|
1 |
|
2 /* |
|
3 * Copyright 2012 Google Inc. |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 |
|
9 #include "SkTwoPointRadialGradient.h" |
|
10 |
|
11 /* Two-point radial gradients are specified by two circles, each with a center |
|
12 point and radius. The gradient can be considered to be a series of |
|
13 concentric circles, with the color interpolated from the start circle |
|
14 (at t=0) to the end circle (at t=1). |
|
15 |
|
16 For each point (x, y) in the span, we want to find the |
|
17 interpolated circle that intersects that point. The center |
|
18 of the desired circle (Cx, Cy) falls at some distance t |
|
19 along the line segment between the start point (Sx, Sy) and |
|
20 end point (Ex, Ey): |
|
21 |
|
22 Cx = (1 - t) * Sx + t * Ex (0 <= t <= 1) |
|
23 Cy = (1 - t) * Sy + t * Ey |
|
24 |
|
25 The radius of the desired circle (r) is also a linear interpolation t |
|
26 between the start and end radii (Sr and Er): |
|
27 |
|
28 r = (1 - t) * Sr + t * Er |
|
29 |
|
30 But |
|
31 |
|
32 (x - Cx)^2 + (y - Cy)^2 = r^2 |
|
33 |
|
34 so |
|
35 |
|
36 (x - ((1 - t) * Sx + t * Ex))^2 |
|
37 + (y - ((1 - t) * Sy + t * Ey))^2 |
|
38 = ((1 - t) * Sr + t * Er)^2 |
|
39 |
|
40 Solving for t yields |
|
41 |
|
42 [(Sx - Ex)^2 + (Sy - Ey)^2 - (Er - Sr)^2)] * t^2 |
|
43 + [2 * (Sx - Ex)(x - Sx) + 2 * (Sy - Ey)(y - Sy) - 2 * (Er - Sr) * Sr] * t |
|
44 + [(x - Sx)^2 + (y - Sy)^2 - Sr^2] = 0 |
|
45 |
|
46 To simplify, let Dx = Sx - Ex, Dy = Sy - Ey, Dr = Er - Sr, dx = x - Sx, dy = y - Sy |
|
47 |
|
48 [Dx^2 + Dy^2 - Dr^2)] * t^2 |
|
49 + 2 * [Dx * dx + Dy * dy - Dr * Sr] * t |
|
50 + [dx^2 + dy^2 - Sr^2] = 0 |
|
51 |
|
52 A quadratic in t. The two roots of the quadratic reflect the two |
|
53 possible circles on which the point may fall. Solving for t yields |
|
54 the gradient value to use. |
|
55 |
|
56 If a<0, the start circle is entirely contained in the |
|
57 end circle, and one of the roots will be <0 or >1 (off the line |
|
58 segment). If a>0, the start circle falls at least partially |
|
59 outside the end circle (or vice versa), and the gradient |
|
60 defines a "tube" where a point may be on one circle (on the |
|
61 inside of the tube) or the other (outside of the tube). We choose |
|
62 one arbitrarily. |
|
63 |
|
64 In order to keep the math to within the limits of fixed point, |
|
65 we divide the entire quadratic by Dr^2, and replace |
|
66 (x - Sx)/Dr with x' and (y - Sy)/Dr with y', giving |
|
67 |
|
68 [Dx^2 / Dr^2 + Dy^2 / Dr^2 - 1)] * t^2 |
|
69 + 2 * [x' * Dx / Dr + y' * Dy / Dr - Sr / Dr] * t |
|
70 + [x'^2 + y'^2 - Sr^2/Dr^2] = 0 |
|
71 |
|
72 (x' and y' are computed by appending the subtract and scale to the |
|
73 fDstToIndex matrix in the constructor). |
|
74 |
|
75 Since the 'A' component of the quadratic is independent of x' and y', it |
|
76 is precomputed in the constructor. Since the 'B' component is linear in |
|
77 x' and y', if x and y are linear in the span, 'B' can be computed |
|
78 incrementally with a simple delta (db below). If it is not (e.g., |
|
79 a perspective projection), it must be computed in the loop. |
|
80 |
|
81 */ |
