|
1 /* |
|
2 ****************************************************************************** |
|
3 * Copyright (C) 2003-2013, International Business Machines Corporation |
|
4 * and others. All Rights Reserved. |
|
5 ****************************************************************************** |
|
6 * |
|
7 * File HEBRWCAL.CPP |
|
8 * |
|
9 * Modification History: |
|
10 * |
|
11 * Date Name Description |
|
12 * 12/03/2003 srl ported from java HebrewCalendar |
|
13 ***************************************************************************** |
|
14 */ |
|
15 |
|
16 #include "hebrwcal.h" |
|
17 |
|
18 #if !UCONFIG_NO_FORMATTING |
|
19 |
|
20 #include "umutex.h" |
|
21 #include <float.h> |
|
22 #include "gregoimp.h" // Math |
|
23 #include "astro.h" // CalendarAstronomer |
|
24 #include "uhash.h" |
|
25 #include "ucln_in.h" |
|
26 |
|
27 // Hebrew Calendar implementation |
|
28 |
|
29 /** |
|
30 * The absolute date, in milliseconds since 1/1/1970 AD, Gregorian, |
|
31 * of the start of the Hebrew calendar. In order to keep this calendar's |
|
32 * time of day in sync with that of the Gregorian calendar, we use |
|
33 * midnight, rather than sunset the day before. |
|
34 */ |
|
35 //static const double EPOCH_MILLIS = -180799862400000.; // 1/1/1 HY |
|
36 |
|
37 static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = { |
|
38 // Minimum Greatest Least Maximum |
|
39 // Minimum Maximum |
|
40 { 0, 0, 0, 0}, // ERA |
|
41 { -5000000, -5000000, 5000000, 5000000}, // YEAR |
|
42 { 0, 0, 12, 12}, // MONTH |
|
43 { 1, 1, 51, 56}, // WEEK_OF_YEAR |
|
44 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH |
|
45 { 1, 1, 29, 30}, // DAY_OF_MONTH |
|
46 { 1, 1, 353, 385}, // DAY_OF_YEAR |
|
47 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK |
|
48 { -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH |
|
49 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM |
|
50 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR |
|
51 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY |
|
52 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE |
|
53 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND |
|
54 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND |
|
55 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET |
|
56 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET |
|
57 { -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY |
|
58 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL |
|
59 { -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR |
|
60 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY |
|
61 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY |
|
62 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH |
|
63 }; |
|
64 |
|
65 /** |
|
66 * The lengths of the Hebrew months. This is complicated, because there |
|
67 * are three different types of years, or six if you count leap years. |
|
68 * Due to the rules for postponing the start of the year to avoid having |
|
69 * certain holidays fall on the sabbath, the year can end up being three |
|
70 * different lengths, called "deficient", "normal", and "complete". |
|
71 */ |
|
72 static const int8_t MONTH_LENGTH[][3] = { |
|
73 // Deficient Normal Complete |
|
74 { 30, 30, 30 }, //Tishri |
|
75 { 29, 29, 30 }, //Heshvan |
|
76 { 29, 30, 30 }, //Kislev |
|
77 { 29, 29, 29 }, //Tevet |
|
78 { 30, 30, 30 }, //Shevat |
|
79 { 30, 30, 30 }, //Adar I (leap years only) |
|
80 { 29, 29, 29 }, //Adar |
|
81 { 30, 30, 30 }, //Nisan |
