|
1 /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
|
2 * This Source Code Form is subject to the terms of the Mozilla Public |
|
3 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
5 |
|
6 #include "gfxMatrix.h" |
|
7 #include "gfx3DMatrix.h" |
|
8 #include "mozilla/gfx/Tools.h" |
|
9 #include <math.h> |
|
10 #include <algorithm> |
|
11 |
|
12 using namespace std; |
|
13 using namespace mozilla; |
|
14 using namespace mozilla::gfx; |
|
15 |
|
16 /* Force small values to zero. We do this to avoid having sin(360deg) |
|
17 * evaluate to a tiny but nonzero value. |
|
18 */ |
|
19 static double FlushToZero(double aVal) |
|
20 { |
|
21 if (-FLT_EPSILON < aVal && aVal < FLT_EPSILON) |
|
22 return 0.0f; |
|
23 else |
|
24 return aVal; |
|
25 } |
|
26 |
|
27 /* Computes tan(aTheta). For values of aTheta such that tan(aTheta) is |
|
28 * undefined or very large, SafeTangent returns a manageably large value |
|
29 * of the correct sign. |
|
30 */ |
|
31 static double SafeTangent(double aTheta) |
|
32 { |
|
33 const double kEpsilon = 0.0001; |
|
34 |
|
35 /* tan(theta) = sin(theta)/cos(theta); problems arise when |
|
36 * cos(theta) is too close to zero. Limit cos(theta) to the |
|
37 * range [-1, -epsilon] U [epsilon, 1]. |
|
38 */ |
|
39 double sinTheta = sin(aTheta); |
|
40 double cosTheta = cos(aTheta); |
|
41 |
|
42 if (cosTheta >= 0 && cosTheta < kEpsilon) |
|
43 cosTheta = kEpsilon; |
|
44 else if (cosTheta < 0 && cosTheta >= -kEpsilon) |
|
45 cosTheta = -kEpsilon; |
|
46 |
|
47 return FlushToZero(sinTheta / cosTheta); |
|
48 } |
|
49 |
|
50 gfx3DMatrix::gfx3DMatrix(void) |
|
51 { |
|
52 _11 = _22 = _33 = _44 = 1.0f; |
|
53 _12 = _13 = _14 = 0.0f; |
|
54 _21 = _23 = _24 = 0.0f; |
|
55 _31 = _32 = _34 = 0.0f; |
|
56 _41 = _42 = _43 = 0.0f; |
|
57 } |
|
58 |
|
59 gfx3DMatrix |
|
60 gfx3DMatrix::operator*(const gfx3DMatrix &aMatrix) const |
|
61 { |
|
62 if (Is2D() && aMatrix.Is2D()) { |
|
63 return Multiply2D(aMatrix); |
|
64 } |
|
65 |
|
66 gfx3DMatrix matrix; |
|
67 |
|
68 matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _13 * aMatrix._31 + _14 * aMatrix._41; |
|
69 matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _23 * aMatrix._31 + _24 * aMatrix._41; |
|
70 matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _33 * aMatrix._31 + _34 * aMatrix._41; |
|
71 matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _43 * aMatrix._31 + _44 * aMatrix._41; |
|
72 matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _13 * aMatrix._32 + _14 * aMatrix._42; |
|
73 matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _23 * aMatrix._32 + _24 * aMatrix._42; |
|
74 matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _33 * aMatrix._32 + _34 * aMatrix._42; |
|
75 matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _43 * aMatrix._32 + _44 * aMatrix._42; |
|
76 matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23 + _13 * aMatrix._33 + _14 * aMatrix._43; |
|
77 matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23 + _23 * aMatrix._33 + _24 * aMatrix._43; |
|
78 matrix._33 = _31 * aMatrix._13 + _32 * aMatrix._23 + _33 * aMatrix._33 + _34 * aMatrix._43; |
|
79 matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + _43 * aMatrix._33 + _44 * aMatrix._43; |
|
80 matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24 + _13 * aMatrix._34 + _14 * aMatrix._44; |
|
81 matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24 + _23 * aMatrix._34 + _24 * aMatrix._44; |
|
82 matrix._34 = _31 * aMatrix._14 + _32 * aMatrix._24 + _33 * aMatrix._34 + _34 * aMatrix._44; |