|
82 |
|
83 namespace { |
|
84 |
|
85 inline SkFixed two_point_radial(SkScalar b, SkScalar fx, SkScalar fy, |
|
86 SkScalar sr2d2, SkScalar foura, |
|
87 SkScalar oneOverTwoA, bool posRoot) { |
|
88 SkScalar c = SkScalarSquare(fx) + SkScalarSquare(fy) - sr2d2; |
|
89 if (0 == foura) { |
|
90 return SkScalarToFixed(SkScalarDiv(-c, b)); |
|
91 } |
|
92 |
|
93 SkScalar discrim = SkScalarSquare(b) - SkScalarMul(foura, c); |
|
94 if (discrim < 0) { |
|
95 discrim = -discrim; |
|
96 } |
|
97 SkScalar rootDiscrim = SkScalarSqrt(discrim); |
|
98 SkScalar result; |
|
99 if (posRoot) { |
|
100 result = SkScalarMul(-b + rootDiscrim, oneOverTwoA); |
|
101 } else { |
|
102 result = SkScalarMul(-b - rootDiscrim, oneOverTwoA); |
|
103 } |
|
104 return SkScalarToFixed(result); |
|
105 } |
|
106 |
|
107 typedef void (* TwoPointRadialShadeProc)(SkScalar fx, SkScalar dx, |
|
108 SkScalar fy, SkScalar dy, |
|
109 SkScalar b, SkScalar db, |
|
110 SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot, |
|
111 SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, |
|
112 int count); |
|
113 |
|
114 void shadeSpan_twopoint_clamp(SkScalar fx, SkScalar dx, |
|
115 SkScalar fy, SkScalar dy, |
|
116 SkScalar b, SkScalar db, |
|
117 SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot, |
|
118 SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, |
|
119 int count) { |
|
120 for (; count > 0; --count) { |
|
121 SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura, |
|
122 fOneOverTwoA, posRoot); |
|
123 SkFixed index = SkClampMax(t, 0xFFFF); |
|
124 SkASSERT(index <= 0xFFFF); |
|
125 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; |
|
126 fx += dx; |
|
127 fy += dy; |
|
128 b += db; |
|
129 } |
|
130 } |
|
131 void shadeSpan_twopoint_mirror(SkScalar fx, SkScalar dx, |
|
132 SkScalar fy, SkScalar dy, |
|
133 SkScalar b, SkScalar db, |
|
134 SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot, |
|
135 SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, |
|
136 int count) { |
|
137 for (; count > 0; --count) { |
|
138 SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura, |
|
139 fOneOverTwoA, posRoot); |
|
140 SkFixed index = mirror_tileproc(t); |
|
141 SkASSERT(index <= 0xFFFF); |
|
142 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; |
|
143 fx += dx; |
|
144 fy += dy; |
|
145 b += db; |
|
146 } |
|
147 } |
|
148 |
|
149 void shadeSpan_twopoint_repeat(SkScalar fx, SkScalar dx, |
|
150 SkScalar fy, SkScalar dy, |
|
151 SkScalar b, SkScalar db, |
|
152 SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot, |
|
153 SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, |
|
154 int count) { |
|
155 for (; count > 0; --count) { |
|
156 SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura, |
|
157 fOneOverTwoA, posRoot); |
|
158 SkFixed index = repeat_tileproc(t); |
|
159 SkASSERT(index <= 0xFFFF); |
|
160 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; |
|
161 fx += dx; |
|
162 fy += dy; |
|
163 b += db; |
|
164 } |
|
165 } |
|
166 } |
|
167 |
|
168 ///////////////////////////////////////////////////////////////////// |
|
169 |
|
