|
1 /* |
|
2 * Copyright 2012 Google Inc. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 #include "SkReduceOrder.h" |
|
8 |
|
9 int SkReduceOrder::reduce(const SkDLine& line) { |
|
10 fLine[0] = line[0]; |
|
11 int different = line[0] != line[1]; |
|
12 fLine[1] = line[different]; |
|
13 return 1 + different; |
|
14 } |
|
15 |
|
16 static int coincident_line(const SkDQuad& quad, SkDQuad& reduction) { |
|
17 reduction[0] = reduction[1] = quad[0]; |
|
18 return 1; |
|
19 } |
|
20 |
|
21 static int reductionLineCount(const SkDQuad& reduction) { |
|
22 return 1 + !reduction[0].approximatelyEqual(reduction[1]); |
|
23 } |
|
24 |
|
25 static int vertical_line(const SkDQuad& quad, SkDQuad& reduction) { |
|
26 reduction[0] = quad[0]; |
|
27 reduction[1] = quad[2]; |
|
28 return reductionLineCount(reduction); |
|
29 } |
|
30 |
|
31 static int horizontal_line(const SkDQuad& quad, SkDQuad& reduction) { |
|
32 reduction[0] = quad[0]; |
|
33 reduction[1] = quad[2]; |
|
34 return reductionLineCount(reduction); |
|
35 } |
|
36 |
|
37 static int check_linear(const SkDQuad& quad, |
|
38 int minX, int maxX, int minY, int maxY, SkDQuad& reduction) { |
|
39 int startIndex = 0; |
|
40 int endIndex = 2; |
|
41 while (quad[startIndex].approximatelyEqual(quad[endIndex])) { |
|
42 --endIndex; |
|
43 if (endIndex == 0) { |
|
44 SkDebugf("%s shouldn't get here if all four points are about equal", __FUNCTION__); |
|
45 SkASSERT(0); |
|
46 } |
|
47 } |
|
48 if (!quad.isLinear(startIndex, endIndex)) { |
|
49 return 0; |
|
50 } |
|
51 // four are colinear: return line formed by outside |
|
52 reduction[0] = quad[0]; |
|
53 reduction[1] = quad[2]; |
|
54 return reductionLineCount(reduction); |
|
55 } |
|
56 |
|
57 // reduce to a quadratic or smaller |
|
58 // look for identical points |
|
59 // look for all four points in a line |
|
60 // note that three points in a line doesn't simplify a cubic |
|
61 // look for approximation with single quadratic |
|
62 // save approximation with multiple quadratics for later |
|
63 int SkReduceOrder::reduce(const SkDQuad& quad) { |
|
64 int index, minX, maxX, minY, maxY; |
|
65 int minXSet, minYSet; |
|
66 minX = maxX = minY = maxY = 0; |
|
67 minXSet = minYSet = 0; |
|
68 for (index = 1; index < 3; ++index) { |
|
69 if (quad[minX].fX > quad[index].fX) { |
|
70 minX = index; |
|
71 } |
|
72 if (quad[minY].fY > quad[index].fY) { |
|
73 minY = index; |
|
74 } |
|
75 if (quad[maxX].fX < quad[index].fX) { |
|
76 maxX = index; |
|
77 } |
|
78 if (quad[maxY].fY < quad[index].fY) { |
|
79 maxY = index; |
|
80 } |
|
81 } |
|
82 for (index = 0; index < 3; ++index) { |
|
83 if (AlmostEqualUlps(quad[index].fX, quad[minX].fX)) { |
|
84 minXSet |= 1 << index; |
|
85 } |
|
86 if (AlmostEqualUlps(quad[index].fY, quad[minY].fY)) { |
|
87 minYSet |= 1 << index; |
|
88 } |
|
89 } |
|
90 if (minXSet == 0x7) { // test for vertical line |
|
91 if (minYSet == 0x7) { // return 1 if all four are coincident |
|
92 return coincident_line(quad, fQuad); |
|
93 } |
|
94 return vertical_line(quad, fQuad); |
|
95 } |
|
96 if (minYSet == 0xF) { // test for horizontal line |
|
97 return horizontal_line(quad, fQuad); |
|
98 } |
|
99 int result = check_linear(quad, minX, maxX, minY, maxY, fQuad); |
|
100 if (result) { |
|
101 return result; |
