|
1 /* |
|
2 * Copyright 2012 Google Inc. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 * |
|
7 * The following code is based on the description in RFC 1321. |
|
8 * http://www.ietf.org/rfc/rfc1321.txt |
|
9 */ |
|
10 |
|
11 #include "SkTypes.h" |
|
12 #include "SkMD5.h" |
|
13 #include <string.h> |
|
14 |
|
15 /** MD5 basic transformation. Transforms state based on block. */ |
|
16 static void transform(uint32_t state[4], const uint8_t block[64]); |
|
17 |
|
18 /** Encodes input into output (4 little endian 32 bit values). */ |
|
19 static void encode(uint8_t output[16], const uint32_t input[4]); |
|
20 |
|
21 /** Encodes input into output (little endian 64 bit value). */ |
|
22 static void encode(uint8_t output[8], const uint64_t input); |
|
23 |
|
24 /** Decodes input (4 little endian 32 bit values) into storage, if required. */ |
|
25 static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]); |
|
26 |
|
27 SkMD5::SkMD5() : byteCount(0) { |
|
28 // These are magic numbers from the specification. |
|
29 this->state[0] = 0x67452301; |
|
30 this->state[1] = 0xefcdab89; |
|
31 this->state[2] = 0x98badcfe; |
|
32 this->state[3] = 0x10325476; |
|
33 } |
|
34 |
|
35 void SkMD5::update(const uint8_t* input, size_t inputLength) { |
|
36 unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); |
|
37 unsigned int bufferAvailable = 64 - bufferIndex; |
|
38 |
|
39 unsigned int inputIndex; |
|
40 if (inputLength >= bufferAvailable) { |
|
41 if (bufferIndex) { |
|
42 memcpy(&this->buffer[bufferIndex], input, bufferAvailable); |
|
43 transform(this->state, this->buffer); |
|
44 inputIndex = bufferAvailable; |
|
45 } else { |
|
46 inputIndex = 0; |
|
47 } |
|
48 |
|
49 for (; inputIndex + 63 < inputLength; inputIndex += 64) { |
|
50 transform(this->state, &input[inputIndex]); |
|
51 } |
|
52 |
|
53 bufferIndex = 0; |
|
54 } else { |
|
55 inputIndex = 0; |
|
56 } |
|
57 |
|
58 memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex); |
|
59 |
|
60 this->byteCount += inputLength; |
|
61 } |
|
62 |
|
63 void SkMD5::finish(Digest& digest) { |
|
64 // Get the number of bits before padding. |
|
65 uint8_t bits[8]; |
|
66 encode(bits, this->byteCount << 3); |
|
67 |
|
68 // Pad out to 56 mod 64. |
|
69 unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); |
|
70 unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex); |
|
71 static uint8_t PADDING[64] = { |
|
72 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
73 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
74 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
75 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
76 }; |
|
77 this->update(PADDING, paddingLength); |
|
78 |
|
79 // Append length (length before padding, will cause final update). |
|
80 this->update(bits, 8); |
|
81 |
|
82 // Write out digest. |
|
83 encode(digest.data, this->state); |
|
84 |
|
85 #if defined(SK_MD5_CLEAR_DATA) |
|
86 // Clear state. |
|
87 memset(this, 0, sizeof(*this)); |
|
88 #endif |
|
89 } |
|
90 |
|
91 struct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { |
|
92 //return (x & y) | ((~x) & z); |
|
93 return ((y ^ z) & x) ^ z; //equivelent but faster |
|
94 }}; |
|
95 |
|
96 struct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { |
|
97 return (x & z) | (y & (~z)); |
|
98 //return ((x ^ y) & z) ^ y; //equivelent but slower |
|
99 }}; |
|
100 |
|
101 struct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { |
|
102 return x ^ y ^ z; |
|
103 }}; |
|
104 |
|
105 struct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { |
|
106 return y ^ (x | (~z)); |
|
107 }}; |
|
108 |
|
109 /** Rotates x left n bits. */ |
|
110 static inline uint32_t rotate_left(uint32_t x, uint8_t n) { |
|
111 return (x << n) | (x >> (32 - n)); |
|
112 } |
|
113 |
|
114 template <typename T> |
|
115 static inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d, |
|
116 uint32_t x, uint8_t s, uint32_t t) { |
|
117 a = b + rotate_left(a + operation(b, c, d) + x + t, s); |
|
118 } |
|
119 |
|
120 static void transform(uint32_t state[4], const uint8_t block[64]) { |
|
121 uint32_t a = state[0], b = state[1], c = state[2], d = state[3]; |
|
122 |
|
123 uint32_t storage[16]; |
|
124 const uint32_t* X = decode(storage, block); |
|
125 |
|
126 // Round 1 |
|
127 operation(F(), a, b, c, d, X[ 0], 7, 0xd76aa478); // 1 |
|
128 operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2 |
|
129 operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3 |
|
130 operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4 |
|
131 operation(F(), a, b, c, d, X[ 4], 7, 0xf57c0faf); // 5 |
|
132 operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6 |
|
133 operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7 |
|
134 operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8 |
|
135 operation(F(), a, b, c, d, X[ 8], 7, 0x698098d8); // 9 |
|
136 operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10 |
|
137 operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11 |
|
138 operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12 |
|
139 operation(F(), a, b, c, d, X[12], 7, 0x6b901122); // 13 |
|
140 operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14 |
|
141 operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15 |
|
142 operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16 |