170 SkTwoPointRadialGradient::SkTwoPointRadialGradient( |
|
171 const SkPoint& start, SkScalar startRadius, |
|
172 const SkPoint& end, SkScalar endRadius, |
|
173 const Descriptor& desc) |
|
174 : SkGradientShaderBase(desc), |
|
175 fCenter1(start), |
|
176 fCenter2(end), |
|
177 fRadius1(startRadius), |
|
178 fRadius2(endRadius) { |
|
179 init(); |
|
180 } |
|
181 |
|
182 SkShader::BitmapType SkTwoPointRadialGradient::asABitmap( |
|
183 SkBitmap* bitmap, |
|
184 SkMatrix* matrix, |
|
185 SkShader::TileMode* xy) const { |
|
186 if (bitmap) { |
|
187 this->getGradientTableBitmap(bitmap); |
|
188 } |
|
189 SkScalar diffL = 0; // just to avoid gcc warning |
|
190 if (matrix) { |
|
191 diffL = SkScalarSqrt(SkScalarSquare(fDiff.fX) + |
|
192 SkScalarSquare(fDiff.fY)); |
|
193 } |
|
194 if (matrix) { |
|
195 if (diffL) { |
|
196 SkScalar invDiffL = SkScalarInvert(diffL); |
|
197 matrix->setSinCos(-SkScalarMul(invDiffL, fDiff.fY), |
|
198 SkScalarMul(invDiffL, fDiff.fX)); |
|
199 } else { |
|
200 matrix->reset(); |
|
201 } |
|
202 matrix->preConcat(fPtsToUnit); |
|
203 } |
|
204 if (xy) { |
|
205 xy[0] = fTileMode; |
|
206 xy[1] = kClamp_TileMode; |
|
207 } |
|
208 return kTwoPointRadial_BitmapType; |
|
209 } |
|
210 |
|
211 SkShader::GradientType SkTwoPointRadialGradient::asAGradient( |
|
212 SkShader::GradientInfo* info) const { |
|
213 if (info) { |
|
214 commonAsAGradient(info); |
|
215 info->fPoint[0] = fCenter1; |
|
216 info->fPoint[1] = fCenter2; |
|
217 info->fRadius[0] = fRadius1; |
|
218 info->fRadius[1] = fRadius2; |
|
219 } |
|
220 return kRadial2_GradientType; |
|
221 } |
|
222 |
|
223 void SkTwoPointRadialGradient::shadeSpan(int x, int y, SkPMColor* dstCParam, |
|
224 int count) { |
|
225 SkASSERT(count > 0); |
|
226 |
|
227 SkPMColor* SK_RESTRICT dstC = dstCParam; |
|
228 |
|
229 // Zero difference between radii: fill with transparent black. |
|
230 if (fDiffRadius == 0) { |
|
231 sk_bzero(dstC, count * sizeof(*dstC)); |
|
232 return; |
|
233 } |
|
234 SkMatrix::MapXYProc dstProc = fDstToIndexProc; |
|
235 TileProc proc = fTileProc; |
|
236 const SkPMColor* SK_RESTRICT cache = this->getCache32(); |
|
237 |
|
238 SkScalar foura = fA * 4; |
|
239 bool posRoot = fDiffRadius < 0; |
|
240 if (fDstToIndexClass != kPerspective_MatrixClass) { |
|
241 SkPoint srcPt; |
|
242 dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf, |
|
243 SkIntToScalar(y) + SK_ScalarHalf, &srcPt); |
|
244 SkScalar dx, fx = srcPt.fX; |
|
245 SkScalar dy, fy = srcPt.fY; |
|
246 |
|
247 if (fDstToIndexClass == kFixedStepInX_MatrixClass) { |
|
248 SkFixed fixedX, fixedY; |
|
249 (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &fixedX, &fixedY); |
|
250 dx = SkFixedToScalar(fixedX); |
|
251 dy = SkFixedToScalar(fixedY); |
|
252 } else { |
|
253 SkASSERT(fDstToIndexClass == kLinear_MatrixClass); |
|
254 dx = fDstToIndex.getScaleX(); |
|
255 dy = fDstToIndex.getSkewY(); |
|
256 } |
|
257 SkScalar b = (SkScalarMul(fDiff.fX, fx) + |
|
258 SkScalarMul(fDiff.fY, fy) - fStartRadius) * 2; |
|
259 SkScalar db = (SkScalarMul(fDiff.fX, dx) + |
|
260 SkScalarMul(fDiff.fY, dy)) * 2; |
|
261 |
|
