|
1 /* |
|
2 ****************************************************************************** |
|
3 * |
|
4 * Copyright (C) 1997-2011, International Business Machines |
|
5 * Corporation and others. All Rights Reserved. |
|
6 * |
|
7 ****************************************************************************** |
|
8 * |
|
9 * File CSTRING.C |
|
10 * |
|
11 * @author Helena Shih |
|
12 * |
|
13 * Modification History: |
|
14 * |
|
15 * Date Name Description |
|
16 * 6/18/98 hshih Created |
|
17 * 09/08/98 stephen Added include for ctype, for Mac Port |
|
18 * 11/15/99 helena Integrated S/390 IEEE changes. |
|
19 ****************************************************************************** |
|
20 */ |
|
21 |
|
22 |
|
23 |
|
24 #include <stdlib.h> |
|
25 #include <stdio.h> |
|
26 #include "unicode/utypes.h" |
|
27 #include "cmemory.h" |
|
28 #include "cstring.h" |
|
29 #include "uassert.h" |
|
30 |
|
31 /* |
|
32 * We hardcode case conversion for invariant characters to match our expectation |
|
33 * and the compiler execution charset. |
|
34 * This prevents problems on systems |
|
35 * - with non-default casing behavior, like Turkish system locales where |
|
36 * tolower('I') maps to dotless i and toupper('i') maps to dotted I |
|
37 * - where there are no lowercase Latin characters at all, or using different |
|
38 * codes (some old EBCDIC codepages) |
|
39 * |
|
40 * This works because the compiler usually runs on a platform where the execution |
|
41 * charset includes all of the invariant characters at their expected |
|
42 * code positions, so that the char * string literals in ICU code match |
|
43 * the char literals here. |
|
44 * |
|
45 * Note that the set of lowercase Latin letters is discontiguous in EBCDIC |
|
46 * and the set of uppercase Latin letters is discontiguous as well. |
|
47 */ |
|
48 |
|
49 U_CAPI UBool U_EXPORT2 |
|
50 uprv_isASCIILetter(char c) { |
|
51 #if U_CHARSET_FAMILY==U_EBCDIC_FAMILY |
|
52 return |
|
53 ('a'<=c && c<='i') || ('j'<=c && c<='r') || ('s'<=c && c<='z') || |
|
54 ('A'<=c && c<='I') || ('J'<=c && c<='R') || ('S'<=c && c<='Z'); |
|
55 #else |
|
56 return ('a'<=c && c<='z') || ('A'<=c && c<='Z'); |
|
57 #endif |
|
58 } |
|
59 |
|
60 U_CAPI char U_EXPORT2 |
|
61 uprv_toupper(char c) { |
|
62 #if U_CHARSET_FAMILY==U_EBCDIC_FAMILY |
|
63 if(('a'<=c && c<='i') || ('j'<=c && c<='r') || ('s'<=c && c<='z')) { |
|
64 c=(char)(c+('A'-'a')); |
|
65 } |
|
66 #else |
|
67 if('a'<=c && c<='z') { |
|
68 c=(char)(c+('A'-'a')); |
|
69 } |
|
70 #endif |
|
71 return c; |
|
72 } |
|
73 |
|
74 |
|
75 #if 0 |
|
76 /* |
|
77 * Commented out because cstring.h defines uprv_tolower() to be |
|
78 * the same as either uprv_asciitolower() or uprv_ebcdictolower() |
|
79 * to reduce the amount of code to cover with tests. |
|
80 * |
|
81 * Note that this uprv_tolower() definition is likely to work for most |
|
82 * charset families, not just ASCII and EBCDIC, because its #else branch |
|
83 * is written generically. |
|
84 */ |
|
85 U_CAPI char U_EXPORT2 |
|
86 uprv_tolower(char c) { |
|
87 #if U_CHARSET_FAMILY==U_EBCDIC_FAMILY |
|
88 if(('A'<=c && c<='I') || ('J'<=c && c<='R') || ('S'<=c && c<='Z')) { |
|
89 c=(char)(c+('a'-'A')); |
|
90 } |
|
91 #else |
