|
1 /** |
|
2 ******************************************************************************* |
|
3 * Copyright (C) 2006-2013, International Business Machines Corporation |
|
4 * and others. All Rights Reserved. |
|
5 ******************************************************************************* |
|
6 */ |
|
7 |
|
8 #include "unicode/utypes.h" |
|
9 |
|
10 #if !UCONFIG_NO_BREAK_ITERATION |
|
11 |
|
12 #include "brkeng.h" |
|
13 #include "dictbe.h" |
|
14 #include "unicode/uniset.h" |
|
15 #include "unicode/chariter.h" |
|
16 #include "unicode/ubrk.h" |
|
17 #include "uvector.h" |
|
18 #include "uassert.h" |
|
19 #include "unicode/normlzr.h" |
|
20 #include "cmemory.h" |
|
21 #include "dictionarydata.h" |
|
22 |
|
23 U_NAMESPACE_BEGIN |
|
24 |
|
25 /* |
|
26 ****************************************************************** |
|
27 */ |
|
28 |
|
29 DictionaryBreakEngine::DictionaryBreakEngine(uint32_t breakTypes) { |
|
30 fTypes = breakTypes; |
|
31 } |
|
32 |
|
33 DictionaryBreakEngine::~DictionaryBreakEngine() { |
|
34 } |
|
35 |
|
36 UBool |
|
37 DictionaryBreakEngine::handles(UChar32 c, int32_t breakType) const { |
|
38 return (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes) |
|
39 && fSet.contains(c)); |
|
40 } |
|
41 |
|
42 int32_t |
|
43 DictionaryBreakEngine::findBreaks( UText *text, |
|
44 int32_t startPos, |
|
45 int32_t endPos, |
|
46 UBool reverse, |
|
47 int32_t breakType, |
|
48 UStack &foundBreaks ) const { |
|
49 int32_t result = 0; |
|
50 |
|
51 // Find the span of characters included in the set. |
|
52 int32_t start = (int32_t)utext_getNativeIndex(text); |
|
53 int32_t current; |
|
54 int32_t rangeStart; |
|
55 int32_t rangeEnd; |
|
56 UChar32 c = utext_current32(text); |
|
57 if (reverse) { |
|
58 UBool isDict = fSet.contains(c); |
|
59 while((current = (int32_t)utext_getNativeIndex(text)) > startPos && isDict) { |
|
60 c = utext_previous32(text); |
|
61 isDict = fSet.contains(c); |
|
62 } |
|
63 rangeStart = (current < startPos) ? startPos : current+(isDict ? 0 : 1); |
|
64 rangeEnd = start + 1; |
|
65 } |
|
66 else { |
|
67 while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) { |
|
68 utext_next32(text); // TODO: recast loop for postincrement |
|
69 c = utext_current32(text); |
|
70 } |
|
71 rangeStart = start; |
|
72 rangeEnd = current; |
|
73 } |
|
74 if (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)) { |
|
75 result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks); |
|
76 utext_setNativeIndex(text, current); |
|
77 } |
|
78 |
|
79 return result; |
|
80 } |
|
81 |
|
82 void |
|
83 DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) { |
|
84 fSet = set; |
|
85 // Compact for caching |
|
86 fSet.compact(); |
|
87 } |
|
88 |
|
89 /* |
|
90 ****************************************************************** |
|
91 * PossibleWord |
|
92 */ |
|
93 |
|
94 // Helper class for improving readability of the Thai/Lao/Khmer word break |
|
95 // algorithm. The implementation is completely inline. |
|
96 |
|
97 // List size, limited by the maximum number of words in the dictionary |
|
98 // that form a nested sequence. |
|
99 #define POSSIBLE_WORD_LIST_MAX 20 |
|
100 |
|
101 class PossibleWord { |
|
102 private: |
|
103 // list of word candidate lengths, in increasing length order |
|
104 int32_t lengths[POSSIBLE_WORD_LIST_MAX]; |
|
105 int32_t count; // Count of candidates |
|
106 int32_t prefix; // The longest match with a dictionary word |
|
107 int32_t offset; // Offset in the text of these candidates |
|
108 int mark; // The preferred candidate's offset |
|
109 int current; // The candidate we're currently looking at |
|
110 |
|
111 public: |
|
112 PossibleWord(); |
|
113 ~PossibleWord(); |
|
114 |
|
115 // Fill the list of candidates if needed, select the longest, and return the number found |
|
116 int candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ); |
|
117 |
|
118 // Select the currently marked candidate, point after it in the text, and invalidate self |
|
119 int32_t acceptMarked( UText *text ); |
|
120 |
|
121 // Back up from the current candidate to the next shorter one; return TRUE if that exists |
|
122 // and point the text after it |
|
123 UBool backUp( UText *text ); |
|
124 |
|
125 // Return the longest prefix this candidate location shares with a dictionary word |
|
126 int32_t longestPrefix(); |
|
127 |
|
128 // Mark the current candidate as the one we like |
|
129 void markCurrent(); |
|
130 }; |
|
131 |
|
132 inline |
|
133 PossibleWord::PossibleWord() { |
|
134 offset = -1; |
|
135 } |
|
136 |
|
137 inline |
|
138 PossibleWord::~PossibleWord() { |
|
139 } |
|
140 |
|
141 inline int |
|
142 PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) { |
|
143 // TODO: If getIndex is too slow, use offset < 0 and add discardAll() |
|
144 int32_t start = (int32_t)utext_getNativeIndex(text); |
|
145 if (start != offset) { |
|
146 offset = start; |
|
147 prefix = dict->matches(text, rangeEnd-start, lengths, count, sizeof(lengths)/sizeof(lengths[0])); |
|
148 // Dictionary leaves text after longest prefix, not longest word. Back up. |
|
149 if (count <= 0) { |
|
150 utext_setNativeIndex(text, start); |
|
151 } |
|
152 } |
|
153 if (count > 0) { |
|
154 utext_setNativeIndex(text, start+lengths[count-1]); |
|
155 } |
|
156 current = count-1; |
|
