|
1 /* |
|
2 ******************************************************************************* |
|
3 * |
|
4 * Copyright (C) 2001-2011, International Business Machines |
|
5 * Corporation and others. All Rights Reserved. |
|
6 * |
|
7 ******************************************************************************* |
|
8 * file name: unormcmp.cpp |
|
9 * encoding: US-ASCII |
|
10 * tab size: 8 (not used) |
|
11 * indentation:4 |
|
12 * |
|
13 * created on: 2004sep13 |
|
14 * created by: Markus W. Scherer |
|
15 * |
|
16 * unorm_compare() function moved here from unorm.cpp for better modularization. |
|
17 * Depends on both normalization and case folding. |
|
18 * Allows unorm.cpp to not depend on any character properties code. |
|
19 */ |
|
20 |
|
21 #include "unicode/utypes.h" |
|
22 |
|
23 #if !UCONFIG_NO_NORMALIZATION |
|
24 |
|
25 #include "unicode/unorm.h" |
|
26 #include "unicode/ustring.h" |
|
27 #include "cmemory.h" |
|
28 #include "normalizer2impl.h" |
|
29 #include "ucase.h" |
|
30 #include "uprops.h" |
|
31 #include "ustr_imp.h" |
|
32 |
|
33 U_NAMESPACE_USE |
|
34 |
|
35 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
|
36 |
|
37 /* compare canonically equivalent ------------------------------------------- */ |
|
38 |
|
39 /* |
|
40 * Compare two strings for canonical equivalence. |
|
41 * Further options include case-insensitive comparison and |
|
42 * code point order (as opposed to code unit order). |
|
43 * |
|
44 * In this function, canonical equivalence is optional as well. |
|
45 * If canonical equivalence is tested, then both strings must fulfill |
|
46 * the FCD check. |
|
47 * |
|
48 * Semantically, this is equivalent to |
|
49 * strcmp[CodePointOrder](NFD(foldCase(s1)), NFD(foldCase(s2))) |
|
50 * where code point order, NFD and foldCase are all optional. |
|
51 * |
|
52 * String comparisons almost always yield results before processing both strings |
|
53 * completely. |
|
54 * They are generally more efficient working incrementally instead of |
|
55 * performing the sub-processing (strlen, normalization, case-folding) |
|
56 * on the entire strings first. |
|
57 * |
|
58 * It is also unnecessary to not normalize identical characters. |
|
59 * |
|
60 * This function works in principle as follows: |
|
61 * |
|
62 * loop { |
|
63 * get one code unit c1 from s1 (-1 if end of source) |
|
64 * get one code unit c2 from s2 (-1 if end of source) |
|
65 * |
|
66 * if(either string finished) { |
|
67 * return result; |
|
68 * } |
|
69 * if(c1==c2) { |
|
70 * continue; |
|
71 * } |
|
72 * |
|
73 * // c1!=c2 |
|
74 * try to decompose/case-fold c1/c2, and continue if one does; |
|
75 * |
|
76 * // still c1!=c2 and neither decomposes/case-folds, return result |
|
77 * return c1-c2; |
|
78 * } |
|
79 * |
|
80 * When a character decomposes, then the pointer for that source changes to |
|
81 * the decomposition, pushing the previous pointer onto a stack. |
|
82 * When the end of the decomposition is reached, then the code unit reader |
|
83 * pops the previous source from the stack. |
|
84 * (Same for case-folding.) |
|
85 * |
|
86 * This is complicated further by operating on variable-width UTF-16. |
|
87 * The top part of the loop works on code units, while lookups for decomposition |
|