|
82 { 29, 29, 29 }, //Iyar |
|
83 { 30, 30, 30 }, //Sivan |
|
84 { 29, 29, 29 }, //Tammuz |
|
85 { 30, 30, 30 }, //Av |
|
86 { 29, 29, 29 }, //Elul |
|
87 }; |
|
88 |
|
89 /** |
|
90 * The cumulative # of days to the end of each month in a non-leap year |
|
91 * Although this can be calculated from the MONTH_LENGTH table, |
|
92 * keeping it around separately makes some calculations a lot faster |
|
93 */ |
|
94 |
|
95 static const int16_t MONTH_START[][3] = { |
|
96 // Deficient Normal Complete |
|
97 { 0, 0, 0 }, // (placeholder) |
|
98 { 30, 30, 30 }, // Tishri |
|
99 { 59, 59, 60 }, // Heshvan |
|
100 { 88, 89, 90 }, // Kislev |
|
101 { 117, 118, 119 }, // Tevet |
|
102 { 147, 148, 149 }, // Shevat |
|
103 { 147, 148, 149 }, // (Adar I placeholder) |
|
104 { 176, 177, 178 }, // Adar |
|
105 { 206, 207, 208 }, // Nisan |
|
106 { 235, 236, 237 }, // Iyar |
|
107 { 265, 266, 267 }, // Sivan |
|
108 { 294, 295, 296 }, // Tammuz |
|
109 { 324, 325, 326 }, // Av |
|
110 { 353, 354, 355 }, // Elul |
|
111 }; |
|
112 |
|
113 /** |
|
114 * The cumulative # of days to the end of each month in a leap year |
|
115 */ |
|
116 static const int16_t LEAP_MONTH_START[][3] = { |
|
117 // Deficient Normal Complete |
|
118 { 0, 0, 0 }, // (placeholder) |
|
119 { 30, 30, 30 }, // Tishri |
|
120 { 59, 59, 60 }, // Heshvan |
|
121 { 88, 89, 90 }, // Kislev |
|
122 { 117, 118, 119 }, // Tevet |
|
123 { 147, 148, 149 }, // Shevat |
|
124 { 177, 178, 179 }, // Adar I |
|
125 { 206, 207, 208 }, // Adar II |
|
126 { 236, 237, 238 }, // Nisan |
|
127 { 265, 266, 267 }, // Iyar |
|
128 { 295, 296, 297 }, // Sivan |
|
129 { 324, 325, 326 }, // Tammuz |
|
130 { 354, 355, 356 }, // Av |
|
131 { 383, 384, 385 }, // Elul |
|
132 }; |
|
133 |
|
134 static icu::CalendarCache *gCache = NULL; |
|
135 |
|
136 U_CDECL_BEGIN |
|
137 static UBool calendar_hebrew_cleanup(void) { |
|
138 delete gCache; |
|
139 gCache = NULL; |
|
140 return TRUE; |
|
141 } |
|
142 U_CDECL_END |
|
143 |
|
144 U_NAMESPACE_BEGIN |
|
145 //------------------------------------------------------------------------- |
|
146 // Constructors... |
|
147 //------------------------------------------------------------------------- |
|
148 |
|
149 /** |
|
150 * Constructs a default <code>HebrewCalendar</code> using the current time |
|
151 * in the default time zone with the default locale. |
|
152 * @internal |
|
153 */ |
|
154 HebrewCalendar::HebrewCalendar(const Locale& aLocale, UErrorCode& success) |
|
155 : Calendar(TimeZone::createDefault(), aLocale, success) |
|
156 |
|
157 { |
|
158 setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly. |
|
159 } |
|
160 |
|
161 |
|
162 HebrewCalendar::~HebrewCalendar() { |
|
163 } |
|
164 |
|
165 const char *HebrewCalendar::getType() const { |
|
166 return "hebrew"; |
|
167 } |
|
168 |
|
169 Calendar* HebrewCalendar::clone() const { |
|
170 return new HebrewCalendar(*this); |
|
171 } |
|
172 |
|
173 HebrewCalendar::HebrewCalendar(const HebrewCalendar& other) : Calendar(other) { |
|
174 } |
|
175 |
|
176 |
|
177 //------------------------------------------------------------------------- |
|
178 // Rolling and adding functions overridden from Calendar |
|
179 // |
|
180 // These methods call through to the default implementation in IBMCalendar |
|
181 // for most of the fields and only handle the unusual ones themselves. |
|
182 //------------------------------------------------------------------------- |
|
183 |
|
184 /** |
|