157 mark = current; |
|
158 return count; |
|
159 } |
|
160 |
|
161 inline int32_t |
|
162 PossibleWord::acceptMarked( UText *text ) { |
|
163 utext_setNativeIndex(text, offset + lengths[mark]); |
|
164 return lengths[mark]; |
|
165 } |
|
166 |
|
167 inline UBool |
|
168 PossibleWord::backUp( UText *text ) { |
|
169 if (current > 0) { |
|
170 utext_setNativeIndex(text, offset + lengths[--current]); |
|
171 return TRUE; |
|
172 } |
|
173 return FALSE; |
|
174 } |
|
175 |
|
176 inline int32_t |
|
177 PossibleWord::longestPrefix() { |
|
178 return prefix; |
|
179 } |
|
180 |
|
181 inline void |
|
182 PossibleWord::markCurrent() { |
|
183 mark = current; |
|
184 } |
|
185 |
|
186 /* |
|
187 ****************************************************************** |
|
188 * ThaiBreakEngine |
|
189 */ |
|
190 |
|
191 // How many words in a row are "good enough"? |
|
192 #define THAI_LOOKAHEAD 3 |
|
193 |
|
194 // Will not combine a non-word with a preceding dictionary word longer than this |
|
195 #define THAI_ROOT_COMBINE_THRESHOLD 3 |
|
196 |
|
197 // Will not combine a non-word that shares at least this much prefix with a |
|
198 // dictionary word, with a preceding word |
|
199 #define THAI_PREFIX_COMBINE_THRESHOLD 3 |
|
200 |
|
201 // Ellision character |
|
202 #define THAI_PAIYANNOI 0x0E2F |
|
203 |
|
204 // Repeat character |
|
205 #define THAI_MAIYAMOK 0x0E46 |
|
206 |
|
207 // Minimum word size |
|
208 #define THAI_MIN_WORD 2 |
|
209 |
|
210 // Minimum number of characters for two words |
|
211 #define THAI_MIN_WORD_SPAN (THAI_MIN_WORD * 2) |
|
212 |
|
213 ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
|
214 : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)), |
|
215 fDictionary(adoptDictionary) |
|
216 { |
|
217 fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status); |
|
218 if (U_SUCCESS(status)) { |
|
219 setCharacters(fThaiWordSet); |
|
220 } |
|
221 fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status); |
|
222 fMarkSet.add(0x0020); |
|
223 fEndWordSet = fThaiWordSet; |
|
224 fEndWordSet.remove(0x0E31); // MAI HAN-AKAT |
|
225 fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
|
226 fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK |
|
227 fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
|
228 fSuffixSet.add(THAI_PAIYANNOI); |
|
229 fSuffixSet.add(THAI_MAIYAMOK); |
|
230 |
|
231 // Compact for caching. |
|
232 fMarkSet.compact(); |
|
233 fEndWordSet.compact(); |
|
234 fBeginWordSet.compact(); |
|
235 fSuffixSet.compact(); |
|
236 } |
|
237 |
|
238 ThaiBreakEngine::~ThaiBreakEngine() { |
|
239 delete fDictionary; |
|
240 } |
|
241 |
|
242 int32_t |
|
243 ThaiBreakEngine::divideUpDictionaryRange( UText *text, |
|
244 int32_t rangeStart, |
|
245 int32_t rangeEnd, |
|
246 UStack &foundBreaks ) const { |
|
247 if ((rangeEnd - rangeStart) < THAI_MIN_WORD_SPAN) { |
|
248 return 0; // Not enough characters for two words |
|
249 } |
|
250 |
|
251 uint32_t wordsFound = 0; |
|
252 int32_t wordLength; |
|
253 int32_t current; |
|
254 UErrorCode status = U_ZERO_ERROR; |
|
255 PossibleWord words[THAI_LOOKAHEAD]; |
|
256 UChar32 uc; |
|
257 |
|
258 utext_setNativeIndex(text, rangeStart); |
|
259 |
|
260 while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
|
261 wordLength = 0; |
|
262 |
|
263 // Look for candidate words at the current position |
|
264 int candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
|
265 |
|
266 // If we found exactly one, use that |
|
267 if (candidates == 1) { |
|
268 wordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); |
|
269 wordsFound += 1; |
|
270 } |
|
271 // If there was more than one, see which one can take us forward the most words |
|
272 else if (candidates > 1) { |
|
273 // If we're already at the end of the range, we're done |
|
274 if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
|
275 goto foundBest; |
|
276 } |
|
277 do { |
|
278 int wordsMatched = 1; |
|
279 if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
|
280 if (wordsMatched < 2) { |
|
281 // Followed by another dictionary word; mark first word as a good candidate |
|
282 words[wordsFound%THAI_LOOKAHEAD].markCurrent(); |
|
283 wordsMatched = 2; |
|
284 } |
|
285 |
|
286 // If we're already at the end of the range, we're done |
|
287 if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
|
288 goto foundBest; |
|
289 } |
|
290 |
|
291 // See if any of the possible second words is followed by a third word |
|
292 do { |
|
293 // If we find a third word, stop right away |
|
294 if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
|
295 words[wordsFound % THAI_LOOKAHEAD].markCurrent(); |
|
296 goto foundBest; |
|
297 } |
|
298 } |
|
299 while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text)); |
|
300 } |
|
301 } |
|
302 while (words[wordsFound % THAI_LOOKAHEAD].backUp(text)); |
|
303 foundBest: |
|
304 wordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); |
|
305 wordsFound += 1; |
|
306 } |
|
307 |
|
308 // We come here after having either found a word or not. We look ahead to the |
|
309 // next word. If it's not a dictionary word, we will combine it withe the word we |
|
310 // just found (if there is one), but only if the preceding word does not exceed |
|
311 // the threshold. |
|
312 // The text iterator should now be positioned at the end of the word we found. |
