|
1 // |
|
2 // file: regexcmp.cpp |
|
3 // |
|
4 // Copyright (C) 2002-2013 International Business Machines Corporation and others. |
|
5 // All Rights Reserved. |
|
6 // |
|
7 // This file contains the ICU regular expression compiler, which is responsible |
|
8 // for processing a regular expression pattern into the compiled form that |
|
9 // is used by the match finding engine. |
|
10 // |
|
11 |
|
12 #include "unicode/utypes.h" |
|
13 |
|
14 #if !UCONFIG_NO_REGULAR_EXPRESSIONS |
|
15 |
|
16 #include "unicode/ustring.h" |
|
17 #include "unicode/unistr.h" |
|
18 #include "unicode/uniset.h" |
|
19 #include "unicode/uchar.h" |
|
20 #include "unicode/uchriter.h" |
|
21 #include "unicode/parsepos.h" |
|
22 #include "unicode/parseerr.h" |
|
23 #include "unicode/regex.h" |
|
24 #include "unicode/utf.h" |
|
25 #include "unicode/utf16.h" |
|
26 #include "patternprops.h" |
|
27 #include "putilimp.h" |
|
28 #include "cmemory.h" |
|
29 #include "cstring.h" |
|
30 #include "uvectr32.h" |
|
31 #include "uvectr64.h" |
|
32 #include "uassert.h" |
|
33 #include "ucln_in.h" |
|
34 #include "uinvchar.h" |
|
35 |
|
36 #include "regeximp.h" |
|
37 #include "regexcst.h" // Contains state table for the regex pattern parser. |
|
38 // generated by a Perl script. |
|
39 #include "regexcmp.h" |
|
40 #include "regexst.h" |
|
41 #include "regextxt.h" |
|
42 |
|
43 |
|
44 |
|
45 U_NAMESPACE_BEGIN |
|
46 |
|
47 |
|
48 //------------------------------------------------------------------------------ |
|
49 // |
|
50 // Constructor. |
|
51 // |
|
52 //------------------------------------------------------------------------------ |
|
53 RegexCompile::RegexCompile(RegexPattern *rxp, UErrorCode &status) : |
|
54 fParenStack(status), fSetStack(status), fSetOpStack(status) |
|
55 { |
|
56 // Lazy init of all shared global sets (needed for init()'s empty text) |
|
57 RegexStaticSets::initGlobals(&status); |
|
58 |
|
59 fStatus = &status; |
|
60 |
|
61 fRXPat = rxp; |
|
62 fScanIndex = 0; |
|
63 fLastChar = -1; |
|
64 fPeekChar = -1; |
|
65 fLineNum = 1; |
|
66 fCharNum = 0; |
|
67 fQuoteMode = FALSE; |
|
68 fInBackslashQuote = FALSE; |
|
69 fModeFlags = fRXPat->fFlags | 0x80000000; |
|
70 fEOLComments = TRUE; |
|
71 |
|
72 fMatchOpenParen = -1; |
|
73 fMatchCloseParen = -1; |
|
74 |
|
75 if (U_SUCCESS(status) && U_FAILURE(rxp->fDeferredStatus)) { |
|
76 status = rxp->fDeferredStatus; |
|
77 } |
|
78 } |
|
79 |
|
80 static const UChar chAmp = 0x26; // '&' |
|
81 static const UChar chDash = 0x2d; // '-' |
|
82 |
|
83 |
|
84 //------------------------------------------------------------------------------ |
|
85 // |
|
86 // Destructor |
|
87 // |
|
88 //------------------------------------------------------------------------------ |
|
89 RegexCompile::~RegexCompile() { |
|
90 } |
|
91 |
|
92 static inline void addCategory(UnicodeSet *set, int32_t value, UErrorCode& ec) { |
|
93 set->addAll(UnicodeSet().applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, value, ec)); |
|
94 } |
|
95 |
|
96 //------------------------------------------------------------------------------ |
|
97 // |
|
98 // Compile regex pattern. The state machine for rexexp pattern parsing is here. |
|
99 // The state tables are hand-written in the file regexcst.txt, |
|
100 // and converted to the form used here by a perl |
|
101 // script regexcst.pl |
|
102 // |
|
103 //------------------------------------------------------------------------------ |
|
104 void RegexCompile::compile( |
|
105 const UnicodeString &pat, // Source pat to be compiled. |
|
106 UParseError &pp, // Error position info |
|
107 UErrorCode &e) // Error Code |
|
108 { |
|
109 fRXPat->fPatternString = new UnicodeString(pat); |
|
110 UText patternText = UTEXT_INITIALIZER; |
|
111 utext_openConstUnicodeString(&patternText, fRXPat->fPatternString, &e); |
|
112 |
|
113 if (U_SUCCESS(e)) { |
|
114 compile(&patternText, pp, e); |
|
115 utext_close(&patternText); |
|
116 } |
|
117 } |
|
118 |
|
119 // |
|
120 // compile, UText mode |
|
121 // All the work is actually done here. |
|
122 // |
|
123 void RegexCompile::compile( |
|
124 UText *pat, // Source pat to be compiled. |
|
125 UParseError &pp, // Error position info |
|
126 UErrorCode &e) // Error Code |
|
127 { |
|
128 fStatus = &e; |
|
129 fParseErr = &pp; |
|
130 fStackPtr = 0; |
|
131 fStack[fStackPtr] = 0; |
|
132 |
|
133 if (U_FAILURE(*fStatus)) { |
|
134 return; |
|
135 } |
|
136 |
|
137 // There should be no pattern stuff in the RegexPattern object. They can not be reused. |
|
138 U_ASSERT(fRXPat->fPattern == NULL || utext_nativeLength(fRXPat->fPattern) == 0); |
|
139 |
|
140 // Prepare the RegexPattern object to receive the compiled pattern. |
|
141 fRXPat->fPattern = utext_clone(fRXPat->fPattern, pat, FALSE, TRUE, fStatus); |
|
142 fRXPat->fStaticSets = RegexStaticSets::gStaticSets->fPropSets; |
|
143 fRXPat->fStaticSets8 = RegexStaticSets::gStaticSets->fPropSets8; |
|
144 |
|
145 |
|
146 // Initialize the pattern scanning state machine |
|
147 fPatternLength = utext_nativeLength(pat); |
|
148 uint16_t state = 1; |
|
149 const RegexTableEl *tableEl; |
|
150 |
|
151 // UREGEX_LITERAL force entire pattern to be treated as a literal string. |
|
152 if (fModeFlags & UREGEX_LITERAL) { |
|
153 fQuoteMode = TRUE; |
|
154 } |
|
155 |
|
156 nextChar(fC); // Fetch the first char from the pattern string. |
|
157 |
|
158 // |
|
159 // Main loop for the regex pattern parsing state machine. |
|
160 // Runs once per state transition. |
|
161 // Each time through optionally performs, depending on the state table, |
|
162 // - an advance to the the next pattern char |
|
163 // - an action to be performed. |
|
164 // - pushing or popping a state to/from the local state return stack. |
|
165 // file regexcst.txt is the source for the state table. The logic behind |
|
166 // recongizing the pattern syntax is there, not here. |
|
167 // |
|
168 for (;;) { |
|
169 // Bail out if anything has gone wrong. |
|
170 // Regex pattern parsing stops on the first error encountered. |
|
171 if (U_FAILURE(*fStatus)) { |
|
172 break; |
|
173 } |
|
174 |
|
175 U_ASSERT(state != 0); |
|
176 |
|
177 // Find the state table element that matches the input char from the pattern, or the |
|
178 // class of the input character. Start with the first table row for this |
|
179 // state, then linearly scan forward until we find a row that matches the |
|
180 // character. The last row for each state always matches all characters, so |
|
181 // the search will stop there, if not before. |
|
182 // |
|
183 tableEl = &gRuleParseStateTable[state]; |
|
184 REGEX_SCAN_DEBUG_PRINTF(("char, line, col = (\'%c\', %d, %d) state=%s ", |
|
185 fC.fChar, fLineNum, fCharNum, RegexStateNames[state])); |
|
186 |
|
187 for (;;) { // loop through table rows belonging to this state, looking for one |
|
188 // that matches the current input char. |
|
189 REGEX_SCAN_DEBUG_PRINTF((".")); |
|
190 if (tableEl->fCharClass < 127 && fC.fQuoted == FALSE && tableEl->fCharClass == fC.fChar) { |