185 * Add a signed amount to a specified field, using this calendar's rules. |
|
186 * For example, to add three days to the current date, you can call |
|
187 * <code>add(Calendar.DATE, 3)</code>. |
|
188 * <p> |
|
189 * When adding to certain fields, the values of other fields may conflict and |
|
190 * need to be changed. For example, when adding one to the {@link #MONTH MONTH} field |
|
191 * for the date "30 Av 5758", the {@link #DAY_OF_MONTH DAY_OF_MONTH} field |
|
192 * must be adjusted so that the result is "29 Elul 5758" rather than the invalid |
|
193 * "30 Elul 5758". |
|
194 * <p> |
|
195 * This method is able to add to |
|
196 * all fields except for {@link #ERA ERA}, {@link #DST_OFFSET DST_OFFSET}, |
|
197 * and {@link #ZONE_OFFSET ZONE_OFFSET}. |
|
198 * <p> |
|
199 * <b>Note:</b> You should always use {@link #roll roll} and add rather |
|
200 * than attempting to perform arithmetic operations directly on the fields |
|
201 * of a <tt>HebrewCalendar</tt>. Since the {@link #MONTH MONTH} field behaves |
|
202 * discontinuously in non-leap years, simple arithmetic can give invalid results. |
|
203 * <p> |
|
204 * @param field the time field. |
|
205 * @param amount the amount to add to the field. |
|
206 * |
|
207 * @exception IllegalArgumentException if the field is invalid or refers |
|
208 * to a field that cannot be handled by this method. |
|
209 * @internal |
|
210 */ |
|
211 void HebrewCalendar::add(UCalendarDateFields field, int32_t amount, UErrorCode& status) |
|
212 { |
|
213 if(U_FAILURE(status)) { |
|
214 return; |
|
215 } |
|
216 switch (field) { |
|
217 case UCAL_MONTH: |
|
218 { |
|
219 // We can't just do a set(MONTH, get(MONTH) + amount). The |
|
220 // reason is ADAR_1. Suppose amount is +2 and we land in |
|
221 // ADAR_1 -- then we have to bump to ADAR_2 aka ADAR. But |
|
222 // if amount is -2 and we land in ADAR_1, then we have to |
|
223 // bump the other way -- down to SHEVAT. - Alan 11/00 |
|
224 int32_t month = get(UCAL_MONTH, status); |
|
225 int32_t year = get(UCAL_YEAR, status); |
|
226 UBool acrossAdar1; |
|
227 if (amount > 0) { |
|
228 acrossAdar1 = (month < ADAR_1); // started before ADAR_1? |
|
229 month += amount; |
|
230 for (;;) { |
|
231 if (acrossAdar1 && month>=ADAR_1 && !isLeapYear(year)) { |
|
232 ++month; |
|
233 } |
|
234 if (month <= ELUL) { |
|
235 break; |
|
236 } |
|
237 month -= ELUL+1; |
|
238 ++year; |
|
239 acrossAdar1 = TRUE; |
|
240 } |
|
241 } else { |
|
242 acrossAdar1 = (month > ADAR_1); // started after ADAR_1? |
|
243 month += amount; |
|
244 for (;;) { |
|
245 if (acrossAdar1 && month<=ADAR_1 && !isLeapYear(year)) { |
|
246 --month; |
|
247 } |
|
248 if (month >= 0) { |
|
249 break; |
|
250 } |
|
251 month += ELUL+1; |
|
252 --year; |
|
253 acrossAdar1 = TRUE; |
|
254 } |
|
255 } |
|
256 set(UCAL_MONTH, month); |
|
257 set(UCAL_YEAR, year); |
|
258 pinField(UCAL_DAY_OF_MONTH, status); |
|
259 break; |
|
260 } |
|
261 |
|
262 default: |
|
263 Calendar::add(field, amount, status); |
|
264 break; |
|
265 } |
|
266 } |
|
267 |
|
268 /** |
|
269 * @deprecated ICU 2.6 use UCalendarDateFields instead of EDateFields |
|
270 */ |
|
271 void HebrewCalendar::add(EDateFields field, int32_t amount, UErrorCode& status) |
|
272 { |
|
273 add((UCalendarDateFields)field, amount, status); |
|
274 } |
|
275 |
|
276 /** |
|
277 * Rolls (up/down) a specified amount time on the given field. For |
|
278 * example, to roll the current date up by three days, you can call |
|
279 * <code>roll(Calendar.DATE, 3)</code>. If the |