|
313 if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < THAI_ROOT_COMBINE_THRESHOLD) { |
|
314 // if it is a dictionary word, do nothing. If it isn't, then if there is |
|
315 // no preceding word, or the non-word shares less than the minimum threshold |
|
316 // of characters with a dictionary word, then scan to resynchronize |
|
317 if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
|
318 && (wordLength == 0 |
|
319 || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) { |
|
320 // Look for a plausible word boundary |
|
321 //TODO: This section will need a rework for UText. |
|
322 int32_t remaining = rangeEnd - (current+wordLength); |
|
323 UChar32 pc = utext_current32(text); |
|
324 int32_t chars = 0; |
|
325 for (;;) { |
|
326 utext_next32(text); |
|
327 uc = utext_current32(text); |
|
328 // TODO: Here we're counting on the fact that the SA languages are all |
|
329 // in the BMP. This should get fixed with the UText rework. |
|
330 chars += 1; |
|
331 if (--remaining <= 0) { |
|
332 break; |
|
333 } |
|
334 if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
|
335 // Maybe. See if it's in the dictionary. |
|
336 // NOTE: In the original Apple code, checked that the next |
|
337 // two characters after uc were not 0x0E4C THANTHAKHAT before |
|
338 // checking the dictionary. That is just a performance filter, |
|
339 // but it's not clear it's faster than checking the trie. |
|
340 int candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
|
341 utext_setNativeIndex(text, current + wordLength + chars); |
|
342 if (candidates > 0) { |
|
343 break; |
|
344 } |
|
345 } |
|
346 pc = uc; |
|
347 } |
|
348 |
|
349 // Bump the word count if there wasn't already one |
|
350 if (wordLength <= 0) { |
|
351 wordsFound += 1; |
|
352 } |
|
353 |
|
354 // Update the length with the passed-over characters |
|
355 wordLength += chars; |
|
356 } |
|
357 else { |
|
358 // Back up to where we were for next iteration |
|
359 utext_setNativeIndex(text, current+wordLength); |
|
360 } |
|
361 } |
|
362 |
|
363 // Never stop before a combining mark. |
|
364 int32_t currPos; |
|
365 while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
|
366 utext_next32(text); |
|
367 wordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
|
368 } |
|
369 |
|
370 // Look ahead for possible suffixes if a dictionary word does not follow. |
|
371 // We do this in code rather than using a rule so that the heuristic |
|
372 // resynch continues to function. For example, one of the suffix characters |
|
373 // could be a typo in the middle of a word. |
|
374 if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { |
|
375 if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
|
376 && fSuffixSet.contains(uc = utext_current32(text))) { |
|
377 if (uc == THAI_PAIYANNOI) { |
|
378 if (!fSuffixSet.contains(utext_previous32(text))) { |
|
379 // Skip over previous end and PAIYANNOI |
|
380 utext_next32(text); |
|
381 utext_next32(text); |
|
382 wordLength += 1; // Add PAIYANNOI to word |
|
383 uc = utext_current32(text); // Fetch next character |
|
384 } |
|
385 else { |
|
386 // Restore prior position |
|
387 utext_next32(text); |
|
388 } |
|
389 } |
|
390 if (uc == THAI_MAIYAMOK) { |
|
391 if (utext_previous32(text) != THAI_MAIYAMOK) { |
|
392 // Skip over previous end and MAIYAMOK |
|
393 utext_next32(text); |
|
394 utext_next32(text); |
|
395 wordLength += 1; // Add MAIYAMOK to word |
|
396 } |
|
397 else { |
|
398 // Restore prior position |
|
399 utext_next32(text); |
|
400 } |
|
401 } |
|
402 } |
|
403 else { |
|
404 utext_setNativeIndex(text, current+wordLength); |
|
405 } |
|
406 } |
|
407 |
|
408 // Did we find a word on this iteration? If so, push it on the break stack |
|
409 if (wordLength > 0) { |
|
410 foundBreaks.push((current+wordLength), status); |
|
411 } |
|
412 } |
|
413 |
|
414 // Don't return a break for the end of the dictionary range if there is one there. |
|
415 if (foundBreaks.peeki() >= rangeEnd) { |
|
416 (void) foundBreaks.popi(); |
|
417 wordsFound -= 1; |
|
418 } |
|
419 |
|
420 return wordsFound; |
|
421 } |
|
422 |
|
423 /* |
|
424 ****************************************************************** |
|
425 * LaoBreakEngine |
|
426 */ |
|
427 |
|
428 // How many words in a row are "good enough"? |
|
429 #define LAO_LOOKAHEAD 3 |
|
430 |
|
431 // Will not combine a non-word with a preceding dictionary word longer than this |
|
432 #define LAO_ROOT_COMBINE_THRESHOLD 3 |
|
433 |
|
434 // Will not combine a non-word that shares at least this much prefix with a |
|
435 // dictionary word, with a preceding word |
|
436 #define LAO_PREFIX_COMBINE_THRESHOLD 3 |
|
437 |
|
438 // Minimum word size |
|
439 #define LAO_MIN_WORD 2 |
|
440 |
|
441 // Minimum number of characters for two words |
|
442 #define LAO_MIN_WORD_SPAN (LAO_MIN_WORD * 2) |
|
443 |
|
444 LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
|
445 : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)), |
|
446 fDictionary(adoptDictionary) |
|
447 { |
|
448 fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]"), status); |
|
449 if (U_SUCCESS(status)) { |
|
450 setCharacters(fLaoWordSet); |
|
451 } |
|
452 fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status); |
|
453 fMarkSet.add(0x0020); |
|