88 * and case-folding need code points. |
|
89 * Code points are assembled after the equality/end-of-source part. |
|
90 * The source pointer is only advanced beyond all code units when the code point |
|
91 * actually decomposes/case-folds. |
|
92 * |
|
93 * If we were on a trail surrogate unit when assembling a code point, |
|
94 * and the code point decomposes/case-folds, then the decomposition/folding |
|
95 * result must be compared with the part of the other string that corresponds to |
|
96 * this string's lead surrogate. |
|
97 * Since we only assemble a code point when hitting a trail unit when the |
|
98 * preceding lead units were identical, we back up the other string by one unit |
|
99 * in such a case. |
|
100 * |
|
101 * The optional code point order comparison at the end works with |
|
102 * the same fix-up as the other code point order comparison functions. |
|
103 * See ustring.c and the comment near the end of this function. |
|
104 * |
|
105 * Assumption: A decomposition or case-folding result string never contains |
|
106 * a single surrogate. This is a safe assumption in the Unicode Standard. |
|
107 * Therefore, we do not need to check for surrogate pairs across |
|
108 * decomposition/case-folding boundaries. |
|
109 * |
|
110 * Further assumptions (see verifications tstnorm.cpp): |
|
111 * The API function checks for FCD first, while the core function |
|
112 * first case-folds and then decomposes. This requires that case-folding does not |
|
113 * un-FCD any strings. |
|
114 * |
|
115 * The API function may also NFD the input and turn off decomposition. |
|
116 * This requires that case-folding does not un-NFD strings either. |
|
117 * |
|
118 * TODO If any of the above two assumptions is violated, |
|
119 * then this entire code must be re-thought. |
|
120 * If this happens, then a simple solution is to case-fold both strings up front |
|
121 * and to turn off UNORM_INPUT_IS_FCD. |
|
122 * We already do this when not both strings are in FCD because makeFCD |
|
123 * would be a partial NFD before the case folding, which does not work. |
|
124 * Note that all of this is only a problem when case-folding _and_ |
|
125 * canonical equivalence come together. |
|
126 * (Comments in unorm_compare() are more up to date than this TODO.) |
|
127 */ |
|
128 |
|
129 /* stack element for previous-level source/decomposition pointers */ |
|
130 struct CmpEquivLevel { |
|
131 const UChar *start, *s, *limit; |
|
132 }; |
|
133 typedef struct CmpEquivLevel CmpEquivLevel; |
|
134 |
|
135 /** |
|
136 * Internal option for unorm_cmpEquivFold() for decomposing. |
|
137 * If not set, just do strcasecmp(). |
|
138 */ |
|
139 #define _COMPARE_EQUIV 0x80000 |
|
140 |
|
141 /* internal function */ |
|
142 static int32_t |
|
143 unorm_cmpEquivFold(const UChar *s1, int32_t length1, |
|
144 const UChar *s2, int32_t length2, |
|
145 uint32_t options, |
|
146 UErrorCode *pErrorCode) { |
|
147 const Normalizer2Impl *nfcImpl; |
|
148 const UCaseProps *csp; |
|
149 |
|
150 /* current-level start/limit - s1/s2 as current */ |
|
151 const UChar *start1, *start2, *limit1, *limit2; |
|
152 |
|
153 /* decomposition and case folding variables */ |
|
154 const UChar *p; |
|
155 int32_t length; |
|
156 |
|
157 /* stacks of previous-level start/current/limit */ |