|
102 } |
|
103 fQuad = quad; |
|
104 return 3; |
|
105 } |
|
106 |
|
107 //////////////////////////////////////////////////////////////////////////////////// |
|
108 |
|
109 static int coincident_line(const SkDCubic& cubic, SkDCubic& reduction) { |
|
110 reduction[0] = reduction[1] = cubic[0]; |
|
111 return 1; |
|
112 } |
|
113 |
|
114 static int reductionLineCount(const SkDCubic& reduction) { |
|
115 return 1 + !reduction[0].approximatelyEqual(reduction[1]); |
|
116 } |
|
117 |
|
118 static int vertical_line(const SkDCubic& cubic, SkDCubic& reduction) { |
|
119 reduction[0] = cubic[0]; |
|
120 reduction[1] = cubic[3]; |
|
121 return reductionLineCount(reduction); |
|
122 } |
|
123 |
|
124 static int horizontal_line(const SkDCubic& cubic, SkDCubic& reduction) { |
|
125 reduction[0] = cubic[0]; |
|
126 reduction[1] = cubic[3]; |
|
127 return reductionLineCount(reduction); |
|
128 } |
|
129 |
|
130 // check to see if it is a quadratic or a line |
|
131 static int check_quadratic(const SkDCubic& cubic, SkDCubic& reduction) { |
|
132 double dx10 = cubic[1].fX - cubic[0].fX; |
|
133 double dx23 = cubic[2].fX - cubic[3].fX; |
|
134 double midX = cubic[0].fX + dx10 * 3 / 2; |
|
135 double sideAx = midX - cubic[3].fX; |
|
136 double sideBx = dx23 * 3 / 2; |
|
137 if (approximately_zero(sideAx) ? !approximately_equal(sideAx, sideBx) |
|
138 : !AlmostEqualUlps(sideAx, sideBx)) { |
|
139 return 0; |
|
140 } |
|
141 double dy10 = cubic[1].fY - cubic[0].fY; |
|
142 double dy23 = cubic[2].fY - cubic[3].fY; |
|
143 double midY = cubic[0].fY + dy10 * 3 / 2; |
|
144 double sideAy = midY - cubic[3].fY; |
|
145 double sideBy = dy23 * 3 / 2; |
|
146 if (approximately_zero(sideAy) ? !approximately_equal(sideAy, sideBy) |
|
147 : !AlmostEqualUlps(sideAy, sideBy)) { |
|
148 return 0; |
|
149 } |
|
150 reduction[0] = cubic[0]; |
|
151 reduction[1].fX = midX; |
|
152 reduction[1].fY = midY; |
|
153 reduction[2] = cubic[3]; |
|
154 return 3; |
|
155 } |
|
156 |
|
157 static int check_linear(const SkDCubic& cubic, |
|
158 int minX, int maxX, int minY, int maxY, SkDCubic& reduction) { |
|
159 int startIndex = 0; |
|
160 int endIndex = 3; |
|
161 while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) { |
|
162 --endIndex; |
|
163 if (endIndex == 0) { |
|
164 SkDebugf("%s shouldn't get here if all four points are about equal\n", __FUNCTION__); |
|
165 SkASSERT(0); |
|
166 } |
|
167 } |
|
168 if (!cubic.isLinear(startIndex, endIndex)) { |
|
169 return 0; |
|
170 } |
|
171 // four are colinear: return line formed by outside |
|
172 reduction[0] = cubic[0]; |
|
173 reduction[1] = cubic[3]; |
|
174 return reductionLineCount(reduction); |
|
175 } |
|
176 |
|
177 /* food for thought: |
|
178 http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html |
|
179 |
|
180 Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the |
|
181 corresponding quadratic Bezier are (given in convex combinations of |
|
182 points): |
|
183 |
|
184 q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4 |
|
185 q2 = -c1 + (3/2)c2 + (3/2)c3 - c4 |
|
186 q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4 |
|
187 |
|
188 Of course, this curve does not interpolate the end-points, but it would |
|
189 be interesting to see the behaviour of such a curve in an applet. |