262 TwoPointRadialShadeProc shadeProc = shadeSpan_twopoint_repeat; |
|
263 if (SkShader::kClamp_TileMode == fTileMode) { |
|
264 shadeProc = shadeSpan_twopoint_clamp; |
|
265 } else if (SkShader::kMirror_TileMode == fTileMode) { |
|
266 shadeProc = shadeSpan_twopoint_mirror; |
|
267 } else { |
|
268 SkASSERT(SkShader::kRepeat_TileMode == fTileMode); |
|
269 } |
|
270 (*shadeProc)(fx, dx, fy, dy, b, db, |
|
271 fSr2D2, foura, fOneOverTwoA, posRoot, |
|
272 dstC, cache, count); |
|
273 } else { // perspective case |
|
274 SkScalar dstX = SkIntToScalar(x); |
|
275 SkScalar dstY = SkIntToScalar(y); |
|
276 for (; count > 0; --count) { |
|
277 SkPoint srcPt; |
|
278 dstProc(fDstToIndex, dstX, dstY, &srcPt); |
|
279 SkScalar fx = srcPt.fX; |
|
280 SkScalar fy = srcPt.fY; |
|
281 SkScalar b = (SkScalarMul(fDiff.fX, fx) + |
|
282 SkScalarMul(fDiff.fY, fy) - fStartRadius) * 2; |
|
283 SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura, |
|
284 fOneOverTwoA, posRoot); |
|
285 SkFixed index = proc(t); |
|
286 SkASSERT(index <= 0xFFFF); |
|
287 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; |
|
288 dstX += SK_Scalar1; |
|
289 } |
|
290 } |
|
291 } |
|
292 |
|
293 bool SkTwoPointRadialGradient::setContext( const SkBitmap& device, |
|
294 const SkPaint& paint, |
|
295 const SkMatrix& matrix){ |
|
296 // For now, we might have divided by zero, so detect that |
|
297 if (0 == fDiffRadius) { |
|
298 return false; |
|
299 } |
|
300 |
|
301 if (!this->INHERITED::setContext(device, paint, matrix)) { |
|
302 return false; |
|
303 } |
|
304 |
|
305 // we don't have a span16 proc |
|
306 fFlags &= ~kHasSpan16_Flag; |
|
307 return true; |
|
308 } |
|
309 |
|
310 #ifndef SK_IGNORE_TO_STRING |
|
311 void SkTwoPointRadialGradient::toString(SkString* str) const { |
|
312 str->append("SkTwoPointRadialGradient: ("); |
|
313 |
|
314 str->append("center1: ("); |
|
315 str->appendScalar(fCenter1.fX); |
|
316 str->append(", "); |
|
317 str->appendScalar(fCenter1.fY); |
|
318 str->append(") radius1: "); |
|
319 str->appendScalar(fRadius1); |
|
320 str->append(" "); |
|
321 |
|
322 str->append("center2: ("); |
|
323 str->appendScalar(fCenter2.fX); |
|
324 str->append(", "); |
|
325 str->appendScalar(fCenter2.fY); |
|
326 str->append(") radius2: "); |
|
327 str->appendScalar(fRadius2); |
|
328 str->append(" "); |
|
329 |
|
330 this->INHERITED::toString(str); |
|
331 |
|
332 str->append(")"); |
|
333 } |
|
334 #endif |
|
335 |
|
336 SkTwoPointRadialGradient::SkTwoPointRadialGradient( |
|
337 SkReadBuffer& buffer) |
|
338 : INHERITED(buffer), |
|
339 fCenter1(buffer.readPoint()), |
|
340 fCenter2(buffer.readPoint()), |
|
341 fRadius1(buffer.readScalar()), |
|
342 fRadius2(buffer.readScalar()) { |
|
343 init(); |
|
344 }; |
|
345 |
|
346 void SkTwoPointRadialGradient::flatten( |
|
347 SkWriteBuffer& buffer) const { |
|
348 this->INHERITED::flatten(buffer); |
|
349 buffer.writePoint(fCenter1); |
|
350 buffer.writePoint(fCenter2); |
|
351 buffer.writeScalar(fRadius1); |
|
352 buffer.writeScalar(fRadius2); |
|
353 } |
|
354 |
|
355 void SkTwoPointRadialGradient::init() { |
|
356 fDiff = fCenter1 - fCenter2; |
|
357 fDiffRadius = fRadius2 - fRadius1; |