|
280 * field is rolled past its maximum allowable value, it will "wrap" back |
|
281 * to its minimum and continue rolling. |
|
282 * For example, calling <code>roll(Calendar.DATE, 10)</code> |
|
283 * on a Hebrew calendar set to "25 Av 5758" will result in the date "5 Av 5758". |
|
284 * <p> |
|
285 * When rolling certain fields, the values of other fields may conflict and |
|
286 * need to be changed. For example, when rolling the {@link #MONTH MONTH} field |
|
287 * upward by one for the date "30 Av 5758", the {@link #DAY_OF_MONTH DAY_OF_MONTH} field |
|
288 * must be adjusted so that the result is "29 Elul 5758" rather than the invalid |
|
289 * "30 Elul". |
|
290 * <p> |
|
291 * This method is able to roll |
|
292 * all fields except for {@link #ERA ERA}, {@link #DST_OFFSET DST_OFFSET}, |
|
293 * and {@link #ZONE_OFFSET ZONE_OFFSET}. Subclasses may, of course, add support for |
|
294 * additional fields in their overrides of <code>roll</code>. |
|
295 * <p> |
|
296 * <b>Note:</b> You should always use roll and {@link #add add} rather |
|
297 * than attempting to perform arithmetic operations directly on the fields |
|
298 * of a <tt>HebrewCalendar</tt>. Since the {@link #MONTH MONTH} field behaves |
|
299 * discontinuously in non-leap years, simple arithmetic can give invalid results. |
|
300 * <p> |
|
301 * @param field the time field. |
|
302 * @param amount the amount by which the field should be rolled. |
|
303 * |
|
304 * @exception IllegalArgumentException if the field is invalid or refers |
|
305 * to a field that cannot be handled by this method. |
|
306 * @internal |
|
307 */ |
|
308 void HebrewCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) |
|
309 { |
|
310 if(U_FAILURE(status)) { |
|
311 return; |
|
312 } |
|
313 switch (field) { |
|
314 case UCAL_MONTH: |
|
315 { |
|
316 int32_t month = get(UCAL_MONTH, status); |
|
317 int32_t year = get(UCAL_YEAR, status); |
|
318 |
|
319 UBool leapYear = isLeapYear(year); |
|
320 int32_t yearLength = monthsInYear(year); |
|
321 int32_t newMonth = month + (amount % yearLength); |
|
322 // |
|
323 // If it's not a leap year and we're rolling past the missing month |
|
324 // of ADAR_1, we need to roll an extra month to make up for it. |
|
325 // |
|
326 if (!leapYear) { |
|
327 if (amount > 0 && month < ADAR_1 && newMonth >= ADAR_1) { |
|
328 newMonth++; |
|
329 } else if (amount < 0 && month > ADAR_1 && newMonth <= ADAR_1) { |
|
330 newMonth--; |
|
331 } |
|
332 } |
|
333 set(UCAL_MONTH, (newMonth + 13) % 13); |
|
334 pinField(UCAL_DAY_OF_MONTH, status); |
|
335 return; |
|
336 } |
|
337 default: |
|
338 Calendar::roll(field, amount, status); |
|
339 } |
|
340 } |
|
341 |
|
342 void HebrewCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) { |
|
343 roll((UCalendarDateFields)field, amount, status); |
|
344 } |
|
345 |
|
346 //------------------------------------------------------------------------- |
|
347 // Support methods |
|
348 //------------------------------------------------------------------------- |
|
349 |
|
350 // Hebrew date calculations are performed in terms of days, hours, and |
|
351 // "parts" (or halakim), which are 1/1080 of an hour, or 3 1/3 seconds. |
|
352 static const int32_t HOUR_PARTS = 1080; |
|
353 static const int32_t DAY_PARTS = 24*HOUR_PARTS; |
|
354 |
|
355 // An approximate value for the length of a lunar month. |
|
356 // It is used to calculate the approximate year and month of a given |
|
357 // absolute date. |