|
190 |
|
191 -- |
|
192 Kalle Rutanen |
|
193 http://kaba.hilvi.org |
|
194 |
|
195 */ |
|
196 |
|
197 // reduce to a quadratic or smaller |
|
198 // look for identical points |
|
199 // look for all four points in a line |
|
200 // note that three points in a line doesn't simplify a cubic |
|
201 // look for approximation with single quadratic |
|
202 // save approximation with multiple quadratics for later |
|
203 int SkReduceOrder::reduce(const SkDCubic& cubic, Quadratics allowQuadratics) { |
|
204 int index, minX, maxX, minY, maxY; |
|
205 int minXSet, minYSet; |
|
206 minX = maxX = minY = maxY = 0; |
|
207 minXSet = minYSet = 0; |
|
208 for (index = 1; index < 4; ++index) { |
|
209 if (cubic[minX].fX > cubic[index].fX) { |
|
210 minX = index; |
|
211 } |
|
212 if (cubic[minY].fY > cubic[index].fY) { |
|
213 minY = index; |
|
214 } |
|
215 if (cubic[maxX].fX < cubic[index].fX) { |
|
216 maxX = index; |
|
217 } |
|
218 if (cubic[maxY].fY < cubic[index].fY) { |
|
219 maxY = index; |
|
220 } |
|
221 } |
|
222 for (index = 0; index < 4; ++index) { |
|
223 double cx = cubic[index].fX; |
|
224 double cy = cubic[index].fY; |
|
225 double denom = SkTMax(fabs(cx), SkTMax(fabs(cy), |
|
226 SkTMax(fabs(cubic[minX].fX), fabs(cubic[minY].fY)))); |
|
227 if (denom == 0) { |
|
228 minXSet |= 1 << index; |
|
229 minYSet |= 1 << index; |
|
230 continue; |
|
231 } |
|
232 double inv = 1 / denom; |
|
233 if (approximately_equal_half(cx * inv, cubic[minX].fX * inv)) { |
|
234 minXSet |= 1 << index; |
|
235 } |
|
236 if (approximately_equal_half(cy * inv, cubic[minY].fY * inv)) { |
|
237 minYSet |= 1 << index; |
|
238 } |
|
239 } |
|
240 if (minXSet == 0xF) { // test for vertical line |
|
241 if (minYSet == 0xF) { // return 1 if all four are coincident |
|
242 return coincident_line(cubic, fCubic); |
|
243 } |
|
244 return vertical_line(cubic, fCubic); |
|
245 } |
|
246 if (minYSet == 0xF) { // test for horizontal line |
|
247 return horizontal_line(cubic, fCubic); |
|
248 } |
|
249 int result = check_linear(cubic, minX, maxX, minY, maxY, fCubic); |
|
250 if (result) { |
|
251 return result; |
|
252 } |
|
253 if (allowQuadratics == SkReduceOrder::kAllow_Quadratics |
|
254 && (result = check_quadratic(cubic, fCubic))) { |
|
255 return result; |
|
256 } |
|
257 fCubic = cubic; |
|
258 return 4; |
|
259 } |
|
260 |
|
261 SkPath::Verb SkReduceOrder::Quad(const SkPoint a[3], SkPoint* reducePts) { |
|
262 SkDQuad quad; |
|
263 quad.set(a); |
|
264 SkReduceOrder reducer; |
|
265 int order = reducer.reduce(quad); |
|
266 if (order == 2) { // quad became line |
|
267 for (int index = 0; index < order; ++index) { |
|
268 *reducePts++ = reducer.fLine[index].asSkPoint(); |
|
269 } |
|
270 } |
|
271 return SkPathOpsPointsToVerb(order - 1); |
|
272 } |
|
273 |
|
274 SkPath::Verb SkReduceOrder::Cubic(const SkPoint a[4], SkPoint* reducePts) { |
|
275 SkDCubic cubic; |
|
276 cubic.set(a); |
|
277 SkReduceOrder reducer; |
|
278 int order = reducer.reduce(cubic, kAllow_Quadratics); |
|
279 if (order == 2 || order == 3) { // cubic became line or quad |
|
280 for (int index = 0; index < order; ++index) { |
|
281 *reducePts++ = reducer.fQuad[index].asSkPoint(); |
|
282 } |
|
283 } |
|
284 return SkPathOpsPointsToVerb(order - 1); |
|
285 } |