|
92 if('A'<=c && c<='Z') { |
|
93 c=(char)(c+('a'-'A')); |
|
94 } |
|
95 #endif |
|
96 return c; |
|
97 } |
|
98 #endif |
|
99 |
|
100 U_CAPI char U_EXPORT2 |
|
101 uprv_asciitolower(char c) { |
|
102 if(0x41<=c && c<=0x5a) { |
|
103 c=(char)(c+0x20); |
|
104 } |
|
105 return c; |
|
106 } |
|
107 |
|
108 U_CAPI char U_EXPORT2 |
|
109 uprv_ebcdictolower(char c) { |
|
110 if( (0xc1<=(uint8_t)c && (uint8_t)c<=0xc9) || |
|
111 (0xd1<=(uint8_t)c && (uint8_t)c<=0xd9) || |
|
112 (0xe2<=(uint8_t)c && (uint8_t)c<=0xe9) |
|
113 ) { |
|
114 c=(char)(c-0x40); |
|
115 } |
|
116 return c; |
|
117 } |
|
118 |
|
119 |
|
120 U_CAPI char* U_EXPORT2 |
|
121 T_CString_toLowerCase(char* str) |
|
122 { |
|
123 char* origPtr = str; |
|
124 |
|
125 if (str) { |
|
126 do |
|
127 *str = (char)uprv_tolower(*str); |
|
128 while (*(str++)); |
|
129 } |
|
130 |
|
131 return origPtr; |
|
132 } |
|
133 |
|
134 U_CAPI char* U_EXPORT2 |
|
135 T_CString_toUpperCase(char* str) |
|
136 { |
|
137 char* origPtr = str; |
|
138 |
|
139 if (str) { |
|
140 do |
|
141 *str = (char)uprv_toupper(*str); |
|
142 while (*(str++)); |
|
143 } |
|
144 |
|
145 return origPtr; |
|
146 } |
|
147 |
|
148 /* |
|
149 * Takes a int32_t and fills in a char* string with that number "radix"-based. |
|
150 * Does not handle negative values (makes an empty string for them). |
|
151 * Writes at most 12 chars ("-2147483647" plus NUL). |
|
152 * Returns the length of the string (not including the NUL). |
|
153 */ |
|
154 U_CAPI int32_t U_EXPORT2 |
|
155 T_CString_integerToString(char* buffer, int32_t v, int32_t radix) |
|
156 { |
|
157 char tbuf[30]; |
|
158 int32_t tbx = sizeof(tbuf); |
|
159 uint8_t digit; |
|
160 int32_t length = 0; |
|
161 uint32_t uval; |
|
162 |
|
163 U_ASSERT(radix>=2 && radix<=16); |
|
164 uval = (uint32_t) v; |
|
165 if(v<0 && radix == 10) { |
|
166 /* Only in base 10 do we conside numbers to be signed. */ |
|
167 uval = (uint32_t)(-v); |
|
168 buffer[length++] = '-'; |
|
169 } |
|
170 |
|
171 tbx = sizeof(tbuf)-1; |
|
172 tbuf[tbx] = 0; /* We are generating the digits backwards. Null term the end. */ |
|
173 do { |
|
174 digit = (uint8_t)(uval % radix); |
|
175 tbuf[--tbx] = (char)(T_CString_itosOffset(digit)); |
|
176 uval = uval / radix; |
|
177 } while (uval != 0); |
|
178 |
|
179 /* copy converted number into user buffer */ |
|
180 uprv_strcpy(buffer+length, tbuf+tbx); |
|
181 length += sizeof(tbuf) - tbx -1; |
|
182 return length; |
|
183 } |
|
184 |
|
185 |
|
186 |
|
187 /* |
|
188 * Takes a int64_t and fills in a char* string with that number "radix"-based. |
|
189 * Writes at most 21: chars ("-9223372036854775807" plus NUL). |
|
190 * Returns the length of the string, not including the terminating NULL. |
|
191 */ |
|
192 U_CAPI int32_t U_EXPORT2 |
|
193 T_CString_int64ToString(char* buffer, int64_t v, uint32_t radix) |
|
194 { |
|
195 char tbuf[30]; |
|
196 int32_t tbx = sizeof(tbuf); |
|
197 uint8_t digit; |
|
198 int32_t length = 0; |
|
199 uint64_t uval; |
|
200 |
|
201 U_ASSERT(radix>=2 && radix<=16); |
|
202 uval = (uint64_t) v; |
|
203 if(v<0 && radix == 10) { |
|
204 /* Only in base 10 do we conside numbers to be signed. */ |
|
205 uval = (uint64_t)(-v); |
|
206 buffer[length++] = '-'; |