|
358 // hack to avoid zero-divide for now |
|
359 SkScalar inv = fDiffRadius ? SkScalarInvert(fDiffRadius) : 0; |
|
360 fDiff.fX = SkScalarMul(fDiff.fX, inv); |
|
361 fDiff.fY = SkScalarMul(fDiff.fY, inv); |
|
362 fStartRadius = SkScalarMul(fRadius1, inv); |
|
363 fSr2D2 = SkScalarSquare(fStartRadius); |
|
364 fA = SkScalarSquare(fDiff.fX) + SkScalarSquare(fDiff.fY) - SK_Scalar1; |
|
365 fOneOverTwoA = fA ? SkScalarInvert(fA * 2) : 0; |
|
366 |
|
367 fPtsToUnit.setTranslate(-fCenter1.fX, -fCenter1.fY); |
|
368 fPtsToUnit.postScale(inv, inv); |
|
369 } |
|
370 |
|
371 ///////////////////////////////////////////////////////////////////// |
|
372 |
|
373 #if SK_SUPPORT_GPU |
|
374 |
|
375 #include "GrTBackendEffectFactory.h" |
|
376 |
|
377 // For brevity |
|
378 typedef GrGLUniformManager::UniformHandle UniformHandle; |
|
379 |
|
380 class GrGLRadial2Gradient : public GrGLGradientEffect { |
|
381 |
|
382 public: |
|
383 |
|
384 GrGLRadial2Gradient(const GrBackendEffectFactory& factory, const GrDrawEffect&); |
|
385 virtual ~GrGLRadial2Gradient() { } |
|
386 |
|
387 virtual void emitCode(GrGLShaderBuilder*, |
|
388 const GrDrawEffect&, |
|
389 EffectKey, |
|
390 const char* outputColor, |
|
391 const char* inputColor, |
|
392 const TransformedCoordsArray&, |
|
393 const TextureSamplerArray&) SK_OVERRIDE; |
|
394 virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE; |
|
395 |
|
396 static EffectKey GenKey(const GrDrawEffect&, const GrGLCaps& caps); |
|
397 |
|
398 protected: |
|
399 |
|
400 UniformHandle fParamUni; |
|
401 |
|
402 const char* fVSVaryingName; |
|
403 const char* fFSVaryingName; |
|
404 |
|
405 bool fIsDegenerate; |
|
406 |
|
407 // @{ |
|
408 /// Values last uploaded as uniforms |
|
409 |
|
410 SkScalar fCachedCenter; |
|
411 SkScalar fCachedRadius; |
|
412 bool fCachedPosRoot; |
|
413 |
|
414 // @} |
|
415 |
|
416 private: |
|
417 |
|
418 typedef GrGLGradientEffect INHERITED; |
|
419 |
|
420 }; |
|
421 |
|
422 ///////////////////////////////////////////////////////////////////// |
|
423 |
|
424 class GrRadial2Gradient : public GrGradientEffect { |
|
425 public: |
|
426 static GrEffectRef* Create(GrContext* ctx, |
|
427 const SkTwoPointRadialGradient& shader, |
|
428 const SkMatrix& matrix, |
|
429 SkShader::TileMode tm) { |
|
430 AutoEffectUnref effect(SkNEW_ARGS(GrRadial2Gradient, (ctx, shader, matrix, tm))); |
|
431 return CreateEffectRef(effect); |
|
432 } |
|
433 |
|
434 virtual ~GrRadial2Gradient() { } |
|
435 |
|
436 static const char* Name() { return "Two-Point Radial Gradient"; } |
|
437 virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { |
|
438 return GrTBackendEffectFactory<GrRadial2Gradient>::getInstance(); |
|
439 } |
|
440 |
|
441 // The radial gradient parameters can collapse to a linear (instead of quadratic) equation. |
|
442 bool isDegenerate() const { return SK_Scalar1 == fCenterX1; } |
|
443 SkScalar center() const { return fCenterX1; } |
|
444 SkScalar radius() const { return fRadius0; } |
|
445 bool isPosRoot() const { return SkToBool(fPosRoot); } |
|
446 |
|
447 typedef GrGLRadial2Gradient GLEffect; |
|
448 |