|
83 matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + _43 * aMatrix._34 + _44 * aMatrix._44; |
|
84 |
|
85 return matrix; |
|
86 } |
|
87 |
|
88 gfx3DMatrix& |
|
89 gfx3DMatrix::operator*=(const gfx3DMatrix &aMatrix) |
|
90 { |
|
91 return *this = *this * aMatrix; |
|
92 } |
|
93 |
|
94 gfx3DMatrix |
|
95 gfx3DMatrix::Multiply2D(const gfx3DMatrix &aMatrix) const |
|
96 { |
|
97 gfx3DMatrix matrix; |
|
98 |
|
99 matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21; |
|
100 matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21; |
|
101 matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41; |
|
102 matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22; |
|
103 matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22; |
|
104 matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42; |
|
105 |
|
106 return matrix; |
|
107 } |
|
108 |
|
109 bool |
|
110 gfx3DMatrix::operator==(const gfx3DMatrix& o) const |
|
111 { |
|
112 // XXX would be nice to memcmp here, but that breaks IEEE 754 semantics |
|
113 return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 && |
|
114 _21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 && |
|
115 _31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 && |
|
116 _41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44; |
|
117 } |
|
118 |
|
119 bool |
|
120 gfx3DMatrix::operator!=(const gfx3DMatrix& o) const |
|
121 { |
|
122 return !((*this) == o); |
|
123 } |
|
124 |
|
125 bool |
|
126 gfx3DMatrix::FuzzyEqual(const gfx3DMatrix& o) const |
|
127 { |
|
128 static const float error = 1e-4; |
|
129 return gfx::FuzzyEqual(_11, o._11, error) && gfx::FuzzyEqual(_12, o._12, error) && |
|
130 gfx::FuzzyEqual(_13, o._13, error) && gfx::FuzzyEqual(_14, o._14, error) && |
|
131 gfx::FuzzyEqual(_21, o._21, error) && gfx::FuzzyEqual(_22, o._22, error) && |
|
132 gfx::FuzzyEqual(_23, o._23, error) && gfx::FuzzyEqual(_24, o._24, error) && |
|
133 gfx::FuzzyEqual(_31, o._31, error) && gfx::FuzzyEqual(_32, o._32, error) && |
|
134 gfx::FuzzyEqual(_33, o._33, error) && gfx::FuzzyEqual(_34, o._34, error) && |
|
135 gfx::FuzzyEqual(_41, o._41, error) && gfx::FuzzyEqual(_42, o._42, error) && |
|
136 gfx::FuzzyEqual(_43, o._43, error) && gfx::FuzzyEqual(_44, o._44, error); |
|
137 } |
|
138 |
|
139 gfx3DMatrix& |
|
140 gfx3DMatrix::operator/=(const gfxFloat scalar) |
|
141 { |
|
142 _11 /= scalar; |
|
143 _12 /= scalar; |
|
144 _13 /= scalar; |
|
145 _14 /= scalar; |
|
146 _21 /= scalar; |
|
147 _22 /= scalar; |
|
148 _23 /= scalar; |
|
149 _24 /= scalar; |
|
150 _31 /= scalar; |
|
151 _32 /= scalar; |
|
152 _33 /= scalar; |
|
153 _34 /= scalar; |
|
154 _41 /= scalar; |
|
155 _42 /= scalar; |
|
156 _43 /= scalar; |
|
157 _44 /= scalar; |
|
158 return *this; |
|
159 } |
|
160 |
|
161 gfx3DMatrix |
|
162 gfx3DMatrix::From2D(const gfxMatrix &aMatrix) |
|
163 { |
|
164 gfx3DMatrix matrix; |
|
165 matrix._11 = (float)aMatrix.xx; |
|
166 matrix._12 = (float)aMatrix.yx; |
|
167 matrix._21 = (float)aMatrix.xy; |
|
168 matrix._22 = (float)aMatrix.yy; |
|
169 matrix._41 = (float)aMatrix.x0; |
|
170 matrix._42 = (float)aMatrix.y0; |
|
171 return matrix; |
|
172 } |
|
173 |
|
174 bool |
|
175 gfx3DMatrix::IsIdentity() const |
|
176 { |
|
177 return _11 == 1.0f && _12 == 0.0f && _13 == 0.0f && _14 == 0.0f && |
|
178 _21 == 0.0f && _22 == 1.0f && _23 == 0.0f && _24 == 0.0f && |
|
179 _31 == 0.0f && _32 == 0.0f && _33 == 1.0f && _34 == 0.0f && |
|