|
207 } |
|
208 |
|
209 tbx = sizeof(tbuf)-1; |
|
210 tbuf[tbx] = 0; /* We are generating the digits backwards. Null term the end. */ |
|
211 do { |
|
212 digit = (uint8_t)(uval % radix); |
|
213 tbuf[--tbx] = (char)(T_CString_itosOffset(digit)); |
|
214 uval = uval / radix; |
|
215 } while (uval != 0); |
|
216 |
|
217 /* copy converted number into user buffer */ |
|
218 uprv_strcpy(buffer+length, tbuf+tbx); |
|
219 length += sizeof(tbuf) - tbx -1; |
|
220 return length; |
|
221 } |
|
222 |
|
223 |
|
224 U_CAPI int32_t U_EXPORT2 |
|
225 T_CString_stringToInteger(const char *integerString, int32_t radix) |
|
226 { |
|
227 char *end; |
|
228 return uprv_strtoul(integerString, &end, radix); |
|
229 |
|
230 } |
|
231 |
|
232 U_CAPI int U_EXPORT2 |
|
233 uprv_stricmp(const char *str1, const char *str2) { |
|
234 if(str1==NULL) { |
|
235 if(str2==NULL) { |
|
236 return 0; |
|
237 } else { |
|
238 return -1; |
|
239 } |
|
240 } else if(str2==NULL) { |
|
241 return 1; |
|
242 } else { |
|
243 /* compare non-NULL strings lexically with lowercase */ |
|
244 int rc; |
|
245 unsigned char c1, c2; |
|
246 |
|
247 for(;;) { |
|
248 c1=(unsigned char)*str1; |
|
249 c2=(unsigned char)*str2; |
|
250 if(c1==0) { |
|
251 if(c2==0) { |
|
252 return 0; |
|
253 } else { |
|
254 return -1; |
|
255 } |
|
256 } else if(c2==0) { |
|
257 return 1; |
|
258 } else { |
|
259 /* compare non-zero characters with lowercase */ |
|
260 rc=(int)(unsigned char)uprv_tolower(c1)-(int)(unsigned char)uprv_tolower(c2); |
|
261 if(rc!=0) { |
|
262 return rc; |
|
263 } |
|
264 } |
|
265 ++str1; |
|
266 ++str2; |
|
267 } |
|
268 } |
|
269 } |
|
270 |
|
271 U_CAPI int U_EXPORT2 |
|
272 uprv_strnicmp(const char *str1, const char *str2, uint32_t n) { |
|
273 if(str1==NULL) { |
|
274 if(str2==NULL) { |
|
275 return 0; |
|
276 } else { |
|
277 return -1; |
|
278 } |
|
279 } else if(str2==NULL) { |
|
280 return 1; |
|
281 } else { |
|
282 /* compare non-NULL strings lexically with lowercase */ |
|
283 int rc; |
|
284 unsigned char c1, c2; |
|
285 |
|
286 for(; n--;) { |
|
287 c1=(unsigned char)*str1; |
|
288 c2=(unsigned char)*str2; |
|
289 if(c1==0) { |
|
290 if(c2==0) { |
|
291 return 0; |
|
292 } else { |
|
293 return -1; |
|
294 } |
|
295 } else if(c2==0) { |
|
296 return 1; |
|
297 } else { |
|
298 /* compare non-zero characters with lowercase */ |
|
299 rc=(int)(unsigned char)uprv_tolower(c1)-(int)(unsigned char)uprv_tolower(c2); |
|
300 if(rc!=0) { |
|
301 return rc; |
|
302 } |
|
303 } |
|
304 ++str1; |
|
305 ++str2; |
|
306 } |
|
307 } |
|
308 |
|
309 return 0; |
|
310 } |
|
311 |
|
312 U_CAPI char* U_EXPORT2 |
|
313 uprv_strdup(const char *src) { |
|
314 size_t len = uprv_strlen(src) + 1; |
|
315 char *dup = (char *) uprv_malloc(len); |
|
316 |
|
317 if (dup) { |
|
318 uprv_memcpy(dup, src, len); |
|
319 } |
|
320 |
|
321 return dup; |
|
322 } |
|
323 |
|
324 U_CAPI char* U_EXPORT2 |
|
325 uprv_strndup(const char *src, int32_t n) { |
|
326 char *dup; |
|
327 |
|
328 if(n < 0) { |
|
329 dup = uprv_strdup(src); |
|
330 } else { |
|
331 dup = (char*)uprv_malloc(n+1); |
|
332 if (dup) { |
|
333 uprv_memcpy(dup, src, n); |
|
334 dup[n] = 0; |
|
335 } |
|
336 } |
|
337 |
|
338 return dup; |
|
339 } |