|
449 private: |
|
450 virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE { |
|
451 const GrRadial2Gradient& s = CastEffect<GrRadial2Gradient>(sBase); |
|
452 return (INHERITED::onIsEqual(sBase) && |
|
453 this->fCenterX1 == s.fCenterX1 && |
|
454 this->fRadius0 == s.fRadius0 && |
|
455 this->fPosRoot == s.fPosRoot); |
|
456 } |
|
457 |
|
458 GrRadial2Gradient(GrContext* ctx, |
|
459 const SkTwoPointRadialGradient& shader, |
|
460 const SkMatrix& matrix, |
|
461 SkShader::TileMode tm) |
|
462 : INHERITED(ctx, shader, matrix, tm) |
|
463 , fCenterX1(shader.getCenterX1()) |
|
464 , fRadius0(shader.getStartRadius()) |
|
465 , fPosRoot(shader.getDiffRadius() < 0) { |
|
466 // We pass the linear part of the quadratic as a varying. |
|
467 // float b = 2.0 * (fCenterX1 * x - fRadius0 * z) |
|
468 fBTransform = this->getCoordTransform(); |
|
469 SkMatrix& bMatrix = *fBTransform.accessMatrix(); |
|
470 bMatrix[SkMatrix::kMScaleX] = 2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMScaleX]) - |
|
471 SkScalarMul(fRadius0, bMatrix[SkMatrix::kMPersp0])); |
|
472 bMatrix[SkMatrix::kMSkewX] = 2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMSkewX]) - |
|
473 SkScalarMul(fRadius0, bMatrix[SkMatrix::kMPersp1])); |
|
474 bMatrix[SkMatrix::kMTransX] = 2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMTransX]) - |
|
475 SkScalarMul(fRadius0, bMatrix[SkMatrix::kMPersp2])); |
|
476 this->addCoordTransform(&fBTransform); |
|
477 } |
|
478 |
|
479 GR_DECLARE_EFFECT_TEST; |
|
480 |
|
481 // @{ |
|
482 // Cache of values - these can change arbitrarily, EXCEPT |
|
483 // we shouldn't change between degenerate and non-degenerate?! |
|
484 |
|
485 GrCoordTransform fBTransform; |
|
486 SkScalar fCenterX1; |
|
487 SkScalar fRadius0; |
|
488 SkBool8 fPosRoot; |
|
489 |
|
490 // @} |
|
491 |
|
492 typedef GrGradientEffect INHERITED; |
|
493 }; |
|
494 |
|
495 ///////////////////////////////////////////////////////////////////// |
|
496 |
|
497 GR_DEFINE_EFFECT_TEST(GrRadial2Gradient); |
|
498 |
|
499 GrEffectRef* GrRadial2Gradient::TestCreate(SkRandom* random, |
|
500 GrContext* context, |
|
501 const GrDrawTargetCaps&, |
|
502 GrTexture**) { |
|
503 SkPoint center1 = {random->nextUScalar1(), random->nextUScalar1()}; |
|
504 SkScalar radius1 = random->nextUScalar1(); |
|
505 SkPoint center2; |
|
506 SkScalar radius2; |
|
507 do { |
|
508 center2.set(random->nextUScalar1(), random->nextUScalar1()); |
|
509 radius2 = random->nextUScalar1 (); |
|
510 // There is a bug in two point radial gradients with identical radii |
|
511 } while (radius1 == radius2); |
|
512 |
|
513 SkColor colors[kMaxRandomGradientColors]; |
|
514 SkScalar stopsArray[kMaxRandomGradientColors]; |
|
515 SkScalar* stops = stopsArray; |
|
516 SkShader::TileMode tm; |
|
517 int colorCount = RandomGradientParams(random, colors, &stops, &tm); |
|
518 SkAutoTUnref<SkShader> shader(SkGradientShader::CreateTwoPointRadial(center1, radius1, |
|
519 center2, radius2, |
|
520 colors, stops, colorCount, |
|
521 tm)); |
|
522 SkPaint paint; |
|
523 return shader->asNewEffect(context, paint); |
|
524 } |
|
525 |
|