180 _41 == 0.0f && _42 == 0.0f && _43 == 0.0f && _44 == 1.0f; |
|
181 } |
|
182 |
|
183 void |
|
184 gfx3DMatrix::Translate(const gfxPoint3D& aPoint) |
|
185 { |
|
186 _41 += aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31; |
|
187 _42 += aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32; |
|
188 _43 += aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33; |
|
189 _44 += aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34; |
|
190 } |
|
191 |
|
192 void |
|
193 gfx3DMatrix::TranslatePost(const gfxPoint3D& aPoint) |
|
194 { |
|
195 _11 += _14 * aPoint.x; |
|
196 _21 += _24 * aPoint.x; |
|
197 _31 += _34 * aPoint.x; |
|
198 _41 += _44 * aPoint.x; |
|
199 _12 += _14 * aPoint.y; |
|
200 _22 += _24 * aPoint.y; |
|
201 _32 += _34 * aPoint.y; |
|
202 _42 += _44 * aPoint.y; |
|
203 _13 += _14 * aPoint.z; |
|
204 _23 += _24 * aPoint.z; |
|
205 _33 += _34 * aPoint.z; |
|
206 _43 += _44 * aPoint.z; |
|
207 } |
|
208 |
|
209 void |
|
210 gfx3DMatrix::ScalePost(float aX, float aY, float aZ) |
|
211 { |
|
212 _11 *= aX; |
|
213 _21 *= aX; |
|
214 _31 *= aX; |
|
215 _41 *= aX; |
|
216 |
|
217 _12 *= aY; |
|
218 _22 *= aY; |
|
219 _32 *= aY; |
|
220 _42 *= aY; |
|
221 |
|
222 _13 *= aZ; |
|
223 _23 *= aZ; |
|
224 _33 *= aZ; |
|
225 _43 *= aZ; |
|
226 } |
|
227 |
|
228 void |
|
229 gfx3DMatrix::SkewXY(double aSkew) |
|
230 { |
|
231 (*this)[1] += (*this)[0] * aSkew; |
|
232 } |
|
233 |
|
234 void |
|
235 gfx3DMatrix::SkewXZ(double aSkew) |
|
236 { |
|
237 (*this)[2] += (*this)[0] * aSkew; |
|
238 } |
|
239 |
|
240 void |
|
241 gfx3DMatrix::SkewYZ(double aSkew) |
|
242 { |
|
243 (*this)[2] += (*this)[1] * aSkew; |
|
244 } |
|
245 |
|
246 void |
|
247 gfx3DMatrix::Scale(float aX, float aY, float aZ) |
|
248 { |
|
249 (*this)[0] *= aX; |
|
250 (*this)[1] *= aY; |
|
251 (*this)[2] *= aZ; |
|
252 } |
|
253 |
|
254 void |
|
255 gfx3DMatrix::Perspective(float aDepth) |
|
256 { |
|
257 NS_ASSERTION(aDepth > 0.0f, "Perspective must be positive!"); |
|
258 _31 += -1.0/aDepth * _41; |
|
259 _32 += -1.0/aDepth * _42; |
|
260 _33 += -1.0/aDepth * _43; |
|
261 _34 += -1.0/aDepth * _44; |
|
262 } |
|
263 |
|
264 void gfx3DMatrix::SkewXY(double aXSkew, double aYSkew) |
|
265 { |
|
266 float tanX = SafeTangent(aXSkew); |
|
267 float tanY = SafeTangent(aYSkew); |
|
268 float temp; |
|
269 |
|
270 temp = _11; |
|
271 _11 += tanY * _21; |
|
272 _21 += tanX * temp; |
|
273 |
|
274 temp = _12; |
|
275 _12 += tanY * _22; |
|
276 _22 += tanX * temp; |
|
277 |
|
278 temp = _13; |
|
279 _13 += tanY * _23; |
|
280 _23 += tanX * temp; |
|
281 |
|
282 temp = _14; |
|
283 _14 += tanY * _24; |
|
284 _24 += tanX * temp; |
|
285 } |
|
286 |
|
287 void |
|
288 gfx3DMatrix::RotateX(double aTheta) |
|
289 { |
|
290 double cosTheta = FlushToZero(cos(aTheta)); |
|
291 double sinTheta = FlushToZero(sin(aTheta)); |
|
292 |
|
293 float temp; |
|
294 |
|
295 temp = _21; |
|
296 _21 = cosTheta * _21 + sinTheta * _31; |
|
297 _31 = -sinTheta * temp + cosTheta * _31; |
|
298 |
|
299 temp = _22; |
|
300 _22 = cosTheta * _22 + sinTheta * _32; |
|
301 _32 = -sinTheta * temp + cosTheta * _32; |
|
302 |
|
303 temp = _23; |
|
304 _23 = cosTheta * _23 + sinTheta * _33; |
|
305 _33 = -sinTheta * temp + cosTheta * _33; |
|
306 |
|
307 temp = _24; |
|
308 _24 = cosTheta * _24 + sinTheta * _34; |
|
309 _34 = -sinTheta * temp + cosTheta * _34; |
|
310 } |
|
311 |
|
312 void |
|
313 gfx3DMatrix::RotateY(double aTheta) |
|
314 { |
|
315 double cosTheta = FlushToZero(cos(aTheta)); |
|
316 double sinTheta = FlushToZero(sin(aTheta)); |