|
191 // Table row specified an individual character, not a set, and |
|
192 // the input character is not quoted, and |
|
193 // the input character matched it. |
|
194 break; |
|
195 } |
|
196 if (tableEl->fCharClass == 255) { |
|
197 // Table row specified default, match anything character class. |
|
198 break; |
|
199 } |
|
200 if (tableEl->fCharClass == 254 && fC.fQuoted) { |
|
201 // Table row specified "quoted" and the char was quoted. |
|
202 break; |
|
203 } |
|
204 if (tableEl->fCharClass == 253 && fC.fChar == (UChar32)-1) { |
|
205 // Table row specified eof and we hit eof on the input. |
|
206 break; |
|
207 } |
|
208 |
|
209 if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class && |
|
210 fC.fQuoted == FALSE && // char is not escaped && |
|
211 fC.fChar != (UChar32)-1) { // char is not EOF |
|
212 U_ASSERT(tableEl->fCharClass <= 137); |
|
213 if (RegexStaticSets::gStaticSets->fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) { |
|
214 // Table row specified a character class, or set of characters, |
|
215 // and the current char matches it. |
|
216 break; |
|
217 } |
|
218 } |
|
219 |
|
220 // No match on this row, advance to the next row for this state, |
|
221 tableEl++; |
|
222 } |
|
223 REGEX_SCAN_DEBUG_PRINTF(("\n")); |
|
224 |
|
225 // |
|
226 // We've found the row of the state table that matches the current input |
|
227 // character from the rules string. |
|
228 // Perform any action specified by this row in the state table. |
|
229 if (doParseActions(tableEl->fAction) == FALSE) { |
|
230 // Break out of the state machine loop if the |
|
231 // the action signalled some kind of error, or |
|
232 // the action was to exit, occurs on normal end-of-rules-input. |
|
233 break; |
|
234 } |
|
235 |
|
236 if (tableEl->fPushState != 0) { |
|
237 fStackPtr++; |
|
238 if (fStackPtr >= kStackSize) { |
|
239 error(U_REGEX_INTERNAL_ERROR); |
|
240 REGEX_SCAN_DEBUG_PRINTF(("RegexCompile::parse() - state stack overflow.\n")); |
|
241 fStackPtr--; |
|
242 } |
|
243 fStack[fStackPtr] = tableEl->fPushState; |
|
244 } |
|
245 |
|
246 // |
|
247 // NextChar. This is where characters are actually fetched from the pattern. |
|
248 // Happens under control of the 'n' tag in the state table. |
|
249 // |
|
250 if (tableEl->fNextChar) { |
|
251 nextChar(fC); |
|
252 } |
|
253 |
|
254 // Get the next state from the table entry, or from the |
|
255 // state stack if the next state was specified as "pop". |
|
256 if (tableEl->fNextState != 255) { |
|
257 state = tableEl->fNextState; |
|
258 } else { |
|
259 state = fStack[fStackPtr]; |
|
260 fStackPtr--; |
|
261 if (fStackPtr < 0) { |
|
262 // state stack underflow |
|
263 // This will occur if the user pattern has mis-matched parentheses, |
|
264 // with extra close parens. |
|
265 // |
|
266 fStackPtr++; |
|
267 error(U_REGEX_MISMATCHED_PAREN); |
|
268 } |
|
269 } |
|
270 |
|
271 } |
|
272 |
|
273 if (U_FAILURE(*fStatus)) { |
|
274 // Bail out if the pattern had errors. |
|
275 // Set stack cleanup: a successful compile would have left it empty, |
|
276 // but errors can leave temporary sets hanging around. |
|
277 while (!fSetStack.empty()) { |
|
278 delete (UnicodeSet *)fSetStack.pop(); |
|
279 } |
|
280 return; |
|
281 } |
|
282 |
|
283 // |
|
284 // The pattern has now been read and processed, and the compiled code generated. |
|
285 // |
|
286 |
|
287 // |
|
288 // Compute the number of digits requried for the largest capture group number. |
|
289 // |
|
290 fRXPat->fMaxCaptureDigits = 1; |
|
291 int32_t n = 10; |
|
292 int32_t groupCount = fRXPat->fGroupMap->size(); |
|
293 while (n <= groupCount) { |
|
294 fRXPat->fMaxCaptureDigits++; |
|
295 n *= 10; |
|
296 } |
|
297 |
|
298 // |
|
299 // The pattern's fFrameSize so far has accumulated the requirements for |
|
300 // storage for capture parentheses, counters, etc. that are encountered |
|
301 // in the pattern. Add space for the two variables that are always |
|
302 // present in the saved state: the input string position (int64_t) and |
|
303 // the position in the compiled pattern. |
|
304 // |
|
305 fRXPat->fFrameSize+=RESTACKFRAME_HDRCOUNT; |
|
306 |
|
307 // |
|
308 // Optimization pass 1: NOPs, back-references, and case-folding |
|
309 // |
|
310 stripNOPs(); |
|
311 |
|
312 // |
|
313 // Get bounds for the minimum and maximum length of a string that this |
|
314 // pattern can match. Used to avoid looking for matches in strings that |
|
315 // are too short. |
|
316 // |
|
317 fRXPat->fMinMatchLen = minMatchLength(3, fRXPat->fCompiledPat->size()-1); |
|
318 |
|
319 // |
|
320 // Optimization pass 2: match start type |
|
321 // |
|
322 matchStartType(); |
|
323 |
|
324 // |
|
325 // Set up fast latin-1 range sets |
|
326 // |
|
327 int32_t numSets = fRXPat->fSets->size(); |
|
328 fRXPat->fSets8 = new Regex8BitSet[numSets]; |
|
329 // Null pointer check. |
|
330 if (fRXPat->fSets8 == NULL) { |
|
331 e = *fStatus = U_MEMORY_ALLOCATION_ERROR; |
|
332 return; |
|
333 } |
|
334 int32_t i; |
|
335 for (i=0; i<numSets; i++) { |
|
336 UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(i); |
|
337 fRXPat->fSets8[i].init(s); |
|
338 } |
|
339 |
|
340 } |
|
341 |
|
342 |
|
343 |
|
344 |
|
345 |
|
346 //------------------------------------------------------------------------------ |
|
347 // |
|
348 // doParseAction Do some action during regex pattern parsing. |
|
349 // Called by the parse state machine. |
|
350 // |
|
351 // Generation of the match engine PCode happens here, or |
|
352 // in functions called from the parse actions defined here. |
|
353 // |
|
354 // |
|
355 //------------------------------------------------------------------------------ |
|
356 UBool RegexCompile::doParseActions(int32_t action) |
|
357 { |
|
358 UBool returnVal = TRUE; |
|
359 |
|
360 switch ((Regex_PatternParseAction)action) { |
|
361 |
|
362 case doPatStart: |
|
363 // Start of pattern compiles to: |
|
364 //0 SAVE 2 Fall back to position of FAIL |
|
365 //1 jmp 3 |
|
366 //2 FAIL Stop if we ever reach here. |
|
367 //3 NOP Dummy, so start of pattern looks the same as |
|
368 // the start of an ( grouping. |
|
369 //4 NOP Resreved, will be replaced by a save if there are |
|
370 // OR | operators at the top level |
|
371 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_STATE_SAVE, 2), *fStatus); |
|
372 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_JMP, 3), *fStatus); |
|
373 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_FAIL, 0), *fStatus); |
|
374 |
|
375 // Standard open nonCapture paren action emits the two NOPs and |
|
376 // sets up the paren stack frame. |
|
377 doParseActions(doOpenNonCaptureParen); |
|
378 break; |
|
379 |
|
380 case doPatFinish: |
|
381 // We've scanned to the end of the pattern |
|
382 // The end of pattern compiles to: |
|
383 // URX_END |
|
384 // which will stop the runtime match engine. |
|
385 // Encountering end of pattern also behaves like a close paren, |