|
158 CmpEquivLevel stack1[2], stack2[2]; |
|
159 |
|
160 /* buffers for algorithmic decompositions */ |
|
161 UChar decomp1[4], decomp2[4]; |
|
162 |
|
163 /* case folding buffers, only use current-level start/limit */ |
|
164 UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1]; |
|
165 |
|
166 /* track which is the current level per string */ |
|
167 int32_t level1, level2; |
|
168 |
|
169 /* current code units, and code points for lookups */ |
|
170 UChar32 c1, c2, cp1, cp2; |
|
171 |
|
172 /* no argument error checking because this itself is not an API */ |
|
173 |
|
174 /* |
|
175 * assume that at least one of the options _COMPARE_EQUIV and U_COMPARE_IGNORE_CASE is set |
|
176 * otherwise this function must behave exactly as uprv_strCompare() |
|
177 * not checking for that here makes testing this function easier |
|
178 */ |
|
179 |
|
180 /* normalization/properties data loaded? */ |
|
181 if((options&_COMPARE_EQUIV)!=0) { |
|
182 nfcImpl=Normalizer2Factory::getNFCImpl(*pErrorCode); |
|
183 } else { |
|
184 nfcImpl=NULL; |
|
185 } |
|
186 if((options&U_COMPARE_IGNORE_CASE)!=0) { |
|
187 csp=ucase_getSingleton(); |
|
188 } else { |
|
189 csp=NULL; |
|
190 } |
|
191 if(U_FAILURE(*pErrorCode)) { |
|
192 return 0; |
|
193 } |
|
194 |
|
195 /* initialize */ |
|
196 start1=s1; |
|
197 if(length1==-1) { |
|
198 limit1=NULL; |
|
199 } else { |
|
200 limit1=s1+length1; |
|
201 } |
|
202 |
|
203 start2=s2; |
|
204 if(length2==-1) { |
|
205 limit2=NULL; |
|
206 } else { |
|
207 limit2=s2+length2; |
|
208 } |
|
209 |
|
210 level1=level2=0; |
|
211 c1=c2=-1; |
|
212 |
|
213 /* comparison loop */ |
|
214 for(;;) { |
|
215 /* |
|
216 * here a code unit value of -1 means "get another code unit" |
|
217 * below it will mean "this source is finished" |
|
218 */ |
|
219 |
|
220 if(c1<0) { |
|
221 /* get next code unit from string 1, post-increment */ |
|
222 for(;;) { |
|
223 if(s1==limit1 || ((c1=*s1)==0 && (limit1==NULL || (options&_STRNCMP_STYLE)))) { |
|
224 if(level1==0) { |
|
225 c1=-1; |
|
226 break; |
|
227 } |
|
228 } else { |
|
229 ++s1; |
|
230 break; |
|
231 } |
|
232 |
|
233 /* reached end of level buffer, pop one level */ |
|
234 do { |
|
235 --level1; |
|
236 start1=stack1[level1].start; /*Not uninitialized*/ |
|
237 } while(start1==NULL); |
|
238 s1=stack1[level1].s; /*Not uninitialized*/ |
|
239 limit1=stack1[level1].limit; /*Not uninitialized*/ |
|
240 } |
|
241 } |
|
242 |
|
243 if(c2<0) { |
|
244 /* get next code unit from string 2, post-increment */ |
|
245 for(;;) { |
|
246 if(s2==limit2 || ((c2=*s2)==0 && (limit2==NULL || (options&_STRNCMP_STYLE)))) { |
|
247 if(level2==0) { |
|
248 c2=-1; |
|
249 break; |
|
250 } |
|
251 } else { |
|
252 ++s2; |
|
253 break; |
|
254 } |
|
255 |
|
256 /* reached end of level buffer, pop one level */ |
|
257 do { |
|
258 --level2; |
|
259 start2=stack2[level2].start; /*Not uninitialized*/ |
|
260 } while(start2==NULL); |
|
261 s2=stack2[level2].s; /*Not uninitialized*/ |
|
262 limit2=stack2[level2].limit; /*Not uninitialized*/ |
|
263 } |
|
264 } |
|
265 |
|
266 /* |
|
267 * compare c1 and c2 |
|
268 * either variable c1, c2 is -1 only if the corresponding string is finished |
|
269 */ |
|
270 if(c1==c2) { |
|
271 if(c1<0) { |
|