|
317 |
|
318 float temp; |
|
319 |
|
320 temp = _11; |
|
321 _11 = cosTheta * _11 + -sinTheta * _31; |
|
322 _31 = sinTheta * temp + cosTheta * _31; |
|
323 |
|
324 temp = _12; |
|
325 _12 = cosTheta * _12 + -sinTheta * _32; |
|
326 _32 = sinTheta * temp + cosTheta * _32; |
|
327 |
|
328 temp = _13; |
|
329 _13 = cosTheta * _13 + -sinTheta * _33; |
|
330 _33 = sinTheta * temp + cosTheta * _33; |
|
331 |
|
332 temp = _14; |
|
333 _14 = cosTheta * _14 + -sinTheta * _34; |
|
334 _34 = sinTheta * temp + cosTheta * _34; |
|
335 } |
|
336 |
|
337 void |
|
338 gfx3DMatrix::RotateZ(double aTheta) |
|
339 { |
|
340 double cosTheta = FlushToZero(cos(aTheta)); |
|
341 double sinTheta = FlushToZero(sin(aTheta)); |
|
342 |
|
343 float temp; |
|
344 |
|
345 temp = _11; |
|
346 _11 = cosTheta * _11 + sinTheta * _21; |
|
347 _21 = -sinTheta * temp + cosTheta * _21; |
|
348 |
|
349 temp = _12; |
|
350 _12 = cosTheta * _12 + sinTheta * _22; |
|
351 _22 = -sinTheta * temp + cosTheta * _22; |
|
352 |
|
353 temp = _13; |
|
354 _13 = cosTheta * _13 + sinTheta * _23; |
|
355 _23 = -sinTheta * temp + cosTheta * _23; |
|
356 |
|
357 temp = _14; |
|
358 _14 = cosTheta * _14 + sinTheta * _24; |
|
359 _24 = -sinTheta * temp + cosTheta * _24; |
|
360 } |
|
361 |
|
362 void |
|
363 gfx3DMatrix::PreMultiply(const gfx3DMatrix& aOther) |
|
364 { |
|
365 *this = aOther * (*this); |
|
366 } |
|
367 |
|
368 void |
|
369 gfx3DMatrix::PreMultiply(const gfxMatrix& aOther) |
|
370 { |
|
371 gfx3DMatrix temp; |
|
372 temp._11 = aOther.xx * _11 + aOther.yx * _21; |
|
373 temp._21 = aOther.xy * _11 + aOther.yy * _21; |
|
374 temp._31 = _31; |
|
375 temp._41 = aOther.x0 * _11 + aOther.y0 * _21 + _41; |
|
376 temp._12 = aOther.xx * _12 + aOther.yx * _22; |
|
377 temp._22 = aOther.xy * _12 + aOther.yy * _22; |
|
378 temp._32 = _32; |
|
379 temp._42 = aOther.x0 * _12 + aOther.y0 * _22 + _42; |
|
380 temp._13 = aOther.xx * _13 + aOther.yx * _23; |
|
381 temp._23 = aOther.xy * _13 + aOther.yy * _23; |
|
382 temp._33 = _33; |
|
383 temp._43 = aOther.x0 * _13 + aOther.y0 * _23 + _43; |
|
384 temp._14 = aOther.xx * _14 + aOther.yx * _24; |
|
385 temp._24 = aOther.xy * _14 + aOther.yy * _24; |
|
386 temp._34 = _34; |
|
387 temp._44 = aOther.x0 * _14 + aOther.y0 * _24 + _44; |
|
388 |
|
389 *this = temp; |
|
390 } |
|
391 |
|
392 gfx3DMatrix |
|
393 gfx3DMatrix::Translation(float aX, float aY, float aZ) |
|
394 { |
|
395 gfx3DMatrix matrix; |
|
396 |
|
397 matrix._41 = aX; |
|
398 matrix._42 = aY; |
|
399 matrix._43 = aZ; |
|
400 return matrix; |
|
401 } |
|
402 |
|
403 gfx3DMatrix |
|
404 gfx3DMatrix::Translation(const gfxPoint3D& aPoint) |
|
405 { |
|
406 gfx3DMatrix matrix; |
|
407 |
|
408 matrix._41 = aPoint.x; |
|
409 matrix._42 = aPoint.y; |
|
410 matrix._43 = aPoint.z; |
|
411 return matrix; |
|
412 } |
|
413 |
|
414 gfx3DMatrix |
|
415 gfx3DMatrix::ScalingMatrix(float aFactor) |
|
416 { |
|
417 gfx3DMatrix matrix; |
|
418 |
|
419 matrix._11 = matrix._22 = matrix._33 = aFactor; |
|
420 return matrix; |
|
421 } |
|
422 |
|
423 gfx3DMatrix |
|
424 gfx3DMatrix::ScalingMatrix(float aX, float aY, float aZ) |
|
425 { |
|
426 gfx3DMatrix matrix; |
|
427 |
|
428 matrix._11 = aX; |
|
429 matrix._22 = aY; |
|
430 matrix._33 = aZ; |
|
431 |
|
432 return matrix; |
|
433 } |
|
434 |
|
435 gfxFloat |
|
436 gfx3DMatrix::Determinant() const |
|
437 { |
|
438 return _14 * _23 * _32 * _41 |
|
439 - _13 * _24 * _32 * _41 |
|
440 - _14 * _22 * _33 * _41 |
|
441 + _12 * _24 * _33 * _41 |
|