454 fEndWordSet = fLaoWordSet; |
|
455 fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels |
|
456 fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters) |
|
457 fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent) |
|
458 fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels |
|
459 |
|
460 // Compact for caching. |
|
461 fMarkSet.compact(); |
|
462 fEndWordSet.compact(); |
|
463 fBeginWordSet.compact(); |
|
464 } |
|
465 |
|
466 LaoBreakEngine::~LaoBreakEngine() { |
|
467 delete fDictionary; |
|
468 } |
|
469 |
|
470 int32_t |
|
471 LaoBreakEngine::divideUpDictionaryRange( UText *text, |
|
472 int32_t rangeStart, |
|
473 int32_t rangeEnd, |
|
474 UStack &foundBreaks ) const { |
|
475 if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) { |
|
476 return 0; // Not enough characters for two words |
|
477 } |
|
478 |
|
479 uint32_t wordsFound = 0; |
|
480 int32_t wordLength; |
|
481 int32_t current; |
|
482 UErrorCode status = U_ZERO_ERROR; |
|
483 PossibleWord words[LAO_LOOKAHEAD]; |
|
484 UChar32 uc; |
|
485 |
|
486 utext_setNativeIndex(text, rangeStart); |
|
487 |
|
488 while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
|
489 wordLength = 0; |
|
490 |
|
491 // Look for candidate words at the current position |
|
492 int candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
|
493 |
|
494 // If we found exactly one, use that |
|
495 if (candidates == 1) { |
|
496 wordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
|
497 wordsFound += 1; |
|
498 } |
|
499 // If there was more than one, see which one can take us forward the most words |
|
500 else if (candidates > 1) { |
|
501 // If we're already at the end of the range, we're done |
|
502 if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
|
503 goto foundBest; |
|
504 } |
|
505 do { |
|
506 int wordsMatched = 1; |
|
507 if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
|
508 if (wordsMatched < 2) { |
|
509 // Followed by another dictionary word; mark first word as a good candidate |
|
510 words[wordsFound%LAO_LOOKAHEAD].markCurrent(); |
|
511 wordsMatched = 2; |
|
512 } |
|
513 |
|
514 // If we're already at the end of the range, we're done |
|
515 if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
|
516 goto foundBest; |
|
517 } |
|
518 |
|
519 // See if any of the possible second words is followed by a third word |
|
520 do { |
|
521 // If we find a third word, stop right away |
|
522 if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
|
523 words[wordsFound % LAO_LOOKAHEAD].markCurrent(); |
|
524 goto foundBest; |
|
525 } |
|
526 } |
|
527 while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text)); |
|
528 } |
|
529 } |
|
530 while (words[wordsFound % LAO_LOOKAHEAD].backUp(text)); |
|
531 foundBest: |
|
532 wordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
|
533 wordsFound += 1; |
|
534 } |
|
535 |
|
536 // We come here after having either found a word or not. We look ahead to the |
|
537 // next word. If it's not a dictionary word, we will combine it withe the word we |
|
538 // just found (if there is one), but only if the preceding word does not exceed |
|
539 // the threshold. |
|
540 // The text iterator should now be positioned at the end of the word we found. |
|
541 if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < LAO_ROOT_COMBINE_THRESHOLD) { |
|
542 // if it is a dictionary word, do nothing. If it isn't, then if there is |
|
543 // no preceding word, or the non-word shares less than the minimum threshold |
|
544 // of characters with a dictionary word, then scan to resynchronize |
|
545 if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
|
546 && (wordLength == 0 |
|
547 || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) { |
|
548 // Look for a plausible word boundary |
|
549 //TODO: This section will need a rework for UText. |
|
550 int32_t remaining = rangeEnd - (current+wordLength); |
|
551 UChar32 pc = utext_current32(text); |
|
552 int32_t chars = 0; |
|
553 for (;;) { |
|
554 utext_next32(text); |
|
555 uc = utext_current32(text); |
|
556 // TODO: Here we're counting on the fact that the SA languages are all |
|
557 // in the BMP. This should get fixed with the UText rework. |
|
558 chars += 1; |
|
559 if (--remaining <= 0) { |
|
560 break; |
|
561 } |
|
562 if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
|
563 // Maybe. See if it's in the dictionary. |
|
564 int candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
|
565 utext_setNativeIndex(text, current + wordLength + chars); |
|
566 if (candidates > 0) { |
|
567 break; |
|
568 } |
|
569 } |
|
570 pc = uc; |
|
571 } |
|
572 |
|
573 // Bump the word count if there wasn't already one |
|
574 if (wordLength <= 0) { |
|
575 wordsFound += 1; |
|
576 } |
|
577 |
|
578 // Update the length with the passed-over characters |
|
579 wordLength += chars; |
|
580 } |
|
581 else { |
|
582 // Back up to where we were for next iteration |
|
583 utext_setNativeIndex(text, current+wordLength); |
|
584 } |
|
585 } |
|
586 |
|
587 // Never stop before a combining mark. |
|
588 int32_t currPos; |
|
589 while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
|
590 utext_next32(text); |
|
591 wordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
|
592 } |
|
593 |
|