272 return 0; /* c1==c2==-1 indicating end of strings */ |
|
273 } |
|
274 c1=c2=-1; /* make us fetch new code units */ |
|
275 continue; |
|
276 } else if(c1<0) { |
|
277 return -1; /* string 1 ends before string 2 */ |
|
278 } else if(c2<0) { |
|
279 return 1; /* string 2 ends before string 1 */ |
|
280 } |
|
281 /* c1!=c2 && c1>=0 && c2>=0 */ |
|
282 |
|
283 /* get complete code points for c1, c2 for lookups if either is a surrogate */ |
|
284 cp1=c1; |
|
285 if(U_IS_SURROGATE(c1)) { |
|
286 UChar c; |
|
287 |
|
288 if(U_IS_SURROGATE_LEAD(c1)) { |
|
289 if(s1!=limit1 && U16_IS_TRAIL(c=*s1)) { |
|
290 /* advance ++s1; only below if cp1 decomposes/case-folds */ |
|
291 cp1=U16_GET_SUPPLEMENTARY(c1, c); |
|
292 } |
|
293 } else /* isTrail(c1) */ { |
|
294 if(start1<=(s1-2) && U16_IS_LEAD(c=*(s1-2))) { |
|
295 cp1=U16_GET_SUPPLEMENTARY(c, c1); |
|
296 } |
|
297 } |
|
298 } |
|
299 |
|
300 cp2=c2; |
|
301 if(U_IS_SURROGATE(c2)) { |
|
302 UChar c; |
|
303 |
|
304 if(U_IS_SURROGATE_LEAD(c2)) { |
|
305 if(s2!=limit2 && U16_IS_TRAIL(c=*s2)) { |
|
306 /* advance ++s2; only below if cp2 decomposes/case-folds */ |
|
307 cp2=U16_GET_SUPPLEMENTARY(c2, c); |
|
308 } |
|
309 } else /* isTrail(c2) */ { |
|
310 if(start2<=(s2-2) && U16_IS_LEAD(c=*(s2-2))) { |
|
311 cp2=U16_GET_SUPPLEMENTARY(c, c2); |
|
312 } |
|
313 } |
|
314 } |
|
315 |
|
316 /* |
|
317 * go down one level for each string |
|
318 * continue with the main loop as soon as there is a real change |
|
319 */ |
|
320 |
|
321 if( level1==0 && (options&U_COMPARE_IGNORE_CASE) && |
|
322 (length=ucase_toFullFolding(csp, (UChar32)cp1, &p, options))>=0 |
|
323 ) { |
|
324 /* cp1 case-folds to the code point "length" or to p[length] */ |
|
325 if(U_IS_SURROGATE(c1)) { |
|
326 if(U_IS_SURROGATE_LEAD(c1)) { |
|
327 /* advance beyond source surrogate pair if it case-folds */ |
|
328 ++s1; |
|
329 } else /* isTrail(c1) */ { |
|
330 /* |
|
331 * we got a supplementary code point when hitting its trail surrogate, |
|
332 * therefore the lead surrogate must have been the same as in the other string; |
|
333 * compare this decomposition with the lead surrogate in the other string |
|
334 * remember that this simulates bulk text replacement: |
|
335 * the decomposition would replace the entire code point |
|
336 */ |
|
337 --s2; |
|
338 c2=*(s2-1); |
|
339 } |
|
340 } |
|
341 |
|
342 /* push current level pointers */ |
|
343 stack1[0].start=start1; |
|
344 stack1[0].s=s1; |
|
345 stack1[0].limit=limit1; |
|
346 ++level1; |
|
347 |
|
348 /* copy the folding result to fold1[] */ |
|
349 if(length<=UCASE_MAX_STRING_LENGTH) { |
|
350 u_memcpy(fold1, p, length); |
|
351 } else { |
|
352 int32_t i=0; |
|
353 U16_APPEND_UNSAFE(fold1, i, length); |
|
354 length=i; |
|
355 } |
|
356 |
|
357 /* set next level pointers to case folding */ |
|
358 start1=s1=fold1; |
|
359 limit1=fold1+length; |
|
360 |
|
361 /* get ready to read from decomposition, continue with loop */ |
|
362 c1=-1; |
|
363 continue; |
|
364 } |
|
365 |
|
366 if( level2==0 && (options&U_COMPARE_IGNORE_CASE) && |
|
367 (length=ucase_toFullFolding(csp, (UChar32)cp2, &p, options))>=0 |
|
368 ) { |
|
369 /* cp2 case-folds to the code point "length" or to p[length] */ |
|
370 if(U_IS_SURROGATE(c2)) { |
|
371 if(U_IS_SURROGATE_LEAD(c2)) { |
|