442 + _13 * _22 * _34 * _41 |
|
443 - _12 * _23 * _34 * _41 |
|
444 - _14 * _23 * _31 * _42 |
|
445 + _13 * _24 * _31 * _42 |
|
446 + _14 * _21 * _33 * _42 |
|
447 - _11 * _24 * _33 * _42 |
|
448 - _13 * _21 * _34 * _42 |
|
449 + _11 * _23 * _34 * _42 |
|
450 + _14 * _22 * _31 * _43 |
|
451 - _12 * _24 * _31 * _43 |
|
452 - _14 * _21 * _32 * _43 |
|
453 + _11 * _24 * _32 * _43 |
|
454 + _12 * _21 * _34 * _43 |
|
455 - _11 * _22 * _34 * _43 |
|
456 - _13 * _22 * _31 * _44 |
|
457 + _12 * _23 * _31 * _44 |
|
458 + _13 * _21 * _32 * _44 |
|
459 - _11 * _23 * _32 * _44 |
|
460 - _12 * _21 * _33 * _44 |
|
461 + _11 * _22 * _33 * _44; |
|
462 } |
|
463 |
|
464 gfxFloat |
|
465 gfx3DMatrix::Determinant3x3() const |
|
466 { |
|
467 return _11 * (_22 * _33 - _23 * _32) + |
|
468 _12 * (_23 * _31 - _33 * _21) + |
|
469 _13 * (_21 * _32 - _22 * _31); |
|
470 } |
|
471 |
|
472 gfx3DMatrix |
|
473 gfx3DMatrix::Inverse3x3() const |
|
474 { |
|
475 gfxFloat det = Determinant3x3(); |
|
476 if (det == 0.0) { |
|
477 return *this; |
|
478 } |
|
479 |
|
480 gfxFloat detInv = 1/det; |
|
481 gfx3DMatrix temp; |
|
482 |
|
483 temp._11 = (_22 * _33 - _23 * _32) * detInv; |
|
484 temp._12 = (_13 * _32 - _12 * _33) * detInv; |
|
485 temp._13 = (_12 * _23 - _13 * _22) * detInv; |
|
486 temp._21 = (_23 * _31 - _33 * _21) * detInv; |
|
487 temp._22 = (_11 * _33 - _13 * _31) * detInv; |
|
488 temp._23 = (_13 * _21 - _11 * _23) * detInv; |
|
489 temp._31 = (_21 * _32 - _22 * _31) * detInv; |
|
490 temp._32 = (_31 * _12 - _11 * _32) * detInv; |
|
491 temp._33 = (_11 * _22 - _12 * _21) * detInv; |
|
492 return temp; |
|
493 } |
|
494 |
|
495 bool |
|
496 gfx3DMatrix::IsSingular() const |
|
497 { |
|
498 return Determinant() == 0.0; |
|
499 } |
|
500 |
|
501 gfx3DMatrix |
|
502 gfx3DMatrix::Inverse() const |
|
503 { |
|
504 if (TransposedVector(3) == gfxPointH3D(0, 0, 0, 1)) { |
|
505 /** |
|
506 * When the matrix contains no perspective, the inverse |
|
507 * is the same as the 3x3 inverse of the rotation components |
|
508 * multiplied by the inverse of the translation components. |
|
509 * Doing these steps separately is faster and more numerically |
|
510 * stable. |
|
511 * |
|
512 * Inverse of the translation matrix is just negating |
|
513 * the values. |
|
514 */ |
|
515 gfx3DMatrix matrix3 = Inverse3x3(); |
|
516 matrix3.Translate(gfxPoint3D(-_41, -_42, -_43)); |
|
517 return matrix3; |
|
518 } |
|
519 |
|
520 gfxFloat det = Determinant(); |
|
521 if (det == 0.0) { |
|
522 return *this; |
|
523 } |
|
524 |
|
525 gfx3DMatrix temp; |
|
526 |
|
527 temp._11 = _23*_34*_42 - _24*_33*_42 + |
|
528 _24*_32*_43 - _22*_34*_43 - |
|
529 _23*_32*_44 + _22*_33*_44; |
|
530 temp._12 = _14*_33*_42 - _13*_34*_42 - |
|
531 _14*_32*_43 + _12*_34*_43 + |
|
532 _13*_32*_44 - _12*_33*_44; |
|
533 temp._13 = _13*_24*_42 - _14*_23*_42 + |
|
534 _14*_22*_43 - _12*_24*_43 - |
|
535 _13*_22*_44 + _12*_23*_44; |
|
536 temp._14 = _14*_23*_32 - _13*_24*_32 - |
|
537 _14*_22*_33 + _12*_24*_33 + |
|
538 _13*_22*_34 - _12*_23*_34; |
|
539 temp._21 = _24*_33*_41 - _23*_34*_41 - |
|
540 _24*_31*_43 + _21*_34*_43 + |
|
541 _23*_31*_44 - _21*_33*_44; |
|
542 temp._22 = _13*_34*_41 - _14*_33*_41 + |
|
543 _14*_31*_43 - _11*_34*_43 - |
|
544 _13*_31*_44 + _11*_33*_44; |
|
545 temp._23 = _14*_23*_41 - _13*_24*_41 - |
|
546 _14*_21*_43 + _11*_24*_43 + |
|
547 _13*_21*_44 - _11*_23*_44; |
|
548 temp._24 = _13*_24*_31 - _14*_23*_31 + |
|
549 _14*_21*_33 - _11*_24*_33 - |
|
550 _13*_21*_34 + _11*_23*_34; |
|