594 // Look ahead for possible suffixes if a dictionary word does not follow. |
|
595 // We do this in code rather than using a rule so that the heuristic |
|
596 // resynch continues to function. For example, one of the suffix characters |
|
597 // could be a typo in the middle of a word. |
|
598 // NOT CURRENTLY APPLICABLE TO LAO |
|
599 |
|
600 // Did we find a word on this iteration? If so, push it on the break stack |
|
601 if (wordLength > 0) { |
|
602 foundBreaks.push((current+wordLength), status); |
|
603 } |
|
604 } |
|
605 |
|
606 // Don't return a break for the end of the dictionary range if there is one there. |
|
607 if (foundBreaks.peeki() >= rangeEnd) { |
|
608 (void) foundBreaks.popi(); |
|
609 wordsFound -= 1; |
|
610 } |
|
611 |
|
612 return wordsFound; |
|
613 } |
|
614 |
|
615 /* |
|
616 ****************************************************************** |
|
617 * KhmerBreakEngine |
|
618 */ |
|
619 |
|
620 // How many words in a row are "good enough"? |
|
621 #define KHMER_LOOKAHEAD 3 |
|
622 |
|
623 // Will not combine a non-word with a preceding dictionary word longer than this |
|
624 #define KHMER_ROOT_COMBINE_THRESHOLD 3 |
|
625 |
|
626 // Will not combine a non-word that shares at least this much prefix with a |
|
627 // dictionary word, with a preceding word |
|
628 #define KHMER_PREFIX_COMBINE_THRESHOLD 3 |
|
629 |
|
630 // Minimum word size |
|
631 #define KHMER_MIN_WORD 2 |
|
632 |
|
633 // Minimum number of characters for two words |
|
634 #define KHMER_MIN_WORD_SPAN (KHMER_MIN_WORD * 2) |
|
635 |
|
636 KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
|
637 : DictionaryBreakEngine((1 << UBRK_WORD) | (1 << UBRK_LINE)), |
|
638 fDictionary(adoptDictionary) |
|
639 { |
|
640 fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status); |
|
641 if (U_SUCCESS(status)) { |
|
642 setCharacters(fKhmerWordSet); |
|
643 } |
|
644 fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status); |
|
645 fMarkSet.add(0x0020); |
|
646 fEndWordSet = fKhmerWordSet; |
|
647 fBeginWordSet.add(0x1780, 0x17B3); |
|
648 //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels |
|
649 //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word |
|
650 //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word |
|
651 fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters |
|
652 //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels |
|
653 // fEndWordSet.remove(0x0E31); // MAI HAN-AKAT |
|
654 // fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
|
655 // fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK |
|
656 // fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
|
657 // fSuffixSet.add(THAI_PAIYANNOI); |
|
658 // fSuffixSet.add(THAI_MAIYAMOK); |
|
659 |
|
660 // Compact for caching. |
|
661 fMarkSet.compact(); |
|
662 fEndWordSet.compact(); |
|
663 fBeginWordSet.compact(); |
|
664 // fSuffixSet.compact(); |
|
665 } |
|
666 |
|
667 KhmerBreakEngine::~KhmerBreakEngine() { |
|
668 delete fDictionary; |
|
669 } |
|
670 |
|
671 int32_t |
|
672 KhmerBreakEngine::divideUpDictionaryRange( UText *text, |
|
673 int32_t rangeStart, |
|
674 int32_t rangeEnd, |
|
675 UStack &foundBreaks ) const { |
|
676 if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) { |
|
677 return 0; // Not enough characters for two words |
|
678 } |
|
679 |
|
680 uint32_t wordsFound = 0; |
|
681 int32_t wordLength; |
|
682 int32_t current; |
|
683 UErrorCode status = U_ZERO_ERROR; |
|
684 PossibleWord words[KHMER_LOOKAHEAD]; |
|
685 UChar32 uc; |
|
686 |
|
687 utext_setNativeIndex(text, rangeStart); |
|
688 |
|
689 while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
|
690 wordLength = 0; |
|
691 |
|
692 // Look for candidate words at the current position |
|
693 int candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
|
694 |
|
695 // If we found exactly one, use that |
|
696 if (candidates == 1) { |
|
697 wordLength = words[wordsFound%KHMER_LOOKAHEAD].acceptMarked(text); |
|
698 wordsFound += 1; |
|
699 } |
|
700 |
|
701 // If there was more than one, see which one can take us forward the most words |
|
702 else if (candidates > 1) { |
|
703 // If we're already at the end of the range, we're done |
|
704 if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
|
705 goto foundBest; |
|
706 } |
|
707 do { |
|
708 int wordsMatched = 1; |
|
709 if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
|
710 if (wordsMatched < 2) { |
|
711 // Followed by another dictionary word; mark first word as a good candidate |
|
712 words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); |
|
713 wordsMatched = 2; |
|
714 } |
|
715 |
|
716 // If we're already at the end of the range, we're done |
|
717 if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
|
718 goto foundBest; |
|
719 } |
|
720 |
|
721 // See if any of the possible second words is followed by a third word |
|
722 do { |
|
723 // If we find a third word, stop right away |
|
724 if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
|
725 words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); |
|
726 goto foundBest; |
|
727 } |
|
728 } |
|
729 while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text)); |
|
730 } |
|
731 } |
|
732 while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text)); |
|
733 foundBest: |
|
734 wordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); |