372 /* advance beyond source surrogate pair if it case-folds */ |
|
373 ++s2; |
|
374 } else /* isTrail(c2) */ { |
|
375 /* |
|
376 * we got a supplementary code point when hitting its trail surrogate, |
|
377 * therefore the lead surrogate must have been the same as in the other string; |
|
378 * compare this decomposition with the lead surrogate in the other string |
|
379 * remember that this simulates bulk text replacement: |
|
380 * the decomposition would replace the entire code point |
|
381 */ |
|
382 --s1; |
|
383 c1=*(s1-1); |
|
384 } |
|
385 } |
|
386 |
|
387 /* push current level pointers */ |
|
388 stack2[0].start=start2; |
|
389 stack2[0].s=s2; |
|
390 stack2[0].limit=limit2; |
|
391 ++level2; |
|
392 |
|
393 /* copy the folding result to fold2[] */ |
|
394 if(length<=UCASE_MAX_STRING_LENGTH) { |
|
395 u_memcpy(fold2, p, length); |
|
396 } else { |
|
397 int32_t i=0; |
|
398 U16_APPEND_UNSAFE(fold2, i, length); |
|
399 length=i; |
|
400 } |
|
401 |
|
402 /* set next level pointers to case folding */ |
|
403 start2=s2=fold2; |
|
404 limit2=fold2+length; |
|
405 |
|
406 /* get ready to read from decomposition, continue with loop */ |
|
407 c2=-1; |
|
408 continue; |
|
409 } |
|
410 |
|
411 if( level1<2 && (options&_COMPARE_EQUIV) && |
|
412 0!=(p=nfcImpl->getDecomposition((UChar32)cp1, decomp1, length)) |
|
413 ) { |
|
414 /* cp1 decomposes into p[length] */ |
|
415 if(U_IS_SURROGATE(c1)) { |
|
416 if(U_IS_SURROGATE_LEAD(c1)) { |
|
417 /* advance beyond source surrogate pair if it decomposes */ |
|
418 ++s1; |
|
419 } else /* isTrail(c1) */ { |
|
420 /* |
|
421 * we got a supplementary code point when hitting its trail surrogate, |
|
422 * therefore the lead surrogate must have been the same as in the other string; |
|
423 * compare this decomposition with the lead surrogate in the other string |
|
424 * remember that this simulates bulk text replacement: |
|
425 * the decomposition would replace the entire code point |
|
426 */ |
|
427 --s2; |
|
428 c2=*(s2-1); |
|
429 } |
|
430 } |
|
431 |
|
432 /* push current level pointers */ |
|
433 stack1[level1].start=start1; |
|
434 stack1[level1].s=s1; |
|
435 stack1[level1].limit=limit1; |
|
436 ++level1; |
|
437 |
|
438 /* set empty intermediate level if skipped */ |
|
439 if(level1<2) { |
|
440 stack1[level1++].start=NULL; |
|
441 } |
|
442 |
|
443 /* set next level pointers to decomposition */ |
|
444 start1=s1=p; |
|
445 limit1=p+length; |
|
446 |
|
447 /* get ready to read from decomposition, continue with loop */ |
|
448 c1=-1; |
|
449 continue; |
|
450 } |
|
451 |
|
452 if( level2<2 && (options&_COMPARE_EQUIV) && |
|
453 0!=(p=nfcImpl->getDecomposition((UChar32)cp2, decomp2, length)) |
|
454 ) { |
|
455 /* cp2 decomposes into p[length] */ |
|
456 if(U_IS_SURROGATE(c2)) { |
|
457 if(U_IS_SURROGATE_LEAD(c2)) { |
|
458 /* advance beyond source surrogate pair if it decomposes */ |
|
459 ++s2; |
|
460 } else /* isTrail(c2) */ { |
|
461 /* |
|
462 * we got a supplementary code point when hitting its trail surrogate, |
|
463 * therefore the lead surrogate must have been the same as in the other string; |
|
464 * compare this decomposition with the lead surrogate in the other string |
|
465 * remember that this simulates bulk text replacement: |
|