|
358 static const int32_t MONTH_DAYS = 29; |
|
359 static const int32_t MONTH_FRACT = 12*HOUR_PARTS + 793; |
|
360 static const int32_t MONTH_PARTS = MONTH_DAYS*DAY_PARTS + MONTH_FRACT; |
|
361 |
|
362 // The time of the new moon (in parts) on 1 Tishri, year 1 (the epoch) |
|
363 // counting from noon on the day before. BAHARAD is an abbreviation of |
|
364 // Bet (Monday), Hey (5 hours from sunset), Resh-Daled (204). |
|
365 static const int32_t BAHARAD = 11*HOUR_PARTS + 204; |
|
366 |
|
367 /** |
|
368 * Finds the day # of the first day in the given Hebrew year. |
|
369 * To do this, we want to calculate the time of the Tishri 1 new moon |
|
370 * in that year. |
|
371 * <p> |
|
372 * The algorithm here is similar to ones described in a number of |
|
373 * references, including: |
|
374 * <ul> |
|
375 * <li>"Calendrical Calculations", by Nachum Dershowitz & Edward Reingold, |
|
376 * Cambridge University Press, 1997, pages 85-91. |
|
377 * |
|
378 * <li>Hebrew Calendar Science and Myths, |
|
379 * <a href="http://www.geocities.com/Athens/1584/"> |
|
380 * http://www.geocities.com/Athens/1584/</a> |
|
381 * |
|
382 * <li>The Calendar FAQ, |
|
383 * <a href="http://www.faqs.org/faqs/calendars/faq/"> |
|
384 * http://www.faqs.org/faqs/calendars/faq/</a> |
|
385 * </ul> |
|
386 */ |
|
387 int32_t HebrewCalendar::startOfYear(int32_t year, UErrorCode &status) |
|
388 { |
|
389 ucln_i18n_registerCleanup(UCLN_I18N_HEBREW_CALENDAR, calendar_hebrew_cleanup); |
|
390 int32_t day = CalendarCache::get(&gCache, year, status); |
|
391 |
|
392 if (day == 0) { |
|
393 int32_t months = (235 * year - 234) / 19; // # of months before year |
|
394 |
|
395 int64_t frac = (int64_t)months * MONTH_FRACT + BAHARAD; // Fractional part of day # |
|
396 day = months * 29 + (int32_t)(frac / DAY_PARTS); // Whole # part of calculation |
|
397 frac = frac % DAY_PARTS; // Time of day |
|
398 |
|
399 int32_t wd = (day % 7); // Day of week (0 == Monday) |
|
400 |
|
401 if (wd == 2 || wd == 4 || wd == 6) { |
|
402 // If the 1st is on Sun, Wed, or Fri, postpone to the next day |
|
403 day += 1; |
|
404 wd = (day % 7); |
|
405 } |
|
406 if (wd == 1 && frac > 15*HOUR_PARTS+204 && !isLeapYear(year) ) { |
|
407 // If the new moon falls after 3:11:20am (15h204p from the previous noon) |
|
408 // on a Tuesday and it is not a leap year, postpone by 2 days. |
|
409 // This prevents 356-day years. |
|
410 day += 2; |
|
411 } |
|
412 else if (wd == 0 && frac > 21*HOUR_PARTS+589 && isLeapYear(year-1) ) { |
|
413 // If the new moon falls after 9:32:43 1/3am (21h589p from yesterday noon) |
|
414 // on a Monday and *last* year was a leap year, postpone by 1 day. |
|
415 // Prevents 382-day years. |
|
416 day += 1; |
|
417 } |
|
418 CalendarCache::put(&gCache, year, day, status); |
|
419 } |
|
420 return day; |
|
421 } |
|
422 |
|
423 /** |
|
424 * Find the day of the week for a given day |
|
425 * |
|
426 * @param day The # of days since the start of the Hebrew calendar, |
|
427 * 1-based (i.e. 1/1/1 AM is day 1). |
|
428 */ |
|
429 int32_t HebrewCalendar::absoluteDayToDayOfWeek(int32_t day) |
|
430 { |
|
431 // We know that 1/1/1 AM is a Monday, which makes the math easy... |
|
432 return (day % 7) + 1; |
|
433 } |
|
434 |
|
435 /** |
|
436 * Returns the the type of a given year. |
|
437 * 0 "Deficient" year with 353 or 383 days |
|
438 * 1 "Normal" year with 354 or 384 days |
|
439 * 2 "Complete" year with 355 or 385 days |
|
440 */ |
|