551 temp._31 = _22*_34*_41 - _24*_32*_41 + |
|
552 _24*_31*_42 - _21*_34*_42 - |
|
553 _22*_31*_44 + _21*_32*_44; |
|
554 temp._32 = _14*_32*_41 - _12*_34*_41 - |
|
555 _14*_31*_42 + _11*_34*_42 + |
|
556 _12*_31*_44 - _11*_32*_44; |
|
557 temp._33 = _12*_24*_41 - _14*_22*_41 + |
|
558 _14*_21*_42 - _11*_24*_42 - |
|
559 _12*_21*_44 + _11*_22*_44; |
|
560 temp._34 = _14*_22*_31 - _12*_24*_31 - |
|
561 _14*_21*_32 + _11*_24*_32 + |
|
562 _12*_21*_34 - _11*_22*_34; |
|
563 temp._41 = _23*_32*_41 - _22*_33*_41 - |
|
564 _23*_31*_42 + _21*_33*_42 + |
|
565 _22*_31*_43 - _21*_32*_43; |
|
566 temp._42 = _12*_33*_41 - _13*_32*_41 + |
|
567 _13*_31*_42 - _11*_33*_42 - |
|
568 _12*_31*_43 + _11*_32*_43; |
|
569 temp._43 = _13*_22*_41 - _12*_23*_41 - |
|
570 _13*_21*_42 + _11*_23*_42 + |
|
571 _12*_21*_43 - _11*_22*_43; |
|
572 temp._44 = _12*_23*_31 - _13*_22*_31 + |
|
573 _13*_21*_32 - _11*_23*_32 - |
|
574 _12*_21*_33 + _11*_22*_33; |
|
575 |
|
576 temp /= det; |
|
577 return temp; |
|
578 } |
|
579 |
|
580 gfx3DMatrix& |
|
581 gfx3DMatrix::Normalize() |
|
582 { |
|
583 for (int i = 0; i < 4; i++) { |
|
584 for (int j = 0; j < 4; j++) { |
|
585 (*this)[i][j] /= (*this)[3][3]; |
|
586 } |
|
587 } |
|
588 return *this; |
|
589 } |
|
590 |
|
591 gfx3DMatrix& |
|
592 gfx3DMatrix::Transpose() |
|
593 { |
|
594 *this = Transposed(); |
|
595 return *this; |
|
596 } |
|
597 |
|
598 gfx3DMatrix |
|
599 gfx3DMatrix::Transposed() const |
|
600 { |
|
601 gfx3DMatrix temp; |
|
602 for (int i = 0; i < 4; i++) { |
|
603 temp[i] = TransposedVector(i); |
|
604 } |
|
605 return temp; |
|
606 } |
|
607 |
|
608 gfxPoint |
|
609 gfx3DMatrix::Transform(const gfxPoint& point) const |
|
610 { |
|
611 gfxPoint3D vec3d(point.x, point.y, 0); |
|
612 vec3d = Transform3D(vec3d); |
|
613 return gfxPoint(vec3d.x, vec3d.y); |
|
614 } |
|
615 |
|
616 gfxPoint3D |
|
617 gfx3DMatrix::Transform3D(const gfxPoint3D& point) const |
|
618 { |
|
619 gfxFloat x = point.x * _11 + point.y * _21 + point.z * _31 + _41; |
|
620 gfxFloat y = point.x * _12 + point.y * _22 + point.z * _32 + _42; |
|
621 gfxFloat z = point.x * _13 + point.y * _23 + point.z * _33 + _43; |
|
622 gfxFloat w = point.x * _14 + point.y * _24 + point.z * _34 + _44; |
|
623 |
|
624 x /= w; |
|
625 y /= w; |
|
626 z /= w; |
|
627 |
|
628 return gfxPoint3D(x, y, z); |
|
629 } |
|
630 |
|
631 gfxPointH3D |
|
632 gfx3DMatrix::Transform4D(const gfxPointH3D& aPoint) const |
|
633 { |
|
634 gfxFloat x = aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + aPoint.w * _41; |
|
635 gfxFloat y = aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + aPoint.w * _42; |
|
636 gfxFloat z = aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + aPoint.w * _43; |
|
637 gfxFloat w = aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + aPoint.w * _44; |
|
638 |
|
639 return gfxPointH3D(x, y, z, w); |
|
640 } |
|
641 |
|
642 gfxPointH3D |
|
643 gfx3DMatrix::TransposeTransform4D(const gfxPointH3D& aPoint) const |
|
644 { |
|
645 gfxFloat x = aPoint.x * _11 + aPoint.y * _12 + aPoint.z * _13 + aPoint.w * _14; |
|
646 gfxFloat y = aPoint.x * _21 + aPoint.y * _22 + aPoint.z * _23 + aPoint.w * _24; |
|
647 gfxFloat z = aPoint.x * _31 + aPoint.y * _32 + aPoint.z * _33 + aPoint.w * _34; |
|
648 gfxFloat w = aPoint.x * _41 + aPoint.y * _42 + aPoint.z * _43 + aPoint.w * _44; |
|
649 |
|
650 return gfxPointH3D(x, y, z, w); |
|
651 } |
|
652 |
|
653 gfxRect |
|
654 gfx3DMatrix::TransformBounds(const gfxRect& rect) const |
|
655 { |
|
656 gfxPoint points[4]; |
|
657 |
|