|
143 |
|
144 // Round 2 |
|
145 operation(G(), a, b, c, d, X[ 1], 5, 0xf61e2562); // 17 |
|
146 operation(G(), d, a, b, c, X[ 6], 9, 0xc040b340); // 18 |
|
147 operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19 |
|
148 operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20 |
|
149 operation(G(), a, b, c, d, X[ 5], 5, 0xd62f105d); // 21 |
|
150 operation(G(), d, a, b, c, X[10], 9, 0x2441453); // 22 |
|
151 operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23 |
|
152 operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24 |
|
153 operation(G(), a, b, c, d, X[ 9], 5, 0x21e1cde6); // 25 |
|
154 operation(G(), d, a, b, c, X[14], 9, 0xc33707d6); // 26 |
|
155 operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27 |
|
156 operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28 |
|
157 operation(G(), a, b, c, d, X[13], 5, 0xa9e3e905); // 29 |
|
158 operation(G(), d, a, b, c, X[ 2], 9, 0xfcefa3f8); // 30 |
|
159 operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31 |
|
160 operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32 |
|
161 |
|
162 // Round 3 |
|
163 operation(H(), a, b, c, d, X[ 5], 4, 0xfffa3942); // 33 |
|
164 operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34 |
|
165 operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35 |
|
166 operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36 |
|
167 operation(H(), a, b, c, d, X[ 1], 4, 0xa4beea44); // 37 |
|
168 operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38 |
|
169 operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39 |
|
170 operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40 |
|
171 operation(H(), a, b, c, d, X[13], 4, 0x289b7ec6); // 41 |
|
172 operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42 |
|
173 operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43 |
|
174 operation(H(), b, c, d, a, X[ 6], 23, 0x4881d05); // 44 |
|
175 operation(H(), a, b, c, d, X[ 9], 4, 0xd9d4d039); // 45 |
|
176 operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46 |
|
177 operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47 |
|
178 operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48 |
|
179 |
|
180 // Round 4 |
|
181 operation(I(), a, b, c, d, X[ 0], 6, 0xf4292244); // 49 |
|
182 operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50 |
|
183 operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51 |
|
184 operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52 |
|
185 operation(I(), a, b, c, d, X[12], 6, 0x655b59c3); // 53 |
|
186 operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54 |
|
187 operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55 |
|
188 operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56 |
|
189 operation(I(), a, b, c, d, X[ 8], 6, 0x6fa87e4f); // 57 |
|
190 operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58 |
|
191 operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59 |
|
192 operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60 |
|
193 operation(I(), a, b, c, d, X[ 4], 6, 0xf7537e82); // 61 |
|
194 operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62 |
|
195 operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63 |
|
196 operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64 |
|
197 |
|
198 state[0] += a; |
|
199 state[1] += b; |
|
200 state[2] += c; |
|
201 state[3] += d; |
|
202 |
|
203 #if defined(SK_MD5_CLEAR_DATA) |
|
204 // Clear sensitive information. |
|
205 if (X == &storage) { |
|
206 memset(storage, 0, sizeof(storage)); |
|
207 } |
|
208 #endif |
|
209 } |
|
210 |
|
211 static void encode(uint8_t output[16], const uint32_t input[4]) { |
|
212 for (size_t i = 0, j = 0; i < 4; i++, j += 4) { |
|
213 output[j ] = (uint8_t) (input[i] & 0xff); |
|
214 output[j+1] = (uint8_t)((input[i] >> 8) & 0xff); |
|
215 output[j+2] = (uint8_t)((input[i] >> 16) & 0xff); |
|
216 output[j+3] = (uint8_t)((input[i] >> 24) & 0xff); |
|
217 } |
|
218 } |
|
219 |
|
220 static void encode(uint8_t output[8], const uint64_t input) { |
|
221 output[0] = (uint8_t) (input & 0xff); |
|
222 output[1] = (uint8_t)((input >> 8) & 0xff); |
|
223 output[2] = (uint8_t)((input >> 16) & 0xff); |
|
224 output[3] = (uint8_t)((input >> 24) & 0xff); |
|
225 output[4] = (uint8_t)((input >> 32) & 0xff); |
|
226 output[5] = (uint8_t)((input >> 40) & 0xff); |
|
227 output[6] = (uint8_t)((input >> 48) & 0xff); |
|
228 output[7] = (uint8_t)((input >> 56) & 0xff); |
|
229 } |
|
230 |
|
231 static inline bool is_aligned(const void *pointer, size_t byte_count) { |
|
232 return reinterpret_cast<uintptr_t>(pointer) % byte_count == 0; |
|
233 } |
|
234 |
|
235 static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) { |
|
236 #if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS) |
|
237 return reinterpret_cast<const uint32_t*>(input); |
|
238 #else |
|
239 #if defined(SK_CPU_LENDIAN) |
|
240 if (is_aligned(input, 4)) { |
|
241 return reinterpret_cast<const uint32_t*>(input); |
|
242 } |
|
243 #endif |
|
244 for (size_t i = 0, j = 0; j < 64; i++, j += 4) { |
|
245 storage[i] = ((uint32_t)input[j ]) | |
|
246 (((uint32_t)input[j+1]) << 8) | |
|
247 (((uint32_t)input[j+2]) << 16) | |
|
248 (((uint32_t)input[j+3]) << 24); |
|
249 } |
|
250 return storage; |
|
251 #endif |
|
252 } |