|
386 // and forces fixups of the State Save at the beginning of the compiled pattern |
|
387 // and of any OR operations at the top level. |
|
388 // |
|
389 handleCloseParen(); |
|
390 if (fParenStack.size() > 0) { |
|
391 // Missing close paren in pattern. |
|
392 error(U_REGEX_MISMATCHED_PAREN); |
|
393 } |
|
394 |
|
395 // add the END operation to the compiled pattern. |
|
396 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_END, 0), *fStatus); |
|
397 |
|
398 // Terminate the pattern compilation state machine. |
|
399 returnVal = FALSE; |
|
400 break; |
|
401 |
|
402 |
|
403 |
|
404 case doOrOperator: |
|
405 // Scanning a '|', as in (A|B) |
|
406 { |
|
407 // Generate code for any pending literals preceding the '|' |
|
408 fixLiterals(FALSE); |
|
409 |
|
410 // Insert a SAVE operation at the start of the pattern section preceding |
|
411 // this OR at this level. This SAVE will branch the match forward |
|
412 // to the right hand side of the OR in the event that the left hand |
|
413 // side fails to match and backtracks. Locate the position for the |
|
414 // save from the location on the top of the parentheses stack. |
|
415 int32_t savePosition = fParenStack.popi(); |
|
416 int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(savePosition); |
|
417 U_ASSERT(URX_TYPE(op) == URX_NOP); // original contents of reserved location |
|
418 op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1); |
|
419 fRXPat->fCompiledPat->setElementAt(op, savePosition); |
|
420 |
|
421 // Append an JMP operation into the compiled pattern. The operand for |
|
422 // the JMP will eventually be the location following the ')' for the |
|
423 // group. This will be patched in later, when the ')' is encountered. |
|
424 op = URX_BUILD(URX_JMP, 0); |
|
425 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
426 |
|
427 // Push the position of the newly added JMP op onto the parentheses stack. |
|
428 // This registers if for fixup when this block's close paren is encountered. |
|
429 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); |
|
430 |
|
431 // Append a NOP to the compiled pattern. This is the slot reserved |
|
432 // for a SAVE in the event that there is yet another '|' following |
|
433 // this one. |
|
434 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); |
|
435 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); |
|
436 } |
|
437 break; |
|
438 |
|
439 |
|
440 case doOpenCaptureParen: |
|
441 // Open Paren. |
|
442 // Compile to a |
|
443 // - NOP, which later may be replaced by a save-state if the |
|
444 // parenthesized group gets a * quantifier, followed by |
|
445 // - START_CAPTURE n where n is stack frame offset to the capture group variables. |
|
446 // - NOP, which may later be replaced by a save-state if there |
|
447 // is an '|' alternation within the parens. |
|
448 // |
|
449 // Each capture group gets three slots in the save stack frame: |
|
450 // 0: Capture Group start position (in input string being matched.) |
|
451 // 1: Capture Group end position. |
|
452 // 2: Start of Match-in-progress. |
|
453 // The first two locations are for a completed capture group, and are |
|
454 // referred to by back references and the like. |
|
455 // The third location stores the capture start position when an START_CAPTURE is |
|
456 // encountered. This will be promoted to a completed capture when (and if) the corresponding |
|
457 // END_CAPTURE is encountered. |
|
458 { |
|
459 fixLiterals(); |
|
460 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); |
|
461 int32_t varsLoc = fRXPat->fFrameSize; // Reserve three slots in match stack frame. |
|
462 fRXPat->fFrameSize += 3; |
|
463 int32_t cop = URX_BUILD(URX_START_CAPTURE, varsLoc); |
|
464 fRXPat->fCompiledPat->addElement(cop, *fStatus); |
|
465 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); |
|
466 |
|
467 // On the Parentheses stack, start a new frame and add the postions |
|
468 // of the two NOPs. Depending on what follows in the pattern, the |
|
469 // NOPs may be changed to SAVE_STATE or JMP ops, with a target |
|
470 // address of the end of the parenthesized group. |
|
471 fParenStack.push(fModeFlags, *fStatus); // Match mode state |
|
472 fParenStack.push(capturing, *fStatus); // Frame type. |
|
473 fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP location |
|
474 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc |
|
475 |
|
476 // Save the mapping from group number to stack frame variable position. |
|
477 fRXPat->fGroupMap->addElement(varsLoc, *fStatus); |
|
478 } |
|
479 break; |
|
480 |
|
481 case doOpenNonCaptureParen: |
|
482 // Open non-caputuring (grouping only) Paren. |
|
483 // Compile to a |
|
484 // - NOP, which later may be replaced by a save-state if the |
|
485 // parenthesized group gets a * quantifier, followed by |
|
486 // - NOP, which may later be replaced by a save-state if there |
|
487 // is an '|' alternation within the parens. |
|
488 { |
|
489 fixLiterals(); |
|
490 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); |
|
491 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); |
|
492 |
|
493 // On the Parentheses stack, start a new frame and add the postions |
|
494 // of the two NOPs. |
|
495 fParenStack.push(fModeFlags, *fStatus); // Match mode state |
|
496 fParenStack.push(plain, *fStatus); // Begin a new frame. |
|
497 fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location |
|
498 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc |
|
499 } |
|
500 break; |
|
501 |
|
502 |
|
503 case doOpenAtomicParen: |
|
504 // Open Atomic Paren. (?> |
|
505 // Compile to a |
|
506 // - NOP, which later may be replaced if the parenthesized group |
|
507 // has a quantifier, followed by |
|
508 // - STO_SP save state stack position, so it can be restored at the ")" |
|
509 // - NOP, which may later be replaced by a save-state if there |
|
510 // is an '|' alternation within the parens. |
|
511 { |
|
512 fixLiterals(); |
|
513 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); |
|
514 int32_t varLoc = fRXPat->fDataSize; // Reserve a data location for saving the |
|
515 fRXPat->fDataSize += 1; // state stack ptr. |
|
516 int32_t stoOp = URX_BUILD(URX_STO_SP, varLoc); |
|
517 fRXPat->fCompiledPat->addElement(stoOp, *fStatus); |
|
518 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); |
|
519 |
|
520 // On the Parentheses stack, start a new frame and add the postions |
|
521 // of the two NOPs. Depending on what follows in the pattern, the |
|
522 // NOPs may be changed to SAVE_STATE or JMP ops, with a target |
|
523 // address of the end of the parenthesized group. |
|
524 fParenStack.push(fModeFlags, *fStatus); // Match mode state |
|
525 fParenStack.push(atomic, *fStatus); // Frame type. |
|
526 fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP |
|
527 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP |
|
528 } |
|
529 break; |
|
530 |
|
531 |
|