658 points[0] = Transform(rect.TopLeft()); |
|
659 points[1] = Transform(gfxPoint(rect.X() + rect.Width(), rect.Y())); |
|
660 points[2] = Transform(gfxPoint(rect.X(), rect.Y() + rect.Height())); |
|
661 points[3] = Transform(gfxPoint(rect.X() + rect.Width(), |
|
662 rect.Y() + rect.Height())); |
|
663 |
|
664 gfxFloat min_x, max_x; |
|
665 gfxFloat min_y, max_y; |
|
666 |
|
667 min_x = max_x = points[0].x; |
|
668 min_y = max_y = points[0].y; |
|
669 |
|
670 for (int i=1; i<4; i++) { |
|
671 min_x = min(points[i].x, min_x); |
|
672 max_x = max(points[i].x, max_x); |
|
673 min_y = min(points[i].y, min_y); |
|
674 max_y = max(points[i].y, max_y); |
|
675 } |
|
676 |
|
677 return gfxRect(min_x, min_y, max_x - min_x, max_y - min_y); |
|
678 } |
|
679 |
|
680 gfxQuad |
|
681 gfx3DMatrix::TransformRect(const gfxRect& aRect) const |
|
682 { |
|
683 gfxPoint points[4]; |
|
684 |
|
685 points[0] = Transform(aRect.TopLeft()); |
|
686 points[1] = Transform(gfxPoint(aRect.X() + aRect.Width(), aRect.Y())); |
|
687 points[2] = Transform(gfxPoint(aRect.X() + aRect.Width(), |
|
688 aRect.Y() + aRect.Height())); |
|
689 points[3] = Transform(gfxPoint(aRect.X(), aRect.Y() + aRect.Height())); |
|
690 |
|
691 // Could this ever result in lines that intersect? I don't think so. |
|
692 return gfxQuad(points[0], points[1], points[2], points[3]); |
|
693 } |
|
694 |
|
695 bool |
|
696 gfx3DMatrix::Is2D() const |
|
697 { |
|
698 if (_13 != 0.0f || _14 != 0.0f || |
|
699 _23 != 0.0f || _24 != 0.0f || |
|
700 _31 != 0.0f || _32 != 0.0f || _33 != 1.0f || _34 != 0.0f || |
|
701 _43 != 0.0f || _44 != 1.0f) { |
|
702 return false; |
|
703 } |
|
704 return true; |
|
705 } |
|
706 |
|
707 bool |
|
708 gfx3DMatrix::Is2D(gfxMatrix* aMatrix) const |
|
709 { |
|
710 if (!Is2D()) { |
|
711 return false; |
|
712 } |
|
713 if (aMatrix) { |
|
714 aMatrix->xx = _11; |
|
715 aMatrix->yx = _12; |
|
716 aMatrix->xy = _21; |
|
717 aMatrix->yy = _22; |
|
718 aMatrix->x0 = _41; |
|
719 aMatrix->y0 = _42; |
|
720 } |
|
721 return true; |
|
722 } |
|
723 |
|
724 bool |
|
725 gfx3DMatrix::CanDraw2D(gfxMatrix* aMatrix) const |
|
726 { |
|
727 if (_14 != 0.0f || |
|
728 _24 != 0.0f || |
|
729 _44 != 1.0f) { |
|
730 return false; |
|
731 } |
|
732 if (aMatrix) { |
|
733 aMatrix->xx = _11; |
|
734 aMatrix->yx = _12; |
|
735 aMatrix->xy = _21; |
|
736 aMatrix->yy = _22; |
|
737 aMatrix->x0 = _41; |
|
738 aMatrix->y0 = _42; |
|
739 } |
|
740 return true; |
|
741 } |
|
742 |
|
743 gfx3DMatrix& |
|
744 gfx3DMatrix::ProjectTo2D() |
|
745 { |
|
746 _31 = 0.0f; |
|
747 _32 = 0.0f; |
|
748 _13 = 0.0f; |
|
749 _23 = 0.0f; |
|
750 _33 = 1.0f; |
|
751 _43 = 0.0f; |
|
752 _34 = 0.0f; |
|
753 return *this; |
|
754 } |
|
755 |
|
756 gfxPoint gfx3DMatrix::ProjectPoint(const gfxPoint& aPoint) const |
|
757 { |
|
758 // Define a ray of the form P + Ut where t is a real number |
|
759 // w is assumed to always be 1 when transforming 3d points with our |
|
760 // 4x4 matrix. |
|
761 // p is our click point, q is another point on the same ray. |
|
762 // |
|
763 // Note: since the transformation is a general projective transformation and is not |
|
764 // necessarily affine, we can't just take a unit vector u, back-transform it, and use |
|
765 // it as unit vector on the back-transformed ray. Instead, we really must take two points |
|
766 // on the ray and back-transform them. |
|
767 gfxPoint3D p(aPoint.x, aPoint.y, 0); |
|
768 gfxPoint3D q(aPoint.x, aPoint.y, 1); |
|
769 |
|
770 // Back transform the vectors (using w = 1) and normalize |