|
735 wordsFound += 1; |
|
736 } |
|
737 |
|
738 // We come here after having either found a word or not. We look ahead to the |
|
739 // next word. If it's not a dictionary word, we will combine it with the word we |
|
740 // just found (if there is one), but only if the preceding word does not exceed |
|
741 // the threshold. |
|
742 // The text iterator should now be positioned at the end of the word we found. |
|
743 if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < KHMER_ROOT_COMBINE_THRESHOLD) { |
|
744 // if it is a dictionary word, do nothing. If it isn't, then if there is |
|
745 // no preceding word, or the non-word shares less than the minimum threshold |
|
746 // of characters with a dictionary word, then scan to resynchronize |
|
747 if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
|
748 && (wordLength == 0 |
|
749 || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) { |
|
750 // Look for a plausible word boundary |
|
751 //TODO: This section will need a rework for UText. |
|
752 int32_t remaining = rangeEnd - (current+wordLength); |
|
753 UChar32 pc = utext_current32(text); |
|
754 int32_t chars = 0; |
|
755 for (;;) { |
|
756 utext_next32(text); |
|
757 uc = utext_current32(text); |
|
758 // TODO: Here we're counting on the fact that the SA languages are all |
|
759 // in the BMP. This should get fixed with the UText rework. |
|
760 chars += 1; |
|
761 if (--remaining <= 0) { |
|
762 break; |
|
763 } |
|
764 if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
|
765 // Maybe. See if it's in the dictionary. |
|
766 int candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
|
767 utext_setNativeIndex(text, current+wordLength+chars); |
|
768 if (candidates > 0) { |
|
769 break; |
|
770 } |
|
771 } |
|
772 pc = uc; |
|
773 } |
|
774 |
|
775 // Bump the word count if there wasn't already one |
|
776 if (wordLength <= 0) { |
|
777 wordsFound += 1; |
|
778 } |
|
779 |
|
780 // Update the length with the passed-over characters |
|
781 wordLength += chars; |
|
782 } |
|
783 else { |
|
784 // Back up to where we were for next iteration |
|
785 utext_setNativeIndex(text, current+wordLength); |
|
786 } |
|
787 } |
|
788 |
|
789 // Never stop before a combining mark. |
|
790 int32_t currPos; |
|
791 while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
|
792 utext_next32(text); |
|
793 wordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
|
794 } |
|
795 |
|
796 // Look ahead for possible suffixes if a dictionary word does not follow. |
|
797 // We do this in code rather than using a rule so that the heuristic |
|
798 // resynch continues to function. For example, one of the suffix characters |
|
799 // could be a typo in the middle of a word. |
|
800 // if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { |
|
801 // if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
|
802 // && fSuffixSet.contains(uc = utext_current32(text))) { |
|
803 // if (uc == KHMER_PAIYANNOI) { |
|
804 // if (!fSuffixSet.contains(utext_previous32(text))) { |
|
805 // // Skip over previous end and PAIYANNOI |
|
806 // utext_next32(text); |
|
807 // utext_next32(text); |
|
808 // wordLength += 1; // Add PAIYANNOI to word |
|
809 // uc = utext_current32(text); // Fetch next character |
|
810 // } |
|
811 // else { |
|
812 // // Restore prior position |
|
813 // utext_next32(text); |
|
814 // } |
|
815 // } |
|
816 // if (uc == KHMER_MAIYAMOK) { |
|
817 // if (utext_previous32(text) != KHMER_MAIYAMOK) { |
|
818 // // Skip over previous end and MAIYAMOK |
|
819 // utext_next32(text); |
|
820 // utext_next32(text); |
|
821 // wordLength += 1; // Add MAIYAMOK to word |
|
822 // } |
|
823 // else { |
|
824 // // Restore prior position |
|
825 // utext_next32(text); |
|
826 // } |
|
827 // } |
|
828 // } |
|
829 // else { |
|
830 // utext_setNativeIndex(text, current+wordLength); |
|
831 // } |
|
832 // } |
|
833 |
|
834 // Did we find a word on this iteration? If so, push it on the break stack |
|
835 if (wordLength > 0) { |
|
836 foundBreaks.push((current+wordLength), status); |
|
837 } |
|
838 } |
|
839 |
|
840 // Don't return a break for the end of the dictionary range if there is one there. |
|
841 if (foundBreaks.peeki() >= rangeEnd) { |
|
842 (void) foundBreaks.popi(); |
|
843 wordsFound -= 1; |
|
844 } |
|
845 |
|
846 return wordsFound; |
|
847 } |
|
848 |
|
849 #if !UCONFIG_NO_NORMALIZATION |
|
850 /* |
|
851 ****************************************************************** |
|
852 * CjkBreakEngine |
|
853 */ |
|
854 static const uint32_t kuint32max = 0xFFFFFFFF; |
|
855 CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status) |
|
856 : DictionaryBreakEngine(1 << UBRK_WORD), fDictionary(adoptDictionary) { |
|
857 // Korean dictionary only includes Hangul syllables |
|
858 fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status); |
|
859 fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status); |
|
860 fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status); |
|
861 fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status); |
|
862 |
|
863 if (U_SUCCESS(status)) { |
|
864 // handle Korean and Japanese/Chinese using different dictionaries |
|
865 if (type == kKorean) { |
|
866 setCharacters(fHangulWordSet); |
|
867 } else { //Chinese and Japanese |