441 int32_t HebrewCalendar::yearType(int32_t year) const |
|
442 { |
|
443 int32_t yearLength = handleGetYearLength(year); |
|
444 |
|
445 if (yearLength > 380) { |
|
446 yearLength -= 30; // Subtract length of leap month. |
|
447 } |
|
448 |
|
449 int type = 0; |
|
450 |
|
451 switch (yearLength) { |
|
452 case 353: |
|
453 type = 0; break; |
|
454 case 354: |
|
455 type = 1; break; |
|
456 case 355: |
|
457 type = 2; break; |
|
458 default: |
|
459 //throw new RuntimeException("Illegal year length " + yearLength + " in year " + year); |
|
460 type = 1; |
|
461 } |
|
462 return type; |
|
463 } |
|
464 |
|
465 /** |
|
466 * Determine whether a given Hebrew year is a leap year |
|
467 * |
|
468 * The rule here is that if (year % 19) == 0, 3, 6, 8, 11, 14, or 17. |
|
469 * The formula below performs the same test, believe it or not. |
|
470 */ |
|
471 UBool HebrewCalendar::isLeapYear(int32_t year) { |
|
472 //return (year * 12 + 17) % 19 >= 12; |
|
473 int32_t x = (year*12 + 17) % 19; |
|
474 return x >= ((x < 0) ? -7 : 12); |
|
475 } |
|
476 |
|
477 int32_t HebrewCalendar::monthsInYear(int32_t year) { |
|
478 return isLeapYear(year) ? 13 : 12; |
|
479 } |
|
480 |
|
481 //------------------------------------------------------------------------- |
|
482 // Calendar framework |
|
483 //------------------------------------------------------------------------- |
|
484 |
|
485 /** |
|
486 * @internal |
|
487 */ |
|
488 int32_t HebrewCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const { |
|
489 return LIMITS[field][limitType]; |
|
490 } |
|
491 |
|
492 /** |
|
493 * Returns the length of the given month in the given year |
|
494 * @internal |
|
495 */ |
|
496 int32_t HebrewCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const { |
|
497 // Resolve out-of-range months. This is necessary in order to |
|
498 // obtain the correct year. We correct to |
|
499 // a 12- or 13-month year (add/subtract 12 or 13, depending |
|
500 // on the year) but since we _always_ number from 0..12, and |
|
501 // the leap year determines whether or not month 5 (Adar 1) |
|
502 // is present, we allow 0..12 in any given year. |
|
503 while (month < 0) { |
|
504 month += monthsInYear(--extendedYear); |
|
505 } |
|
506 // Careful: allow 0..12 in all years |
|
507 while (month > 12) { |
|
508 month -= monthsInYear(extendedYear++); |
|
509 } |
|
510 |
|
511 switch (month) { |
|
512 case HESHVAN: |
|
513 case KISLEV: |
|
514 // These two month lengths can vary |
|
515 return MONTH_LENGTH[month][yearType(extendedYear)]; |
|
516 |
|
517 default: |
|
518 // The rest are a fixed length |
|
519 return MONTH_LENGTH[month][0]; |
|
520 } |
|
521 } |
|
522 |
|
523 /** |
|
524 * Returns the number of days in the given Hebrew year |
|
525 * @internal |
|
526 */ |
|
527 int32_t HebrewCalendar::handleGetYearLength(int32_t eyear) const { |
|
528 UErrorCode status = U_ZERO_ERROR; |
|
529 return startOfYear(eyear+1, status) - startOfYear(eyear, status); |
|
530 } |
|
531 |
|
532 //------------------------------------------------------------------------- |
|
533 // Functions for converting from milliseconds to field values |
|
534 //------------------------------------------------------------------------- |
|
535 |
|
536 /** |
|
537 * Subclasses may override this method to compute several fields |
|
538 * specific to each calendar system. These are: |
|
539 * |
|
540 * <ul><li>ERA |
|
541 * <li>YEAR |
|
542 * <li>MONTH |
|
543 * <li>DAY_OF_MONTH |
|
544 * <li>DAY_OF_YEAR |
|
545 * <li>EXTENDED_YEAR</ul> |