466 * the decomposition would replace the entire code point |
|
467 */ |
|
468 --s1; |
|
469 c1=*(s1-1); |
|
470 } |
|
471 } |
|
472 |
|
473 /* push current level pointers */ |
|
474 stack2[level2].start=start2; |
|
475 stack2[level2].s=s2; |
|
476 stack2[level2].limit=limit2; |
|
477 ++level2; |
|
478 |
|
479 /* set empty intermediate level if skipped */ |
|
480 if(level2<2) { |
|
481 stack2[level2++].start=NULL; |
|
482 } |
|
483 |
|
484 /* set next level pointers to decomposition */ |
|
485 start2=s2=p; |
|
486 limit2=p+length; |
|
487 |
|
488 /* get ready to read from decomposition, continue with loop */ |
|
489 c2=-1; |
|
490 continue; |
|
491 } |
|
492 |
|
493 /* |
|
494 * no decomposition/case folding, max level for both sides: |
|
495 * return difference result |
|
496 * |
|
497 * code point order comparison must not just return cp1-cp2 |
|
498 * because when single surrogates are present then the surrogate pairs |
|
499 * that formed cp1 and cp2 may be from different string indexes |
|
500 * |
|
501 * example: { d800 d800 dc01 } vs. { d800 dc00 }, compare at second code units |
|
502 * c1=d800 cp1=10001 c2=dc00 cp2=10000 |
|
503 * cp1-cp2>0 but c1-c2<0 and in fact in UTF-32 it is { d800 10001 } < { 10000 } |
|
504 * |
|
505 * therefore, use same fix-up as in ustring.c/uprv_strCompare() |
|
506 * except: uprv_strCompare() fetches c=*s while this functions fetches c=*s++ |
|
507 * so we have slightly different pointer/start/limit comparisons here |
|
508 */ |
|
509 |
|
510 if(c1>=0xd800 && c2>=0xd800 && (options&U_COMPARE_CODE_POINT_ORDER)) { |
|
511 /* subtract 0x2800 from BMP code points to make them smaller than supplementary ones */ |
|
512 if( |
|
513 (c1<=0xdbff && s1!=limit1 && U16_IS_TRAIL(*s1)) || |
|
514 (U16_IS_TRAIL(c1) && start1!=(s1-1) && U16_IS_LEAD(*(s1-2))) |
|
515 ) { |
|
516 /* part of a surrogate pair, leave >=d800 */ |
|
517 } else { |
|
518 /* BMP code point - may be surrogate code point - make <d800 */ |
|
519 c1-=0x2800; |
|
520 } |
|
521 |
|
522 if( |
|
523 (c2<=0xdbff && s2!=limit2 && U16_IS_TRAIL(*s2)) || |
|
524 (U16_IS_TRAIL(c2) && start2!=(s2-1) && U16_IS_LEAD(*(s2-2))) |
|
525 ) { |
|
526 /* part of a surrogate pair, leave >=d800 */ |
|
527 } else { |
|
528 /* BMP code point - may be surrogate code point - make <d800 */ |
|
529 c2-=0x2800; |
|
530 } |
|
531 } |
|
532 |
|
533 return c1-c2; |
|
534 } |
|
535 } |
|
536 |
|
537 static |
|
538 UBool _normalize(const Normalizer2 *n2, const UChar *s, int32_t length, |
|
539 UnicodeString &normalized, UErrorCode *pErrorCode) { |
|
540 UnicodeString str(length<0, s, length); |
|
541 |
|
542 // check if s fulfill the conditions |
|
543 int32_t spanQCYes=n2->spanQuickCheckYes(str, *pErrorCode); |
|
544 if (U_FAILURE(*pErrorCode)) { |
|
545 return FALSE; |
|
546 } |
|
547 /* |
|
548 * ICU 2.4 had a further optimization: |
|
549 * If both strings were not in FCD, then they were both NFD'ed, |
|
550 * and the _COMPARE_EQUIV option was turned off. |
|
551 * It is not entirely clear that this is valid with the current |
|
552 * definition of the canonical caseless match. |
|
553 * Therefore, ICU 2.6 removes that optimization. |
|
554 */ |
|
555 if(spanQCYes<str.length()) { |
|
556 UnicodeString unnormalized=str.tempSubString(spanQCYes); |
|