|
771 // back into 3d vectors by dividing by the w component. |
|
772 gfxPoint3D pback = Transform3D(p); |
|
773 gfxPoint3D qback = Transform3D(q); |
|
774 gfxPoint3D uback = qback - pback; |
|
775 |
|
776 // Find the point where the back transformed line intersects z=0 |
|
777 // and find t. |
|
778 |
|
779 float t = -pback.z / uback.z; |
|
780 |
|
781 gfxPoint result(pback.x + t*uback.x, pback.y + t*uback.y); |
|
782 |
|
783 return result; |
|
784 } |
|
785 |
|
786 gfxRect gfx3DMatrix::ProjectRectBounds(const gfxRect& aRect) const |
|
787 { |
|
788 gfxPoint points[4]; |
|
789 |
|
790 points[0] = ProjectPoint(aRect.TopLeft()); |
|
791 points[1] = ProjectPoint(aRect.TopRight()); |
|
792 points[2] = ProjectPoint(aRect.BottomLeft()); |
|
793 points[3] = ProjectPoint(aRect.BottomRight()); |
|
794 |
|
795 gfxFloat min_x, max_x; |
|
796 gfxFloat min_y, max_y; |
|
797 |
|
798 min_x = max_x = points[0].x; |
|
799 min_y = max_y = points[0].y; |
|
800 |
|
801 for (int i=1; i<4; i++) { |
|
802 min_x = min(points[i].x, min_x); |
|
803 max_x = max(points[i].x, max_x); |
|
804 min_y = min(points[i].y, min_y); |
|
805 max_y = max(points[i].y, max_y); |
|
806 } |
|
807 |
|
808 return gfxRect(min_x, min_y, max_x - min_x, max_y - min_y); |
|
809 } |
|
810 |
|
811 gfxRect gfx3DMatrix::UntransformBounds(const gfxRect& aRect, const gfxRect& aChildBounds) const |
|
812 { |
|
813 if (Is2D()) { |
|
814 return Inverse().TransformBounds(aRect); |
|
815 } |
|
816 gfxRect bounds = TransformBounds(aChildBounds); |
|
817 |
|
818 gfxRect rect = aRect.Intersect(bounds); |
|
819 |
|
820 return Inverse().ProjectRectBounds(rect); |
|
821 } |
|
822 |
|
823 bool gfx3DMatrix::UntransformPoint(const gfxPoint& aPoint, const gfxRect& aChildBounds, gfxPoint* aOut) const |
|
824 { |
|
825 if (Is2D()) { |
|
826 *aOut = Inverse().Transform(aPoint); |
|
827 return true; |
|
828 } |
|
829 gfxRect bounds = TransformBounds(aChildBounds); |
|
830 |
|
831 if (!bounds.Contains(aPoint)) { |
|
832 return false; |
|
833 } |
|
834 |
|
835 *aOut = Inverse().ProjectPoint(aPoint); |
|
836 return true; |
|
837 } |
|
838 |
|
839 gfxPoint3D gfx3DMatrix::GetNormalVector() const |
|
840 { |
|
841 // Define a plane in transformed space as the transformations |
|
842 // of 3 points on the z=0 screen plane. |
|
843 gfxPoint3D a = Transform3D(gfxPoint3D(0, 0, 0)); |
|
844 gfxPoint3D b = Transform3D(gfxPoint3D(0, 1, 0)); |
|
845 gfxPoint3D c = Transform3D(gfxPoint3D(1, 0, 0)); |
|
846 |
|
847 // Convert to two vectors on the surface of the plane. |
|
848 gfxPoint3D ab = b - a; |
|
849 gfxPoint3D ac = c - a; |
|
850 |
|
851 return ac.CrossProduct(ab); |
|
852 } |
|
853 |
|
854 bool gfx3DMatrix::IsBackfaceVisible() const |
|
855 { |
|
856 // Inverse()._33 < 0; |
|
857 gfxFloat det = Determinant(); |
|
858 float _33 = _12*_24*_41 - _14*_22*_41 + |
|
859 _14*_21*_42 - _11*_24*_42 - |
|
860 _12*_21*_44 + _11*_22*_44; |
|
861 return (_33 * det) < 0; |
|
862 } |
|
863 |
|
864 void gfx3DMatrix::NudgeToIntegers(void) |
|
865 { |
|
866 NudgeToInteger(&_11); |
|
867 NudgeToInteger(&_12); |
|
868 NudgeToInteger(&_13); |
|
869 NudgeToInteger(&_14); |
|
870 NudgeToInteger(&_21); |
|
871 NudgeToInteger(&_22); |
|
872 NudgeToInteger(&_23); |
|
873 NudgeToInteger(&_24); |
|
874 NudgeToInteger(&_31); |
|
875 NudgeToInteger(&_32); |
|
876 NudgeToInteger(&_33); |
|
877 NudgeToInteger(&_34); |
|
878 NudgeToInteger(&_41); |
|
879 NudgeToInteger(&_42); |
|
880 NudgeToInteger(&_43); |
|
881 NudgeToInteger(&_44); |
|
882 } |