532 case doOpenLookAhead: |
|
533 // Positive Look-ahead (?= stuff ) |
|
534 // |
|
535 // Note: Addition of transparent input regions, with the need to |
|
536 // restore the original regions when failing out of a lookahead |
|
537 // block, complicated this sequence. Some conbined opcodes |
|
538 // might make sense - or might not, lookahead aren't that common. |
|
539 // |
|
540 // Caution: min match length optimization knows about this |
|
541 // sequence; don't change without making updates there too. |
|
542 // |
|
543 // Compiles to |
|
544 // 1 START_LA dataLoc Saves SP, Input Pos |
|
545 // 2. STATE_SAVE 4 on failure of lookahead, goto 4 |
|
546 // 3 JMP 6 continue ... |
|
547 // |
|
548 // 4. LA_END Look Ahead failed. Restore regions. |
|
549 // 5. BACKTRACK and back track again. |
|
550 // |
|
551 // 6. NOP reserved for use by quantifiers on the block. |
|
552 // Look-ahead can't have quantifiers, but paren stack |
|
553 // compile time conventions require the slot anyhow. |
|
554 // 7. NOP may be replaced if there is are '|' ops in the block. |
|
555 // 8. code for parenthesized stuff. |
|
556 // 9. LA_END |
|
557 // |
|
558 // Two data slots are reserved, for saving the stack ptr and the input position. |
|
559 { |
|
560 fixLiterals(); |
|
561 int32_t dataLoc = fRXPat->fDataSize; |
|
562 fRXPat->fDataSize += 2; |
|
563 int32_t op = URX_BUILD(URX_LA_START, dataLoc); |
|
564 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
565 |
|
566 op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+ 2); |
|
567 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
568 |
|
569 op = URX_BUILD(URX_JMP, fRXPat->fCompiledPat->size()+ 3); |
|
570 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
571 |
|
572 op = URX_BUILD(URX_LA_END, dataLoc); |
|
573 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
574 |
|
575 op = URX_BUILD(URX_BACKTRACK, 0); |
|
576 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
577 |
|
578 op = URX_BUILD(URX_NOP, 0); |
|
579 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
580 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
581 |
|
582 // On the Parentheses stack, start a new frame and add the postions |
|
583 // of the NOPs. |
|
584 fParenStack.push(fModeFlags, *fStatus); // Match mode state |
|
585 fParenStack.push(lookAhead, *fStatus); // Frame type. |
|
586 fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location |
|
587 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location |
|
588 } |
|
589 break; |
|
590 |
|
591 case doOpenLookAheadNeg: |
|
592 // Negated Lookahead. (?! stuff ) |
|
593 // Compiles to |
|
594 // 1. START_LA dataloc |
|
595 // 2. SAVE_STATE 7 // Fail within look-ahead block restores to this state, |
|
596 // // which continues with the match. |
|
597 // 3. NOP // Std. Open Paren sequence, for possible '|' |
|
598 // 4. code for parenthesized stuff. |
|
599 // 5. END_LA // Cut back stack, remove saved state from step 2. |
|
600 // 6. BACKTRACK // code in block succeeded, so neg. lookahead fails. |
|
601 // 7. END_LA // Restore match region, in case look-ahead was using |
|
602 // an alternate (transparent) region. |
|
603 { |
|
604 fixLiterals(); |
|
605 int32_t dataLoc = fRXPat->fDataSize; |
|
606 fRXPat->fDataSize += 2; |
|
607 int32_t op = URX_BUILD(URX_LA_START, dataLoc); |
|
608 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
609 |
|
610 op = URX_BUILD(URX_STATE_SAVE, 0); // dest address will be patched later. |
|
611 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
612 |
|
613 op = URX_BUILD(URX_NOP, 0); |
|
614 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
615 |
|
616 // On the Parentheses stack, start a new frame and add the postions |
|
617 // of the StateSave and NOP. |
|
618 fParenStack.push(fModeFlags, *fStatus); // Match mode state |
|
619 fParenStack.push(negLookAhead, *fStatus); // Frame type |
|
620 fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The STATE_SAVE location |
|
621 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location |
|
622 |
|
623 // Instructions #5 - #7 will be added when the ')' is encountered. |
|
624 } |
|
625 break; |
|
626 |
|
627 case doOpenLookBehind: |
|
628 { |
|
629 // Compile a (?<= look-behind open paren. |
|
630 // |
|
631 // Compiles to |
|
632 // 0 URX_LB_START dataLoc |
|
633 // 1 URX_LB_CONT dataLoc |
|
634 // 2 MinMatchLen |
|
635 // 3 MaxMatchLen |
|
636 // 4 URX_NOP Standard '(' boilerplate. |
|
637 // 5 URX_NOP Reserved slot for use with '|' ops within (block). |
|
638 // 6 <code for LookBehind expression> |
|
639 // 7 URX_LB_END dataLoc # Check match len, restore input len |
|
640 // 8 URX_LA_END dataLoc # Restore stack, input pos |
|
641 // |
|
642 // Allocate a block of matcher data, to contain (when running a match) |
|
643 // 0: Stack ptr on entry |
|
644 // 1: Input Index on entry |
|
645 // 2: Start index of match current match attempt. |
|
646 // 3: Original Input String len. |
|
647 |
|
648 // Generate match code for any pending literals. |
|
649 fixLiterals(); |
|
650 |
|
651 // Allocate data space |
|
652 int32_t dataLoc = fRXPat->fDataSize; |
|
653 fRXPat->fDataSize += 4; |
|
654 |
|
655 // Emit URX_LB_START |
|
656 int32_t op = URX_BUILD(URX_LB_START, dataLoc); |
|
657 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
658 |
|
659 // Emit URX_LB_CONT |
|
660 op = URX_BUILD(URX_LB_CONT, dataLoc); |
|
661 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
662 fRXPat->fCompiledPat->addElement(0, *fStatus); // MinMatchLength. To be filled later. |
|
663 fRXPat->fCompiledPat->addElement(0, *fStatus); // MaxMatchLength. To be filled later. |
|
664 |
|
665 // Emit the NOP |
|
666 op = URX_BUILD(URX_NOP, 0); |
|
667 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
668 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
669 |
|
670 // On the Parentheses stack, start a new frame and add the postions |
|
671 // of the URX_LB_CONT and the NOP. |
|
672 fParenStack.push(fModeFlags, *fStatus); // Match mode state |
|
673 fParenStack.push(lookBehind, *fStatus); // Frame type |
|
674 fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location |
|
675 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location |
|
676 |
|
677 // The final two instructions will be added when the ')' is encountered. |
|
678 } |
|
679 |
|
680 break; |
|
681 |
|
682 case doOpenLookBehindNeg: |
|
683 { |
|
684 // Compile a (?<! negated look-behind open paren. |
|
685 // |
|
686 // Compiles to |
|
687 // 0 URX_LB_START dataLoc # Save entry stack, input len |
|
688 // 1 URX_LBN_CONT dataLoc # Iterate possible match positions |
|
689 // 2 MinMatchLen |
|
690 // 3 MaxMatchLen |
|
691 // 4 continueLoc (9) |
|
692 // 5 URX_NOP Standard '(' boilerplate. |
|
693 // 6 URX_NOP Reserved slot for use with '|' ops within (block). |
|
694 // 7 <code for LookBehind expression> |
|
695 // 8 URX_LBN_END dataLoc # Check match len, cause a FAIL |
|
696 // 9 ... |
|
697 // |
|