|
868 UnicodeSet cjSet; |
|
869 cjSet.addAll(fHanWordSet); |
|
870 cjSet.addAll(fKatakanaWordSet); |
|
871 cjSet.addAll(fHiraganaWordSet); |
|
872 cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK |
|
873 cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK |
|
874 setCharacters(cjSet); |
|
875 } |
|
876 } |
|
877 } |
|
878 |
|
879 CjkBreakEngine::~CjkBreakEngine(){ |
|
880 delete fDictionary; |
|
881 } |
|
882 |
|
883 // The katakanaCost values below are based on the length frequencies of all |
|
884 // katakana phrases in the dictionary |
|
885 static const int kMaxKatakanaLength = 8; |
|
886 static const int kMaxKatakanaGroupLength = 20; |
|
887 static const uint32_t maxSnlp = 255; |
|
888 |
|
889 static inline uint32_t getKatakanaCost(int wordLength){ |
|
890 //TODO: fill array with actual values from dictionary! |
|
891 static const uint32_t katakanaCost[kMaxKatakanaLength + 1] |
|
892 = {8192, 984, 408, 240, 204, 252, 300, 372, 480}; |
|
893 return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength]; |
|
894 } |
|
895 |
|
896 static inline bool isKatakana(uint16_t value) { |
|
897 return (value >= 0x30A1u && value <= 0x30FEu && value != 0x30FBu) || |
|
898 (value >= 0xFF66u && value <= 0xFF9fu); |
|
899 } |
|
900 |
|
901 // A very simple helper class to streamline the buffer handling in |
|
902 // divideUpDictionaryRange. |
|
903 template<class T, size_t N> |
|
904 class AutoBuffer { |
|
905 public: |
|
906 AutoBuffer(size_t size) : buffer(stackBuffer), capacity(N) { |
|
907 if (size > N) { |
|
908 buffer = reinterpret_cast<T*>(uprv_malloc(sizeof(T)*size)); |
|
909 capacity = size; |
|
910 } |
|
911 } |
|
912 ~AutoBuffer() { |
|
913 if (buffer != stackBuffer) |
|
914 uprv_free(buffer); |
|
915 } |
|
916 |
|
917 T* elems() { |
|
918 return buffer; |
|
919 } |
|
920 |
|
921 const T& operator[] (size_t i) const { |
|
922 return buffer[i]; |
|
923 } |
|
924 |
|
925 T& operator[] (size_t i) { |
|
926 return buffer[i]; |
|
927 } |
|
928 |
|
929 // resize without copy |
|
930 void resize(size_t size) { |
|
931 if (size <= capacity) |
|
932 return; |
|
933 if (buffer != stackBuffer) |
|
934 uprv_free(buffer); |
|
935 buffer = reinterpret_cast<T*>(uprv_malloc(sizeof(T)*size)); |
|
936 capacity = size; |
|
937 } |
|
938 |
|
939 private: |
|
940 T stackBuffer[N]; |
|
941 T* buffer; |
|
942 AutoBuffer(); |
|
943 size_t capacity; |
|
944 }; |
|
945 |
|
946 |
|
947 /* |
|
948 * @param text A UText representing the text |
|
949 * @param rangeStart The start of the range of dictionary characters |
|
950 * @param rangeEnd The end of the range of dictionary characters |
|
951 * @param foundBreaks Output of C array of int32_t break positions, or 0 |
|
952 * @return The number of breaks found |
|
953 */ |
|
954 int32_t |
|
955 CjkBreakEngine::divideUpDictionaryRange( UText *text, |
|
956 int32_t rangeStart, |
|
957 int32_t rangeEnd, |
|
958 UStack &foundBreaks ) const { |
|
959 if (rangeStart >= rangeEnd) { |
|
960 return 0; |
|
961 } |
|
962 |
|
963 const size_t defaultInputLength = 80; |
|
964 size_t inputLength = rangeEnd - rangeStart; |
|
965 // TODO: Replace by UnicodeString. |
|
966 AutoBuffer<UChar, defaultInputLength> charString(inputLength); |
|
967 |
|
968 // Normalize the input string and put it in normalizedText. |
|
969 // The map from the indices of the normalized input to the raw |
|
970 // input is kept in charPositions. |
|
971 UErrorCode status = U_ZERO_ERROR; |
|
972 utext_extract(text, rangeStart, rangeEnd, charString.elems(), inputLength, &status); |
|
973 if (U_FAILURE(status)) { |
|
974 return 0; |
|
975 } |
|
976 |
|
977 UnicodeString inputString(charString.elems(), inputLength); |
|
978 // TODO: Use Normalizer2. |
|
979 UNormalizationMode norm_mode = UNORM_NFKC; |
|
980 UBool isNormalized = |
|
981 Normalizer::quickCheck(inputString, norm_mode, status) == UNORM_YES || |
|
982 Normalizer::isNormalized(inputString, norm_mode, status); |
|
983 |
|
984 // TODO: Replace by UVector32. |
|
985 AutoBuffer<int32_t, defaultInputLength> charPositions(inputLength + 1); |
|
986 int numChars = 0; |
|
987 UText normalizedText = UTEXT_INITIALIZER; |
|
988 // Needs to be declared here because normalizedText holds onto its buffer. |
|
989 UnicodeString normalizedString; |
|
990 if (isNormalized) { |
|
991 int32_t index = 0; |
|
992 charPositions[0] = 0; |
|
993 while(index < inputString.length()) { |
|
994 index = inputString.moveIndex32(index, 1); |
|
995 charPositions[++numChars] = index; |
|
996 } |
|
997 utext_openUnicodeString(&normalizedText, &inputString, &status); |
|
998 } |
|
999 else { |
|
1000 Normalizer::normalize(inputString, norm_mode, 0, normalizedString, status); |
|
1001 if (U_FAILURE(status)) { |
|
1002 return 0; |
|
1003 } |
|
1004 charPositions.resize(normalizedString.length() + 1); |
|
1005 Normalizer normalizer(charString.elems(), inputLength, norm_mode); |
|
1006 int32_t index = 0; |
|
1007 charPositions[0] = 0; |
|
1008 while(index < normalizer.endIndex()){ |
|
1009 /* UChar32 uc = */ normalizer.next(); |
|
1010 charPositions[++numChars] = index = normalizer.getIndex(); |
|
1011 } |
|
1012 utext_openUnicodeString(&normalizedText, &normalizedString, &status); |
|
1013 } |
|
1014 |
|
1015 if (U_FAILURE(status)) { |
|
1016 return 0; |
|
1017 } |
|
1018 |
|