526 ///////////////////////////////////////////////////////////////////// |
|
527 |
|
528 GrGLRadial2Gradient::GrGLRadial2Gradient(const GrBackendEffectFactory& factory, |
|
529 const GrDrawEffect& drawEffect) |
|
530 : INHERITED(factory) |
|
531 , fVSVaryingName(NULL) |
|
532 , fFSVaryingName(NULL) |
|
533 , fCachedCenter(SK_ScalarMax) |
|
534 , fCachedRadius(-SK_ScalarMax) |
|
535 , fCachedPosRoot(0) { |
|
536 |
|
537 const GrRadial2Gradient& data = drawEffect.castEffect<GrRadial2Gradient>(); |
|
538 fIsDegenerate = data.isDegenerate(); |
|
539 } |
|
540 |
|
541 void GrGLRadial2Gradient::emitCode(GrGLShaderBuilder* builder, |
|
542 const GrDrawEffect& drawEffect, |
|
543 EffectKey key, |
|
544 const char* outputColor, |
|
545 const char* inputColor, |
|
546 const TransformedCoordsArray& coords, |
|
547 const TextureSamplerArray& samplers) { |
|
548 |
|
549 this->emitUniforms(builder, key); |
|
550 fParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_Visibility, |
|
551 kFloat_GrSLType, "Radial2FSParams", 6); |
|
552 |
|
553 SkString cName("c"); |
|
554 SkString ac4Name("ac4"); |
|
555 SkString rootName("root"); |
|
556 SkString t; |
|
557 SkString p0; |
|
558 SkString p1; |
|
559 SkString p2; |
|
560 SkString p3; |
|
561 SkString p4; |
|
562 SkString p5; |
|
563 builder->getUniformVariable(fParamUni).appendArrayAccess(0, &p0); |
|
564 builder->getUniformVariable(fParamUni).appendArrayAccess(1, &p1); |
|
565 builder->getUniformVariable(fParamUni).appendArrayAccess(2, &p2); |
|
566 builder->getUniformVariable(fParamUni).appendArrayAccess(3, &p3); |
|
567 builder->getUniformVariable(fParamUni).appendArrayAccess(4, &p4); |
|
568 builder->getUniformVariable(fParamUni).appendArrayAccess(5, &p5); |
|
569 |
|
570 // We interpolate the linear component in coords[1]. |
|
571 SkASSERT(coords[0].type() == coords[1].type()); |
|
572 const char* coords2D; |
|
573 SkString bVar; |
|
574 if (kVec3f_GrSLType == coords[0].type()) { |
|
575 builder->fsCodeAppendf("\tvec3 interpolants = vec3(%s.xy, %s.x) / %s.z;\n", |
|
576 coords[0].c_str(), coords[1].c_str(), coords[0].c_str()); |
|
577 coords2D = "interpolants.xy"; |
|
578 bVar = "interpolants.z"; |
|
579 } else { |
|
580 coords2D = coords[0].c_str(); |
|
581 bVar.printf("%s.x", coords[1].c_str()); |
|
582 } |
|
583 |
|
584 // c = (x^2)+(y^2) - params[4] |
|
585 builder->fsCodeAppendf("\tfloat %s = dot(%s, %s) - %s;\n", |
|
586 cName.c_str(), coords2D, coords2D, p4.c_str()); |
|
587 |
|
588 // If we aren't degenerate, emit some extra code, and accept a slightly |
|
589 // more complex coord. |
|
590 if (!fIsDegenerate) { |
|
591 |
|
592 // ac4 = 4.0 * params[0] * c |
|
593 builder->fsCodeAppendf("\tfloat %s = %s * 4.0 * %s;\n", |
|
594 ac4Name.c_str(), p0.c_str(), |
|
595 cName.c_str()); |
|
596 |
|
597 // root = sqrt(b^2-4ac) |
|
598 // (abs to avoid exception due to fp precision) |
|
599 builder->fsCodeAppendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n", |
|
600 rootName.c_str(), bVar.c_str(), bVar.c_str(), |
|
601 ac4Name.c_str()); |
|
602 |
|
603 // t is: (-b + params[5] * sqrt(b^2-4ac)) * params[1] |
|