698 // Allocate a block of matcher data, to contain (when running a match) |
|
699 // 0: Stack ptr on entry |
|
700 // 1: Input Index on entry |
|
701 // 2: Start index of match current match attempt. |
|
702 // 3: Original Input String len. |
|
703 |
|
704 // Generate match code for any pending literals. |
|
705 fixLiterals(); |
|
706 |
|
707 // Allocate data space |
|
708 int32_t dataLoc = fRXPat->fDataSize; |
|
709 fRXPat->fDataSize += 4; |
|
710 |
|
711 // Emit URX_LB_START |
|
712 int32_t op = URX_BUILD(URX_LB_START, dataLoc); |
|
713 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
714 |
|
715 // Emit URX_LBN_CONT |
|
716 op = URX_BUILD(URX_LBN_CONT, dataLoc); |
|
717 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
718 fRXPat->fCompiledPat->addElement(0, *fStatus); // MinMatchLength. To be filled later. |
|
719 fRXPat->fCompiledPat->addElement(0, *fStatus); // MaxMatchLength. To be filled later. |
|
720 fRXPat->fCompiledPat->addElement(0, *fStatus); // Continue Loc. To be filled later. |
|
721 |
|
722 // Emit the NOP |
|
723 op = URX_BUILD(URX_NOP, 0); |
|
724 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
725 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
726 |
|
727 // On the Parentheses stack, start a new frame and add the postions |
|
728 // of the URX_LB_CONT and the NOP. |
|
729 fParenStack.push(fModeFlags, *fStatus); // Match mode state |
|
730 fParenStack.push(lookBehindN, *fStatus); // Frame type |
|
731 fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location |
|
732 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location |
|
733 |
|
734 // The final two instructions will be added when the ')' is encountered. |
|
735 } |
|
736 break; |
|
737 |
|
738 case doConditionalExpr: |
|
739 // Conditionals such as (?(1)a:b) |
|
740 case doPerlInline: |
|
741 // Perl inline-condtionals. (?{perl code}a|b) We're not perl, no way to do them. |
|
742 error(U_REGEX_UNIMPLEMENTED); |
|
743 break; |
|
744 |
|
745 |
|
746 case doCloseParen: |
|
747 handleCloseParen(); |
|
748 if (fParenStack.size() <= 0) { |
|
749 // Extra close paren, or missing open paren. |
|
750 error(U_REGEX_MISMATCHED_PAREN); |
|
751 } |
|
752 break; |
|
753 |
|
754 case doNOP: |
|
755 break; |
|
756 |
|
757 |
|
758 case doBadOpenParenType: |
|
759 case doRuleError: |
|
760 error(U_REGEX_RULE_SYNTAX); |
|
761 break; |
|
762 |
|
763 |
|
764 case doMismatchedParenErr: |
|
765 error(U_REGEX_MISMATCHED_PAREN); |
|
766 break; |
|
767 |
|
768 case doPlus: |
|
769 // Normal '+' compiles to |
|
770 // 1. stuff to be repeated (already built) |
|
771 // 2. jmp-sav 1 |
|
772 // 3. ... |
|
773 // |
|
774 // Or, if the item to be repeated can match a zero length string, |
|
775 // 1. STO_INP_LOC data-loc |
|
776 // 2. body of stuff to be repeated |
|
777 // 3. JMP_SAV_X 2 |
|
778 // 4. ... |
|
779 |
|
780 // |
|
781 // Or, if the item to be repeated is simple |
|
782 // 1. Item to be repeated. |
|
783 // 2. LOOP_SR_I set number (assuming repeated item is a set ref) |
|
784 // 3. LOOP_C stack location |
|
785 { |
|
786 int32_t topLoc = blockTopLoc(FALSE); // location of item #1 |
|
787 int32_t frameLoc; |
|
788 |
|
789 // Check for simple constructs, which may get special optimized code. |
|
790 if (topLoc == fRXPat->fCompiledPat->size() - 1) { |
|
791 int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc); |
|
792 |
|
793 if (URX_TYPE(repeatedOp) == URX_SETREF) { |
|
794 // Emit optimized code for [char set]+ |
|
795 int32_t loopOpI = URX_BUILD(URX_LOOP_SR_I, URX_VAL(repeatedOp)); |
|
796 fRXPat->fCompiledPat->addElement(loopOpI, *fStatus); |
|
797 frameLoc = fRXPat->fFrameSize; |
|
798 fRXPat->fFrameSize++; |
|
799 int32_t loopOpC = URX_BUILD(URX_LOOP_C, frameLoc); |
|
800 fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); |
|
801 break; |
|
802 } |
|
803 |
|
804 if (URX_TYPE(repeatedOp) == URX_DOTANY || |
|
805 URX_TYPE(repeatedOp) == URX_DOTANY_ALL || |
|
806 URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) { |
|
807 // Emit Optimized code for .+ operations. |
|
808 int32_t loopOpI = URX_BUILD(URX_LOOP_DOT_I, 0); |
|
809 if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) { |
|
810 // URX_LOOP_DOT_I operand is a flag indicating ". matches any" mode. |
|
811 loopOpI |= 1; |
|
812 } |
|
813 if (fModeFlags & UREGEX_UNIX_LINES) { |
|
814 loopOpI |= 2; |
|
815 } |
|
816 fRXPat->fCompiledPat->addElement(loopOpI, *fStatus); |
|
817 frameLoc = fRXPat->fFrameSize; |
|
818 fRXPat->fFrameSize++; |
|
819 int32_t loopOpC = URX_BUILD(URX_LOOP_C, frameLoc); |
|
820 fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); |
|
821 break; |
|
822 } |
|
823 |
|
824 } |
|
825 |
|
826 // General case. |
|
827 |
|
828 // Check for minimum match length of zero, which requires |
|
829 // extra loop-breaking code. |
|
830 if (minMatchLength(topLoc, fRXPat->fCompiledPat->size()-1) == 0) { |
|
831 // Zero length match is possible. |
|
832 // Emit the code sequence that can handle it. |
|
833 insertOp(topLoc); |
|
834 frameLoc = fRXPat->fFrameSize; |
|
835 fRXPat->fFrameSize++; |
|
836 |
|
837 int32_t op = URX_BUILD(URX_STO_INP_LOC, frameLoc); |
|
838 fRXPat->fCompiledPat->setElementAt(op, topLoc); |
|
839 |
|
840 op = URX_BUILD(URX_JMP_SAV_X, topLoc+1); |
|
841 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
842 } else { |
|
843 // Simpler code when the repeated body must match something non-empty |
|
844 int32_t jmpOp = URX_BUILD(URX_JMP_SAV, topLoc); |
|
845 fRXPat->fCompiledPat->addElement(jmpOp, *fStatus); |
|
846 } |
|
847 } |
|
848 break; |
|
849 |
|
850 case doNGPlus: |
|
851 // Non-greedy '+?' compiles to |
|
852 // 1. stuff to be repeated (already built) |
|
853 // 2. state-save 1 |
|
854 // 3. ... |
|
855 { |
|
856 int32_t topLoc = blockTopLoc(FALSE); |
|
857 int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, topLoc); |
|
858 fRXPat->fCompiledPat->addElement(saveStateOp, *fStatus); |
|
859 } |
|
860 break; |
|
861 |
|
862 |
|
863 case doOpt: |
|
864 // Normal (greedy) ? quantifier. |
|
865 // Compiles to |
|
866 // 1. state save 3 |
|
867 // 2. body of optional block |
|
868 // 3. ... |
|
869 // Insert the state save into the compiled pattern, and we're done. |
|
870 { |
|
871 int32_t saveStateLoc = blockTopLoc(TRUE); |
|
872 int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()); |
|
873 fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc); |
|
874 } |
|
875 break; |
|
876 |
|
877 case doNGOpt: |
|
878 // Non-greedy ?? quantifier |
|
879 // compiles to |
|
880 // 1. jmp 4 |
|
881 // 2. body of optional block |
|
882 // 3 jmp 5 |
|
883 // 4. state save 2 |
|
884 // 5 ... |
|
885 // This code is less than ideal, with two jmps instead of one, because we can only |
|
886 // insert one instruction at the top of the block being iterated. |
|
887 { |
|
888 int32_t jmp1_loc = blockTopLoc(TRUE); |
|
889 int32_t jmp2_loc = fRXPat->fCompiledPat->size(); |
|
890 |
|
891 int32_t jmp1_op = URX_BUILD(URX_JMP, jmp2_loc+1); |
|
892 fRXPat->fCompiledPat->setElementAt(jmp1_op, jmp1_loc); |