1019 // From this point on, all the indices refer to the indices of |
|
1020 // the normalized input string. |
|
1021 |
|
1022 // bestSnlp[i] is the snlp of the best segmentation of the first i |
|
1023 // characters in the range to be matched. |
|
1024 // TODO: Replace by UVector32. |
|
1025 AutoBuffer<uint32_t, defaultInputLength> bestSnlp(numChars + 1); |
|
1026 bestSnlp[0] = 0; |
|
1027 for(int i = 1; i <= numChars; i++) { |
|
1028 bestSnlp[i] = kuint32max; |
|
1029 } |
|
1030 |
|
1031 // prev[i] is the index of the last CJK character in the previous word in |
|
1032 // the best segmentation of the first i characters. |
|
1033 // TODO: Replace by UVector32. |
|
1034 AutoBuffer<int, defaultInputLength> prev(numChars + 1); |
|
1035 for(int i = 0; i <= numChars; i++){ |
|
1036 prev[i] = -1; |
|
1037 } |
|
1038 |
|
1039 const size_t maxWordSize = 20; |
|
1040 // TODO: Replace both with UVector32. |
|
1041 AutoBuffer<int32_t, maxWordSize> values(numChars); |
|
1042 AutoBuffer<int32_t, maxWordSize> lengths(numChars); |
|
1043 |
|
1044 // Dynamic programming to find the best segmentation. |
|
1045 bool is_prev_katakana = false; |
|
1046 for (int32_t i = 0; i < numChars; ++i) { |
|
1047 //utext_setNativeIndex(text, rangeStart + i); |
|
1048 utext_setNativeIndex(&normalizedText, i); |
|
1049 if (bestSnlp[i] == kuint32max) |
|
1050 continue; |
|
1051 |
|
1052 int32_t count; |
|
1053 // limit maximum word length matched to size of current substring |
|
1054 int32_t maxSearchLength = (i + maxWordSize < (size_t) numChars)? maxWordSize : (numChars - i); |
|
1055 |
|
1056 fDictionary->matches(&normalizedText, maxSearchLength, lengths.elems(), count, maxSearchLength, values.elems()); |
|
1057 |
|
1058 // if there are no single character matches found in the dictionary |
|
1059 // starting with this charcter, treat character as a 1-character word |
|
1060 // with the highest value possible, i.e. the least likely to occur. |
|
1061 // Exclude Korean characters from this treatment, as they should be left |
|
1062 // together by default. |
|
1063 if((count == 0 || lengths[0] != 1) && |
|
1064 !fHangulWordSet.contains(utext_current32(&normalizedText))) { |
|
1065 values[count] = maxSnlp; |
|
1066 lengths[count++] = 1; |
|
1067 } |
|
1068 |
|
1069 for (int j = 0; j < count; j++) { |
|
1070 uint32_t newSnlp = bestSnlp[i] + values[j]; |
|
1071 if (newSnlp < bestSnlp[lengths[j] + i]) { |
|
1072 bestSnlp[lengths[j] + i] = newSnlp; |
|
1073 prev[lengths[j] + i] = i; |
|
1074 } |
|
1075 } |
|
1076 |
|
1077 // In Japanese, |
|
1078 // Katakana word in single character is pretty rare. So we apply |
|
1079 // the following heuristic to Katakana: any continuous run of Katakana |
|
1080 // characters is considered a candidate word with a default cost |
|
1081 // specified in the katakanaCost table according to its length. |
|
1082 //utext_setNativeIndex(text, rangeStart + i); |
|
1083 utext_setNativeIndex(&normalizedText, i); |
|
1084 bool is_katakana = isKatakana(utext_current32(&normalizedText)); |
|
1085 if (!is_prev_katakana && is_katakana) { |
|
1086 int j = i + 1; |
|
1087 utext_next32(&normalizedText); |
|
1088 // Find the end of the continuous run of Katakana characters |
|
1089 while (j < numChars && (j - i) < kMaxKatakanaGroupLength && |
|
1090 isKatakana(utext_current32(&normalizedText))) { |
|
1091 utext_next32(&normalizedText); |
|
1092 ++j; |
|
1093 } |
|
1094 if ((j - i) < kMaxKatakanaGroupLength) { |
|
1095 uint32_t newSnlp = bestSnlp[i] + getKatakanaCost(j - i); |
|
1096 if (newSnlp < bestSnlp[j]) { |
|
1097 bestSnlp[j] = newSnlp; |
|
1098 prev[j] = i; |
|
1099 } |
|
1100 } |
|
1101 } |
|
1102 is_prev_katakana = is_katakana; |
|
1103 } |
|
1104 |
|
1105 // Start pushing the optimal offset index into t_boundary (t for tentative). |
|
1106 // prev[numChars] is guaranteed to be meaningful. |
|
1107 // We'll first push in the reverse order, i.e., |
|
1108 // t_boundary[0] = numChars, and afterwards do a swap. |
|
1109 // TODO: Replace by UVector32. |
|
1110 AutoBuffer<int, maxWordSize> t_boundary(numChars + 1); |
|
1111 |
|
1112 int numBreaks = 0; |
|
1113 // No segmentation found, set boundary to end of range |
|
1114 if (bestSnlp[numChars] == kuint32max) { |
|
1115 t_boundary[numBreaks++] = numChars; |
|
1116 } else { |
|
1117 for (int i = numChars; i > 0; i = prev[i]) { |
|
1118 t_boundary[numBreaks++] = i; |
|
1119 } |
|
1120 U_ASSERT(prev[t_boundary[numBreaks - 1]] == 0); |
|
1121 } |
|
1122 |
|
1123 // Reverse offset index in t_boundary. |
|
1124 // Don't add a break for the start of the dictionary range if there is one |
|
1125 // there already. |
|
1126 if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) { |
|
1127 t_boundary[numBreaks++] = 0; |
|
1128 } |
|
1129 |
|
1130 // Now that we're done, convert positions in t_bdry[] (indices in |
|
1131 // the normalized input string) back to indices in the raw input string |
|
1132 // while reversing t_bdry and pushing values to foundBreaks. |
|
1133 for (int i = numBreaks-1; i >= 0; i--) { |
|
1134 foundBreaks.push(charPositions[t_boundary[i]] + rangeStart, status); |
|
1135 } |
|
1136 |
|
1137 utext_close(&normalizedText); |
|
1138 return numBreaks; |
|
1139 } |
|
1140 #endif |
|
1141 |
|
1142 U_NAMESPACE_END |
|
1143 |
|
1144 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |
|
1145 |