|
1 /* |
|
2 * Copyright 2012 Google Inc. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 #include "SkOpContour.h" |
|
8 #include "SkPath.h" |
|
9 |
|
10 #ifdef SK_DEBUG |
|
11 #include "SkPathOpsPoint.h" |
|
12 #endif |
|
13 |
|
14 class SkIntersectionHelper { |
|
15 public: |
|
16 enum SegmentType { |
|
17 kHorizontalLine_Segment = -1, |
|
18 kVerticalLine_Segment = 0, |
|
19 kLine_Segment = SkPath::kLine_Verb, |
|
20 kQuad_Segment = SkPath::kQuad_Verb, |
|
21 kCubic_Segment = SkPath::kCubic_Verb, |
|
22 }; |
|
23 |
|
24 bool addCoincident(SkIntersectionHelper& other, const SkIntersections& ts, bool swap) { |
|
25 return fContour->addCoincident(fIndex, other.fContour, other.fIndex, ts, swap); |
|
26 } |
|
27 |
|
28 // FIXME: does it make sense to write otherIndex now if we're going to |
|
29 // fix it up later? |
|
30 void addOtherT(int index, double otherT, int otherIndex) { |
|
31 fContour->addOtherT(fIndex, index, otherT, otherIndex); |
|
32 } |
|
33 |
|
34 bool addPartialCoincident(SkIntersectionHelper& other, const SkIntersections& ts, int index, |
|
35 bool swap) { |
|
36 return fContour->addPartialCoincident(fIndex, other.fContour, other.fIndex, ts, index, |
|
37 swap); |
|
38 } |
|
39 |
|
40 // Avoid collapsing t values that are close to the same since |
|
41 // we walk ts to describe consecutive intersections. Since a pair of ts can |
|
42 // be nearly equal, any problems caused by this should be taken care |
|
43 // of later. |
|
44 // On the edge or out of range values are negative; add 2 to get end |
|
45 int addT(const SkIntersectionHelper& other, const SkPoint& pt, double newT) { |
|
46 return fContour->addT(fIndex, other.fContour, other.fIndex, pt, newT); |
|
47 } |
|
48 |
|
49 int addSelfT(const SkIntersectionHelper& other, const SkPoint& pt, double newT) { |
|
50 return fContour->addSelfT(fIndex, other.fContour, other.fIndex, pt, newT); |
|
51 } |
|
52 |
|
53 bool advance() { |
|
54 return ++fIndex < fLast; |
|
55 } |
|
56 |
|
57 SkScalar bottom() const { |
|
58 return bounds().fBottom; |
|
59 } |
|
60 |
|
61 const SkPathOpsBounds& bounds() const { |
|
62 return fContour->segments()[fIndex].bounds(); |
|
63 } |
|
64 |
|
65 void init(SkOpContour* contour) { |
|
66 fContour = contour; |
|
67 fIndex = 0; |
|
68 fLast = contour->segments().count(); |
|
69 } |
|
70 |
|
71 bool isAdjacent(const SkIntersectionHelper& next) { |
|
72 return fContour == next.fContour && fIndex + 1 == next.fIndex; |
|
73 } |
|
74 |
|
75 bool isFirstLast(const SkIntersectionHelper& next) { |
|
76 return fContour == next.fContour && fIndex == 0 |
|
77 && next.fIndex == fLast - 1; |
|
78 } |
|
79 |
|
80 bool isPartial(double t1, double t2, const SkDPoint& pt1, const SkDPoint& pt2) const { |
|
81 const SkOpSegment& segment = fContour->segments()[fIndex]; |
|
82 double mid = (t1 + t2) / 2; |
|
83 SkDPoint midPtByT = segment.dPtAtT(mid); |
|
84 SkDPoint midPtByAvg = SkDPoint::Mid(pt1, pt2); |
|
85 return midPtByT.approximatelyPEqual(midPtByAvg); |
|
86 } |
|
87 |
|
88 SkScalar left() const { |
|
89 return bounds().fLeft; |
|
90 } |
|
91 |
|
92 const SkPoint* pts() const { |
|
93 return fContour->segments()[fIndex].pts(); |
|
94 } |
|
95 |
|
96 SkScalar right() const { |
|
97 return bounds().fRight; |
|
98 } |
|
99 |
|
100 SegmentType segmentType() const { |
|
101 const SkOpSegment& segment = fContour->segments()[fIndex]; |
|
102 SegmentType type = (SegmentType) segment.verb(); |
|
103 if (type != kLine_Segment) { |
|
104 return type; |
|
105 } |
|
106 if (segment.isHorizontal()) { |
|
107 return kHorizontalLine_Segment; |
|
108 } |
|
109 if (segment.isVertical()) { |
|
110 return kVerticalLine_Segment; |
|
111 } |
|
112 return kLine_Segment; |
|
113 } |
|
114 |
|
115 bool startAfter(const SkIntersectionHelper& after) { |
|
116 fIndex = after.fIndex; |
|
117 return advance(); |
|
118 } |
|
119 |
|
120 SkScalar top() const { |
|
121 return bounds().fTop; |
|
122 } |
|
123 |
|
124 SkPath::Verb verb() const { |
|
125 return fContour->segments()[fIndex].verb(); |
|
126 } |
|
127 |
|
128 SkScalar x() const { |
|
129 return bounds().fLeft; |
|
130 } |
|
131 |
|
132 bool xFlipped() const { |
|
133 return x() != pts()[0].fX; |
|
134 } |
|
135 |
|
136 SkScalar y() const { |
|
137 return bounds().fTop; |
|
138 } |
|
139 |
|
140 bool yFlipped() const { |
|
141 return y() != pts()[0].fY; |
|
142 } |
|
143 |
|
144 #ifdef SK_DEBUG |
|
145 void dump() { |
|
146 SkDPoint::dump(pts()[0]); |
|
147 SkDPoint::dump(pts()[1]); |
|
148 if (verb() >= SkPath::kQuad_Verb) { |
|
149 SkDPoint::dump(pts()[2]); |
|
150 } |
|
151 if (verb() >= SkPath::kCubic_Verb) { |
|
152 SkDPoint::dump(pts()[3]); |
|
153 } |
|
154 } |
|
155 #endif |
|
156 |
|
157 private: |
|
158 SkOpContour* fContour; |
|
159 int fIndex; |
|
160 int fLast; |
|
161 }; |