604 t.printf("(-%s + %s * %s) * %s", bVar.c_str(), p5.c_str(), |
|
605 rootName.c_str(), p1.c_str()); |
|
606 } else { |
|
607 // t is: -c/b |
|
608 t.printf("-%s / %s", cName.c_str(), bVar.c_str()); |
|
609 } |
|
610 |
|
611 this->emitColor(builder, t.c_str(), key, outputColor, inputColor, samplers); |
|
612 } |
|
613 |
|
614 void GrGLRadial2Gradient::setData(const GrGLUniformManager& uman, |
|
615 const GrDrawEffect& drawEffect) { |
|
616 INHERITED::setData(uman, drawEffect); |
|
617 const GrRadial2Gradient& data = drawEffect.castEffect<GrRadial2Gradient>(); |
|
618 SkASSERT(data.isDegenerate() == fIsDegenerate); |
|
619 SkScalar centerX1 = data.center(); |
|
620 SkScalar radius0 = data.radius(); |
|
621 if (fCachedCenter != centerX1 || |
|
622 fCachedRadius != radius0 || |
|
623 fCachedPosRoot != data.isPosRoot()) { |
|
624 |
|
625 SkScalar a = SkScalarMul(centerX1, centerX1) - SK_Scalar1; |
|
626 |
|
627 // When we're in the degenerate (linear) case, the second |
|
628 // value will be INF but the program doesn't read it. (We |
|
629 // use the same 6 uniforms even though we don't need them |
|
630 // all in the linear case just to keep the code complexity |
|
631 // down). |
|
632 float values[6] = { |
|
633 SkScalarToFloat(a), |
|
634 1 / (2.f * SkScalarToFloat(a)), |
|
635 SkScalarToFloat(centerX1), |
|
636 SkScalarToFloat(radius0), |
|
637 SkScalarToFloat(SkScalarMul(radius0, radius0)), |
|
638 data.isPosRoot() ? 1.f : -1.f |
|
639 }; |
|
640 |
|
641 uman.set1fv(fParamUni, 6, values); |
|
642 fCachedCenter = centerX1; |
|
643 fCachedRadius = radius0; |
|
644 fCachedPosRoot = data.isPosRoot(); |
|
645 } |
|
646 } |
|
647 |
|
648 GrGLEffect::EffectKey GrGLRadial2Gradient::GenKey(const GrDrawEffect& drawEffect, |
|
649 const GrGLCaps&) { |
|
650 enum { |
|
651 kIsDegenerate = 1 << kBaseKeyBitCnt, |
|
652 }; |
|
653 |
|
654 EffectKey key = GenBaseGradientKey(drawEffect); |
|
655 if (drawEffect.castEffect<GrRadial2Gradient>().isDegenerate()) { |
|
656 key |= kIsDegenerate; |
|
657 } |
|
658 return key; |
|
659 } |
|
660 |
|
661 ///////////////////////////////////////////////////////////////////// |
|
662 |
|
663 GrEffectRef* SkTwoPointRadialGradient::asNewEffect(GrContext* context, const SkPaint&) const { |
|
664 SkASSERT(NULL != context); |
|
665 // invert the localM, translate to center1 (fPtsToUni), rotate so center2 is on x axis. |
|
666 SkMatrix matrix; |
|
667 if (!this->getLocalMatrix().invert(&matrix)) { |
|
668 return NULL; |
|
669 } |
|
670 matrix.postConcat(fPtsToUnit); |
|
671 |
|
672 SkScalar diffLen = fDiff.length(); |
|
673 if (0 != diffLen) { |
|
674 SkScalar invDiffLen = SkScalarInvert(diffLen); |
|
675 SkMatrix rot; |
|
676 rot.setSinCos(-SkScalarMul(invDiffLen, fDiff.fY), |
|
677 SkScalarMul(invDiffLen, fDiff.fX)); |
|
678 matrix.postConcat(rot); |
|
679 } |
|
680 |
|
681 return GrRadial2Gradient::Create(context, *this, matrix, fTileMode); |
|
682 } |
|
683 |
|
684 #else |
|
685 |
|
686 GrEffectRef* SkTwoPointRadialGradient::asNewEffect(GrContext*, const SkPaint&) const { |
|
687 SkDEBUGFAIL("Should not call in GPU-less build"); |
|
688 return NULL; |
|
689 } |
|
690 |
|
691 #endif |