|
893 |
|
894 int32_t jmp2_op = URX_BUILD(URX_JMP, jmp2_loc+2); |
|
895 fRXPat->fCompiledPat->addElement(jmp2_op, *fStatus); |
|
896 |
|
897 int32_t save_op = URX_BUILD(URX_STATE_SAVE, jmp1_loc+1); |
|
898 fRXPat->fCompiledPat->addElement(save_op, *fStatus); |
|
899 } |
|
900 break; |
|
901 |
|
902 |
|
903 case doStar: |
|
904 // Normal (greedy) * quantifier. |
|
905 // Compiles to |
|
906 // 1. STATE_SAVE 4 |
|
907 // 2. body of stuff being iterated over |
|
908 // 3. JMP_SAV 2 |
|
909 // 4. ... |
|
910 // |
|
911 // Or, if the body is a simple [Set], |
|
912 // 1. LOOP_SR_I set number |
|
913 // 2. LOOP_C stack location |
|
914 // ... |
|
915 // |
|
916 // Or if this is a .* |
|
917 // 1. LOOP_DOT_I (. matches all mode flag) |
|
918 // 2. LOOP_C stack location |
|
919 // |
|
920 // Or, if the body can match a zero-length string, to inhibit infinite loops, |
|
921 // 1. STATE_SAVE 5 |
|
922 // 2. STO_INP_LOC data-loc |
|
923 // 3. body of stuff |
|
924 // 4. JMP_SAV_X 2 |
|
925 // 5. ... |
|
926 { |
|
927 // location of item #1, the STATE_SAVE |
|
928 int32_t topLoc = blockTopLoc(FALSE); |
|
929 int32_t dataLoc = -1; |
|
930 |
|
931 // Check for simple *, where the construct being repeated |
|
932 // compiled to single opcode, and might be optimizable. |
|
933 if (topLoc == fRXPat->fCompiledPat->size() - 1) { |
|
934 int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc); |
|
935 |
|
936 if (URX_TYPE(repeatedOp) == URX_SETREF) { |
|
937 // Emit optimized code for a [char set]* |
|
938 int32_t loopOpI = URX_BUILD(URX_LOOP_SR_I, URX_VAL(repeatedOp)); |
|
939 fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc); |
|
940 dataLoc = fRXPat->fFrameSize; |
|
941 fRXPat->fFrameSize++; |
|
942 int32_t loopOpC = URX_BUILD(URX_LOOP_C, dataLoc); |
|
943 fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); |
|
944 break; |
|
945 } |
|
946 |
|
947 if (URX_TYPE(repeatedOp) == URX_DOTANY || |
|
948 URX_TYPE(repeatedOp) == URX_DOTANY_ALL || |
|
949 URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) { |
|
950 // Emit Optimized code for .* operations. |
|
951 int32_t loopOpI = URX_BUILD(URX_LOOP_DOT_I, 0); |
|
952 if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) { |
|
953 // URX_LOOP_DOT_I operand is a flag indicating . matches any mode. |
|
954 loopOpI |= 1; |
|
955 } |
|
956 if ((fModeFlags & UREGEX_UNIX_LINES) != 0) { |
|
957 loopOpI |= 2; |
|
958 } |
|
959 fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc); |
|
960 dataLoc = fRXPat->fFrameSize; |
|
961 fRXPat->fFrameSize++; |
|
962 int32_t loopOpC = URX_BUILD(URX_LOOP_C, dataLoc); |
|
963 fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); |
|
964 break; |
|
965 } |
|
966 } |
|
967 |
|
968 // Emit general case code for this * |
|
969 // The optimizations did not apply. |
|
970 |
|
971 int32_t saveStateLoc = blockTopLoc(TRUE); |
|
972 int32_t jmpOp = URX_BUILD(URX_JMP_SAV, saveStateLoc+1); |
|
973 |
|
974 // Check for minimum match length of zero, which requires |
|
975 // extra loop-breaking code. |
|
976 if (minMatchLength(saveStateLoc, fRXPat->fCompiledPat->size()-1) == 0) { |
|
977 insertOp(saveStateLoc); |
|
978 dataLoc = fRXPat->fFrameSize; |
|
979 fRXPat->fFrameSize++; |
|
980 |
|
981 int32_t op = URX_BUILD(URX_STO_INP_LOC, dataLoc); |
|
982 fRXPat->fCompiledPat->setElementAt(op, saveStateLoc+1); |
|
983 jmpOp = URX_BUILD(URX_JMP_SAV_X, saveStateLoc+2); |
|
984 } |
|
985 |
|
986 // Locate the position in the compiled pattern where the match will continue |
|
987 // after completing the *. (4 or 5 in the comment above) |
|
988 int32_t continueLoc = fRXPat->fCompiledPat->size()+1; |
|
989 |
|
990 // Put together the save state op store it into the compiled code. |
|
991 int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, continueLoc); |
|
992 fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc); |
|
993 |
|
994 // Append the URX_JMP_SAV or URX_JMPX operation to the compiled pattern. |
|
995 fRXPat->fCompiledPat->addElement(jmpOp, *fStatus); |
|
996 } |
|
997 break; |
|
998 |
|
999 case doNGStar: |
|
1000 // Non-greedy *? quantifier |
|
1001 // compiles to |
|
1002 // 1. JMP 3 |
|
1003 // 2. body of stuff being iterated over |
|
1004 // 3. STATE_SAVE 2 |
|
1005 // 4 ... |
|
1006 { |
|
1007 int32_t jmpLoc = blockTopLoc(TRUE); // loc 1. |
|
1008 int32_t saveLoc = fRXPat->fCompiledPat->size(); // loc 3. |
|
1009 int32_t jmpOp = URX_BUILD(URX_JMP, saveLoc); |
|
1010 int32_t stateSaveOp = URX_BUILD(URX_STATE_SAVE, jmpLoc+1); |
|
1011 fRXPat->fCompiledPat->setElementAt(jmpOp, jmpLoc); |
|
1012 fRXPat->fCompiledPat->addElement(stateSaveOp, *fStatus); |
|
1013 } |
|
1014 break; |
|
1015 |
|
1016 |
|
1017 case doIntervalInit: |
|
1018 // The '{' opening an interval quantifier was just scanned. |
|
1019 // Init the counter varaiables that will accumulate the values as the digits |
|
1020 // are scanned. |
|
1021 fIntervalLow = 0; |
|
1022 fIntervalUpper = -1; |
|
1023 break; |
|
1024 |
|
1025 case doIntevalLowerDigit: |
|
1026 // Scanned a digit from the lower value of an {lower,upper} interval |
|
1027 { |
|
1028 int32_t digitValue = u_charDigitValue(fC.fChar); |
|
1029 U_ASSERT(digitValue >= 0); |
|
1030 fIntervalLow = fIntervalLow*10 + digitValue; |
|
1031 if (fIntervalLow < 0) { |
|
1032 error(U_REGEX_NUMBER_TOO_BIG); |
|
1033 } |
|
1034 } |
|
1035 break; |
|
1036 |
|
1037 case doIntervalUpperDigit: |
|
1038 // Scanned a digit from the upper value of an {lower,upper} interval |
|
1039 { |
|
1040 if (fIntervalUpper < 0) { |
|
1041 fIntervalUpper = 0; |
|
1042 } |
|
1043 int32_t digitValue = u_charDigitValue(fC.fChar); |
|
1044 U_ASSERT(digitValue >= 0); |
|
1045 fIntervalUpper = fIntervalUpper*10 + digitValue; |
|
1046 if (fIntervalUpper < 0) { |
|
1047 error(U_REGEX_NUMBER_TOO_BIG); |
|
1048 } |
|
1049 } |
|
1050 break; |
|
1051 |
|
1052 case doIntervalSame: |
|
1053 // Scanned a single value interval like {27}. Upper = Lower. |
|
1054 fIntervalUpper = fIntervalLow; |
|
1055 break; |
|
1056 |
|
1057 case doInterval: |
|
1058 // Finished scanning a normal {lower,upper} interval. Generate the code for it. |
|
1059 if (compileInlineInterval() == FALSE) { |
|
1060 compileInterval(URX_CTR_INIT, URX_CTR_LOOP); |
|
1061 } |
|
1062 break; |
|
1063 |
|
1064 case doPossessiveInterval: |
|
1065 // Finished scanning a Possessive {lower,upper}+ interval. Generate the code for it. |
|
1066 { |
|
1067 // Remember the loc for the top of the block being looped over. |
|
1068 // (Can not reserve a slot in the compiled pattern at this time, because |
|
1069 // compileInterval needs to reserve also, and blockTopLoc can only reserve |
|
1070 // once per block.) |
|
1071 int32_t topLoc = blockTopLoc(FALSE); |
|
1072 |
|
1073 // Produce normal looping code. |
|
1074 compileInterval(URX_CTR_INIT, URX_CTR_LOOP); |
|
1075 |
|
1076 // Surround the just-emitted normal looping code with a STO_SP ... LD_SP |
|
1077 // just as if the loop was inclosed in atomic parentheses. |
