 } |
|
237 return rec; |
|
238 } |
|
239 |
|
240 SkRefCntSet* SkWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) { |
|
241 SkRefCnt_SafeAssign(fTFSet, rec); |
|
242 return rec; |
|
243 } |
|
244 |
|
245 void SkWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) { |
|
246 SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap); |
|
247 if (bitmapHeap != NULL) { |
|
248 SkASSERT(NULL == fBitmapEncoder); |
|
249 fBitmapEncoder = NULL; |
|
250 } |
|
251 } |
|
252 |
|
253 void SkWriteBuffer::setBitmapEncoder(SkPicture::EncodeBitmap bitmapEncoder) { |
|
254 fBitmapEncoder = bitmapEncoder; |
|
255 if (bitmapEncoder != NULL) { |
|
256 SkASSERT(NULL == fBitmapHeap); |
|
257 SkSafeUnref(fBitmapHeap); |
|
258 fBitmapHeap = NULL; |
|
259 } |
|
260 } |
|
261 |
|
262 void SkWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { |
|
263 /* |
|
264 * If we have a factoryset, then the first 32bits tell us... |
|
265 * 0: failure to write the flattenable |
|
266 * >0: (1-based) index into the SkFactorySet or SkNamedFactorySet |
|
267 * If we don't have a factoryset, then the first "ptr" is either the |
|
268 * factory, or null for failure. |
|
269 * |
|
270 * The distinction is important, since 0-index is 32bits (always), but a |
|
271 * 0-functionptr might be 32 or 64 bits. |
|
272 */ |
|
273 if (NULL == flattenable) { |
|
274 if (this->isValidating()) { |
|
275 this->writeString(""); |
|
276 } else if (fFactorySet != NULL || fNamedFactorySet != NULL) { |
|
277 this->write32(0); |
|
278 } else { |
|
279 this->writeFunctionPtr(NULL); |
|
280 } |
|
281 return; |
|
282 } |
|
283 |
|
284 SkFlattenable::Factory factory = flattenable->getFactory(); |
|
285 SkASSERT(factory != NULL); |
|
286 |
|
287 /* |
|
288 * We can write 1 of 3 versions of the flattenable: |
|
289 * 1. function-ptr : this is the fastest for the reader, but assumes that |
|
290 * the writer and reader are in the same process. |
|
291 * 2. index into fFactorySet : This is assumes the writer will later |
|
292 * resolve the function-ptrs into strings for its reader. SkPicture |
|
293 * does exactly this, by writing a table of names (matching the indices) |
|
294 * up front in its serialized form. |
|
295 * 3. index into fNamedFactorySet. fNamedFactorySet will also store the |
|
296 * name. SkGPipe uses this technique so it can write the name to its |
|
297 * stream before writing the flattenable. |
|
298 */ |
|
299 if (this->isValidating()) { |
|
300 this->writeString(flattenable->getTypeName()); |
|
301 } else if (fFactorySet) { |
|
302 this->write32(fFactorySet->add(factory)); |
|
303 } else if (fNamedFactorySet) { |
|
304 int32_t index = fNamedFactorySet->find(factory); |
|
305 this->write32(index); |
|
306 if (0 == index) { |
|
307 return; |
|
308 } |
|
309 } else { |
|
310 this->writeFunctionPtr((void*)factory); |
|
311 } |
|
312 |
|
313 // make room for the size of the flattened object |
|
314 (void)fWriter.reserve(sizeof(uint32_t)); |
|
315 // record the current size, so we can subtract after the object writes. |
|
316 size_t offset = fWriter.bytesWritten(); |
|
317 // now flatten the object |
|
318 flattenable->flatten(*this); |
|
319 size_t objSize = fWriter.bytesWritten() - offset; |
|
320 // record the obj's size |
|
321 fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); |
|
322 } |