|
546 * |
|
547 * Subclasses can refer to the DAY_OF_WEEK and DOW_LOCAL fields, |
|
548 * which will be set when this method is called. Subclasses can |
|
549 * also call the getGregorianXxx() methods to obtain Gregorian |
|
550 * calendar equivalents for the given Julian day. |
|
551 * |
|
552 * <p>In addition, subclasses should compute any subclass-specific |
|
553 * fields, that is, fields from BASE_FIELD_COUNT to |
|
554 * getFieldCount() - 1. |
|
555 * @internal |
|
556 */ |
|
557 void HebrewCalendar::handleComputeFields(int32_t julianDay, UErrorCode &status) { |
|
558 int32_t d = julianDay - 347997; |
|
559 double m = ((d * (double)DAY_PARTS)/ (double) MONTH_PARTS); // Months (approx) |
|
560 int32_t year = (int32_t)( ((19. * m + 234.) / 235.) + 1.); // Years (approx) |
|
561 int32_t ys = startOfYear(year, status); // 1st day of year |
|
562 int32_t dayOfYear = (d - ys); |
|
563 |
|
564 // Because of the postponement rules, it's possible to guess wrong. Fix it. |
|
565 while (dayOfYear < 1) { |
|
566 year--; |
|
567 ys = startOfYear(year, status); |
|
568 dayOfYear = (d - ys); |
|
569 } |
|
570 |
|
571 // Now figure out which month we're in, and the date within that month |
|
572 int32_t type = yearType(year); |
|
573 UBool isLeap = isLeapYear(year); |
|
574 |
|
575 int32_t month = 0; |
|
576 int32_t momax = sizeof(MONTH_START) / (3 * sizeof(MONTH_START[0][0])); |
|
577 while (month < momax && dayOfYear > ( isLeap ? LEAP_MONTH_START[month][type] : MONTH_START[month][type] ) ) { |
|
578 month++; |
|
579 } |
|
580 if (month >= momax || month<=0) { |
|
581 // TODO: I found dayOfYear could be out of range when |
|
582 // a large value is set to julianDay. I patched startOfYear |
|
583 // to reduce the chace, but it could be still reproduced either |
|
584 // by startOfYear or other places. For now, we check |
|
585 // the month is in valid range to avoid out of array index |
|
586 // access problem here. However, we need to carefully review |
|
587 // the calendar implementation to check the extreme limit of |
|
588 // each calendar field and the code works well for any values |
|
589 // in the valid value range. -yoshito |
|
590 status = U_ILLEGAL_ARGUMENT_ERROR; |
|
591 return; |
|
592 } |
|
593 month--; |
|
594 int dayOfMonth = dayOfYear - (isLeap ? LEAP_MONTH_START[month][type] : MONTH_START[month][type]); |
|
595 |
|
596 internalSet(UCAL_ERA, 0); |
|
597 internalSet(UCAL_YEAR, year); |
|
598 internalSet(UCAL_EXTENDED_YEAR, year); |
|
599 internalSet(UCAL_MONTH, month); |
|
600 internalSet(UCAL_DAY_OF_MONTH, dayOfMonth); |
|
601 internalSet(UCAL_DAY_OF_YEAR, dayOfYear); |
|
602 } |
|
603 |
|
604 //------------------------------------------------------------------------- |
|
605 // Functions for converting from field values to milliseconds |
|
606 //------------------------------------------------------------------------- |
|
607 |
|
608 /** |
|
609 * @internal |
|
610 */ |
|
611 int32_t HebrewCalendar::handleGetExtendedYear() { |
|
612 int32_t year; |
|
613 if (newerField(UCAL_EXTENDED_YEAR, UCAL_YEAR) == UCAL_EXTENDED_YEAR) { |
|
614 year = internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1 |
|
615 } else { |
|
616 year = internalGet(UCAL_YEAR, 1); // Default to year 1 |
|
617 } |
|
618 return year; |
|
619 } |
|
620 |
|
621 /** |
|
622 * Return JD of start of given month/year. |
|
623 * @internal |
|
624 */ |
|
625 int32_t HebrewCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool /*useMonth*/) const { |