|
1078 |
|
1079 // First the STO_SP before the start of the loop |
|
1080 insertOp(topLoc); |
|
1081 int32_t varLoc = fRXPat->fDataSize; // Reserve a data location for saving the |
|
1082 fRXPat->fDataSize += 1; // state stack ptr. |
|
1083 int32_t op = URX_BUILD(URX_STO_SP, varLoc); |
|
1084 fRXPat->fCompiledPat->setElementAt(op, topLoc); |
|
1085 |
|
1086 int32_t loopOp = (int32_t)fRXPat->fCompiledPat->popi(); |
|
1087 U_ASSERT(URX_TYPE(loopOp) == URX_CTR_LOOP && URX_VAL(loopOp) == topLoc); |
|
1088 loopOp++; // point LoopOp after the just-inserted STO_SP |
|
1089 fRXPat->fCompiledPat->push(loopOp, *fStatus); |
|
1090 |
|
1091 // Then the LD_SP after the end of the loop |
|
1092 op = URX_BUILD(URX_LD_SP, varLoc); |
|
1093 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
1094 } |
|
1095 |
|
1096 break; |
|
1097 |
|
1098 case doNGInterval: |
|
1099 // Finished scanning a non-greedy {lower,upper}? interval. Generate the code for it. |
|
1100 compileInterval(URX_CTR_INIT_NG, URX_CTR_LOOP_NG); |
|
1101 break; |
|
1102 |
|
1103 case doIntervalError: |
|
1104 error(U_REGEX_BAD_INTERVAL); |
|
1105 break; |
|
1106 |
|
1107 case doLiteralChar: |
|
1108 // We've just scanned a "normal" character from the pattern, |
|
1109 literalChar(fC.fChar); |
|
1110 break; |
|
1111 |
|
1112 |
|
1113 case doEscapedLiteralChar: |
|
1114 // We've just scanned an backslashed escaped character with no |
|
1115 // special meaning. It represents itself. |
|
1116 if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 && |
|
1117 ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z] |
|
1118 (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z] |
|
1119 error(U_REGEX_BAD_ESCAPE_SEQUENCE); |
|
1120 } |
|
1121 literalChar(fC.fChar); |
|
1122 break; |
|
1123 |
|
1124 |
|
1125 case doDotAny: |
|
1126 // scanned a ".", match any single character. |
|
1127 { |
|
1128 fixLiterals(FALSE); |
|
1129 int32_t op; |
|
1130 if (fModeFlags & UREGEX_DOTALL) { |
|
1131 op = URX_BUILD(URX_DOTANY_ALL, 0); |
|
1132 } else if (fModeFlags & UREGEX_UNIX_LINES) { |
|
1133 op = URX_BUILD(URX_DOTANY_UNIX, 0); |
|
1134 } else { |
|
1135 op = URX_BUILD(URX_DOTANY, 0); |
|
1136 } |
|
1137 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
1138 } |
|
1139 break; |
|
1140 |
|
1141 case doCaret: |
|
1142 { |
|
1143 fixLiterals(FALSE); |
|
1144 int32_t op = 0; |
|
1145 if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) { |
|
1146 op = URX_CARET; |
|
1147 } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) { |
|
1148 op = URX_CARET_M; |
|
1149 } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) { |
|
1150 op = URX_CARET; // Only testing true start of input. |
|
1151 } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) { |
|
1152 op = URX_CARET_M_UNIX; |
|
1153 } |
|
1154 fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus); |
|
1155 } |
|
1156 break; |
|
1157 |
|
1158 case doDollar: |
|
1159 { |
|
1160 fixLiterals(FALSE); |
|
1161 int32_t op = 0; |
|
1162 if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) { |
|
1163 op = URX_DOLLAR; |
|
1164 } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) { |
|
1165 op = URX_DOLLAR_M; |
|
1166 } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) { |
|
1167 op = URX_DOLLAR_D; |
|
1168 } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) { |
|
1169 op = URX_DOLLAR_MD; |
|
1170 } |
|
1171 fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus); |
|
1172 } |
|
1173 break; |
|
1174 |
|
1175 case doBackslashA: |
|
1176 fixLiterals(FALSE); |
|
1177 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_CARET, 0), *fStatus); |
|
1178 break; |
|
1179 |
|
1180 case doBackslashB: |
|
1181 { |
|
1182 #if UCONFIG_NO_BREAK_ITERATION==1 |
|
1183 if (fModeFlags & UREGEX_UWORD) { |
|
1184 error(U_UNSUPPORTED_ERROR); |
|
1185 } |
|
1186 #endif |
|
1187 fixLiterals(FALSE); |
|
1188 int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B; |
|
1189 fRXPat->fCompiledPat->addElement(URX_BUILD(op, 1), *fStatus); |
|
1190 } |
|
1191 break; |
|
1192 |
|
1193 case doBackslashb: |
|
1194 { |
|
1195 #if UCONFIG_NO_BREAK_ITERATION==1 |
|
1196 if (fModeFlags & UREGEX_UWORD) { |
|
1197 error(U_UNSUPPORTED_ERROR); |
|
1198 } |
|
1199 #endif |
|
1200 fixLiterals(FALSE); |
|
1201 int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B; |
|
1202 fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus); |
|
1203 } |
|
1204 break; |
|
1205 |
|
1206 case doBackslashD: |
|
1207 fixLiterals(FALSE); |
|
1208 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 1), *fStatus); |
|
1209 break; |
|
1210 |
|
1211 case doBackslashd: |
|
1212 fixLiterals(FALSE); |
|
1213 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 0), *fStatus); |
|
1214 break; |
|
1215 |
|
1216 case doBackslashG: |
|
1217 fixLiterals(FALSE); |
|
1218 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_G, 0), *fStatus); |
|
1219 break; |
|
1220 |
|
1221 case doBackslashS: |
|
1222 fixLiterals(FALSE); |
|
1223 fRXPat->fCompiledPat->addElement( |
|
1224 URX_BUILD(URX_STAT_SETREF_N, URX_ISSPACE_SET), *fStatus); |
|
1225 break; |
|
1226 |
|
1227 case doBackslashs: |
|
1228 fixLiterals(FALSE); |
|
1229 fRXPat->fCompiledPat->addElement( |
|
1230 URX_BUILD(URX_STATIC_SETREF, URX_ISSPACE_SET), *fStatus); |
|
1231 break; |
|
1232 |
|
1233 case doBackslashW: |
|
1234 fixLiterals(FALSE); |
|
1235 fRXPat->fCompiledPat->addElement( |
|
1236 URX_BUILD(URX_STAT_SETREF_N, URX_ISWORD_SET), *fStatus); |
|
1237 break; |
|
1238 |
|
1239 case doBackslashw: |
|
1240 fixLiterals(FALSE); |
|
1241 fRXPat->fCompiledPat->addElement( |
|
1242 URX_BUILD(URX_STATIC_SETREF, URX_ISWORD_SET), *fStatus); |
|
1243 break; |
|
1244 |
|
1245 case doBackslashX: |
|
1246 fixLiterals(FALSE); |
|
1247 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_X, 0), *fStatus); |
|
1248 break; |
|
1249 |
|
1250 |
|
1251 case doBackslashZ: |
|
1252 fixLiterals(FALSE); |
|
1253 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_DOLLAR, 0), *fStatus); |
|
1254 break; |
|
1255 |
|
1256 case doBackslashz: |
|
1257 fixLiterals(FALSE); |
|
1258 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_Z, 0), *fStatus); |
|
1259 break; |
|
1260 |
|
1261 case doEscapeError: |
|
1262 error(U_REGEX_BAD_ESCAPE_SEQUENCE); |
|
1263 break; |
|
1264 |
|
1265 case doExit: |
|
1266 fixLiterals(FALSE); |
|
1267 returnVal = FALSE; |
|
1268 break; |
|
1269 |
|
1270 case doProperty: |
|
1271 { |
|
1272 fixLiterals(FALSE); |
|
1273 UnicodeSet *theSet = scanProp(); |
|
1274 compileSet(theSet); |
|
1275 } |
|
1276 break; |
|
1277 |
|
1278 case doNamedChar: |
|
1279 { |
|
1280 UChar32 c = scanNamedChar(); |
|
1281 literalChar(c); |
|
1282 } |
|
1283 break; |
|
1284 |
|
1285 |
|
1286 case doBackRef: |
|
1287 // BackReference. Somewhat unusual in that the front-end can not completely parse |
|
1288 // the regular expression, because the number of digits to be consumed |
|
1289 // depends on the number of capture groups that have been defined. So |