557 normalized.setTo(FALSE, str.getBuffer(), spanQCYes); |
|
558 n2->normalizeSecondAndAppend(normalized, unnormalized, *pErrorCode); |
|
559 if (U_SUCCESS(*pErrorCode)) { |
|
560 return TRUE; |
|
561 } |
|
562 } |
|
563 return FALSE; |
|
564 } |
|
565 |
|
566 U_CAPI int32_t U_EXPORT2 |
|
567 unorm_compare(const UChar *s1, int32_t length1, |
|
568 const UChar *s2, int32_t length2, |
|
569 uint32_t options, |
|
570 UErrorCode *pErrorCode) { |
|
571 /* argument checking */ |
|
572 if(U_FAILURE(*pErrorCode)) { |
|
573 return 0; |
|
574 } |
|
575 if(s1==0 || length1<-1 || s2==0 || length2<-1) { |
|
576 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
|
577 return 0; |
|
578 } |
|
579 |
|
580 UnicodeString fcd1, fcd2; |
|
581 int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT); |
|
582 options|=_COMPARE_EQUIV; |
|
583 |
|
584 /* |
|
585 * UAX #21 Case Mappings, as fixed for Unicode version 4 |
|
586 * (see Jitterbug 2021), defines a canonical caseless match as |
|
587 * |
|
588 * A string X is a canonical caseless match |
|
589 * for a string Y if and only if |
|
590 * NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y))) |
|
591 * |
|
592 * For better performance, we check for FCD (or let the caller tell us that |
|
593 * both strings are in FCD) for the inner normalization. |
|
594 * BasicNormalizerTest::FindFoldFCDExceptions() makes sure that |
|
595 * case-folding preserves the FCD-ness of a string. |
|
596 * The outer normalization is then only performed by unorm_cmpEquivFold() |
|
597 * when there is a difference. |
|
598 * |
|
599 * Exception: When using the Turkic case-folding option, we do perform |
|
600 * full NFD first. This is because in the Turkic case precomposed characters |
|
601 * with 0049 capital I or 0069 small i fold differently whether they |
|
602 * are first decomposed or not, so an FCD check - a check only for |
|
603 * canonical order - is not sufficient. |
|
604 */ |
|
605 if(!(options&UNORM_INPUT_IS_FCD) || (options&U_FOLD_CASE_EXCLUDE_SPECIAL_I)) { |
|
606 const Normalizer2 *n2; |
|
607 if(options&U_FOLD_CASE_EXCLUDE_SPECIAL_I) { |
|
608 n2=Normalizer2Factory::getNFDInstance(*pErrorCode); |
|
609 } else { |
|
610 n2=Normalizer2Factory::getFCDInstance(*pErrorCode); |
|
611 } |
|
612 if (U_FAILURE(*pErrorCode)) { |
|
613 return 0; |
|
614 } |
|
615 |
|
616 if(normOptions&UNORM_UNICODE_3_2) { |
|
617 const UnicodeSet *uni32=uniset_getUnicode32Instance(*pErrorCode); |
|
618 FilteredNormalizer2 fn2(*n2, *uni32); |
|
619 if(_normalize(&fn2, s1, length1, fcd1, pErrorCode)) { |
|
620 s1=fcd1.getBuffer(); |
|
621 length1=fcd1.length(); |
|
622 } |
|
623 if(_normalize(&fn2, s2, length2, fcd2, pErrorCode)) { |
|
624 s2=fcd2.getBuffer(); |
|
625 length2=fcd2.length(); |
|
626 } |
|
627 } else { |
|
628 if(_normalize(n2, s1, length1, fcd1, pErrorCode)) { |
|
629 s1=fcd1.getBuffer(); |
|
630 length1=fcd1.length(); |
|
631 } |
|
632 if(_normalize(n2, s2, length2, fcd2, pErrorCode)) { |
|
633 s2=fcd2.getBuffer(); |
|
634 length2=fcd2.length(); |
|
635 } |
|
636 } |
|
637 } |
|
638 |
|
639 if(U_SUCCESS(*pErrorCode)) { |
|
640 return unorm_cmpEquivFold(s1, length1, s2, length2, options, pErrorCode); |
|
641 } else { |
|
642 return 0; |
|
643 } |
|
644 } |
|
645 |
|
646 #endif /* #if !UCONFIG_NO_NORMALIZATION */ |