|
626 UErrorCode status = U_ZERO_ERROR; |
|
627 // Resolve out-of-range months. This is necessary in order to |
|
628 // obtain the correct year. We correct to |
|
629 // a 12- or 13-month year (add/subtract 12 or 13, depending |
|
630 // on the year) but since we _always_ number from 0..12, and |
|
631 // the leap year determines whether or not month 5 (Adar 1) |
|
632 // is present, we allow 0..12 in any given year. |
|
633 while (month < 0) { |
|
634 month += monthsInYear(--eyear); |
|
635 } |
|
636 // Careful: allow 0..12 in all years |
|
637 while (month > 12) { |
|
638 month -= monthsInYear(eyear++); |
|
639 } |
|
640 |
|
641 int32_t day = startOfYear(eyear, status); |
|
642 |
|
643 if(U_FAILURE(status)) { |
|
644 return 0; |
|
645 } |
|
646 |
|
647 if (month != 0) { |
|
648 if (isLeapYear(eyear)) { |
|
649 day += LEAP_MONTH_START[month][yearType(eyear)]; |
|
650 } else { |
|
651 day += MONTH_START[month][yearType(eyear)]; |
|
652 } |
|
653 } |
|
654 |
|
655 return (int) (day + 347997); |
|
656 } |
|
657 |
|
658 UBool |
|
659 HebrewCalendar::inDaylightTime(UErrorCode& status) const |
|
660 { |
|
661 // copied from GregorianCalendar |
|
662 if (U_FAILURE(status) || !getTimeZone().useDaylightTime()) |
|
663 return FALSE; |
|
664 |
|
665 // Force an update of the state of the Calendar. |
|
666 ((HebrewCalendar*)this)->complete(status); // cast away const |
|
667 |
|
668 return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE); |
|
669 } |
|
670 |
|
671 /** |
|
672 * The system maintains a static default century start date and Year. They are |
|
673 * initialized the first time they are used. Once the system default century date |
|
674 * and year are set, they do not change. |
|
675 */ |
|
676 static UDate gSystemDefaultCenturyStart = DBL_MIN; |
|
677 static int32_t gSystemDefaultCenturyStartYear = -1; |
|
678 static icu::UInitOnce gSystemDefaultCenturyInit = U_INITONCE_INITIALIZER; |
|
679 |
|
680 UBool HebrewCalendar::haveDefaultCentury() const |
|
681 { |
|
682 return TRUE; |
|
683 } |
|
684 |
|
685 static void U_CALLCONV initializeSystemDefaultCentury() |
|
686 { |
|
687 // initialize systemDefaultCentury and systemDefaultCenturyYear based |
|
688 // on the current time. They'll be set to 80 years before |
|
689 // the current time. |
|
690 UErrorCode status = U_ZERO_ERROR; |
|
691 HebrewCalendar calendar(Locale("@calendar=hebrew"),status); |
|
692 if (U_SUCCESS(status)) { |
|
693 calendar.setTime(Calendar::getNow(), status); |
|
694 calendar.add(UCAL_YEAR, -80, status); |
|
695 |
|
696 gSystemDefaultCenturyStart = calendar.getTime(status); |
|
697 gSystemDefaultCenturyStartYear = calendar.get(UCAL_YEAR, status); |
|
698 } |
|
699 // We have no recourse upon failure unless we want to propagate the failure |
|
700 // out. |
|
701 } |
|
702 |
|
703 |
|
704 UDate HebrewCalendar::defaultCenturyStart() const { |
|
705 // lazy-evaluate systemDefaultCenturyStart |
|
706 umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury); |
|
707 return gSystemDefaultCenturyStart; |
|
708 } |
|
709 |
|
710 int32_t HebrewCalendar::defaultCenturyStartYear() const { |
|
711 // lazy-evaluate systemDefaultCenturyStartYear |
|
712 umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury); |
|
713 return gSystemDefaultCenturyStartYear; |
|
714 } |
|
715 |
|
716 |
|
717 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(HebrewCalendar) |
|
718 |
|
719 U_NAMESPACE_END |
|
720 |
|
721 #endif // UCONFIG_NO_FORMATTING |
|
722 |