|
1290 // we have to do it here instead. |
|
1291 { |
|
1292 int32_t numCaptureGroups = fRXPat->fGroupMap->size(); |
|
1293 int32_t groupNum = 0; |
|
1294 UChar32 c = fC.fChar; |
|
1295 |
|
1296 for (;;) { |
|
1297 // Loop once per digit, for max allowed number of digits in a back reference. |
|
1298 int32_t digit = u_charDigitValue(c); |
|
1299 groupNum = groupNum * 10 + digit; |
|
1300 if (groupNum >= numCaptureGroups) { |
|
1301 break; |
|
1302 } |
|
1303 c = peekCharLL(); |
|
1304 if (RegexStaticSets::gStaticSets->fRuleDigitsAlias->contains(c) == FALSE) { |
|
1305 break; |
|
1306 } |
|
1307 nextCharLL(); |
|
1308 } |
|
1309 |
|
1310 // Scan of the back reference in the source regexp is complete. Now generate |
|
1311 // the compiled code for it. |
|
1312 // Because capture groups can be forward-referenced by back-references, |
|
1313 // we fill the operand with the capture group number. At the end |
|
1314 // of compilation, it will be changed to the variable's location. |
|
1315 U_ASSERT(groupNum > 0); // Shouldn't happen. '\0' begins an octal escape sequence, |
|
1316 // and shouldn't enter this code path at all. |
|
1317 fixLiterals(FALSE); |
|
1318 int32_t op; |
|
1319 if (fModeFlags & UREGEX_CASE_INSENSITIVE) { |
|
1320 op = URX_BUILD(URX_BACKREF_I, groupNum); |
|
1321 } else { |
|
1322 op = URX_BUILD(URX_BACKREF, groupNum); |
|
1323 } |
|
1324 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
1325 } |
|
1326 break; |
|
1327 |
|
1328 |
|
1329 case doPossessivePlus: |
|
1330 // Possessive ++ quantifier. |
|
1331 // Compiles to |
|
1332 // 1. STO_SP |
|
1333 // 2. body of stuff being iterated over |
|
1334 // 3. STATE_SAVE 5 |
|
1335 // 4. JMP 2 |
|
1336 // 5. LD_SP |
|
1337 // 6. ... |
|
1338 // |
|
1339 // Note: TODO: This is pretty inefficient. A mass of saved state is built up |
|
1340 // then unconditionally discarded. Perhaps introduce a new opcode. Ticket 6056 |
|
1341 // |
|
1342 { |
|
1343 // Emit the STO_SP |
|
1344 int32_t topLoc = blockTopLoc(TRUE); |
|
1345 int32_t stoLoc = fRXPat->fDataSize; |
|
1346 fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr. |
|
1347 int32_t op = URX_BUILD(URX_STO_SP, stoLoc); |
|
1348 fRXPat->fCompiledPat->setElementAt(op, topLoc); |
|
1349 |
|
1350 // Emit the STATE_SAVE |
|
1351 op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+2); |
|
1352 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
1353 |
|
1354 // Emit the JMP |
|
1355 op = URX_BUILD(URX_JMP, topLoc+1); |
|
1356 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
1357 |
|
1358 // Emit the LD_SP |
|
1359 op = URX_BUILD(URX_LD_SP, stoLoc); |
|
1360 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
1361 } |
|
1362 break; |
|
1363 |
|
1364 case doPossessiveStar: |
|
1365 // Possessive *+ quantifier. |
|
1366 // Compiles to |
|
1367 // 1. STO_SP loc |
|
1368 // 2. STATE_SAVE 5 |
|
1369 // 3. body of stuff being iterated over |
|
1370 // 4. JMP 2 |
|
1371 // 5. LD_SP loc |
|
1372 // 6 ... |
|
1373 // TODO: do something to cut back the state stack each time through the loop. |
|
1374 { |
|
1375 // Reserve two slots at the top of the block. |
|
1376 int32_t topLoc = blockTopLoc(TRUE); |
|
1377 insertOp(topLoc); |
|
1378 |
|
1379 // emit STO_SP loc |
|
1380 int32_t stoLoc = fRXPat->fDataSize; |
|
1381 fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr. |
|
1382 int32_t op = URX_BUILD(URX_STO_SP, stoLoc); |
|
1383 fRXPat->fCompiledPat->setElementAt(op, topLoc); |
|
1384 |
|
1385 // Emit the SAVE_STATE 5 |
|
1386 int32_t L7 = fRXPat->fCompiledPat->size()+1; |
|
1387 op = URX_BUILD(URX_STATE_SAVE, L7); |
|
1388 fRXPat->fCompiledPat->setElementAt(op, topLoc+1); |
|
1389 |
|
1390 // Append the JMP operation. |
|
1391 op = URX_BUILD(URX_JMP, topLoc+1); |
|
1392 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
1393 |
|
1394 // Emit the LD_SP loc |
|
1395 op = URX_BUILD(URX_LD_SP, stoLoc); |
|
1396 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
1397 } |
|
1398 break; |
|
1399 |
|
1400 case doPossessiveOpt: |
|
1401 // Possessive ?+ quantifier. |
|
1402 // Compiles to |
|
1403 // 1. STO_SP loc |
|
1404 // 2. SAVE_STATE 5 |
|
1405 // 3. body of optional block |
|
1406 // 4. LD_SP loc |
|
1407 // 5. ... |
|
1408 // |
|
1409 { |
|
1410 // Reserve two slots at the top of the block. |
|
1411 int32_t topLoc = blockTopLoc(TRUE); |
|
1412 insertOp(topLoc); |
|
1413 |
|
1414 // Emit the STO_SP |
|
1415 int32_t stoLoc = fRXPat->fDataSize; |
|
1416 fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr. |
|
1417 int32_t op = URX_BUILD(URX_STO_SP, stoLoc); |
|
1418 fRXPat->fCompiledPat->setElementAt(op, topLoc); |
|
1419 |
|
1420 // Emit the SAVE_STATE |
|
1421 int32_t continueLoc = fRXPat->fCompiledPat->size()+1; |
|
1422 op = URX_BUILD(URX_STATE_SAVE, continueLoc); |
|
1423 fRXPat->fCompiledPat->setElementAt(op, topLoc+1); |
|
1424 |
|
1425 // Emit the LD_SP |
|
1426 op = URX_BUILD(URX_LD_SP, stoLoc); |
|
1427 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
1428 } |
|
1429 break; |
|
1430 |
|
1431 |
|
1432 case doBeginMatchMode: |
|
1433 fNewModeFlags = fModeFlags; |
|
1434 fSetModeFlag = TRUE; |
|
1435 break; |
|
1436 |
|
1437 case doMatchMode: // (?i) and similar |
|
1438 { |
|
1439 int32_t bit = 0; |
|
1440 switch (fC.fChar) { |
|
1441 case 0x69: /* 'i' */ bit = UREGEX_CASE_INSENSITIVE; break; |
|
1442 case 0x64: /* 'd' */ bit = UREGEX_UNIX_LINES; break; |
|
1443 case 0x6d: /* 'm' */ bit = UREGEX_MULTILINE; break; |
|
1444 case 0x73: /* 's' */ bit = UREGEX_DOTALL; break; |
|
1445 case 0x75: /* 'u' */ bit = 0; /* Unicode casing */ break; |
|
1446 case 0x77: /* 'w' */ bit = UREGEX_UWORD; break; |
|
1447 case 0x78: /* 'x' */ bit = UREGEX_COMMENTS; break; |
|
1448 case 0x2d: /* '-' */ fSetModeFlag = FALSE; break; |
|
1449 default: |
|
1450 U_ASSERT(FALSE); // Should never happen. Other chars are filtered out |
|
1451 // by the scanner. |
|
1452 } |
|
1453 if (fSetModeFlag) { |
|
1454 fNewModeFlags |= bit; |
|
1455 } else { |
|
1456 fNewModeFlags &= ~bit; |
|
1457 } |
|
1458 } |
|
1459 break; |
|
1460 |
|
1461 case doSetMatchMode: |
|
1462 // Emit code to match any pending literals, using the not-yet changed match mode. |
|
1463 fixLiterals(); |
|
1464 |
|
1465 // We've got a (?i) or similar. The match mode is being changed, but |
|
1466 // the change is not scoped to a parenthesized block. |
|
1467 U_ASSERT(fNewModeFlags < 0); |
|
1468 fModeFlags = fNewModeFlags; |
|
1469 |
|
1470 break; |
|
1471 |
|
1472 |
|
1473 case doMatchModeParen: |
|
1474 // We've got a (?i: or similar. Begin a parenthesized block, save old |
|
1475 // mode flags so they can be restored at the close of the block. |
|
1476 // |
|
1477 // Compile to a |
|
1478 // - NOP, which later may be replaced by a save-state if the |
|
1479 // parenthesized group gets a * quantifier, followed by |
|
1480 // - NOP, which may later be replaced by a save-state if there |
|
1481 // is an '|' alternation within the parens. |
|
1482 { |
|
1483 fixLiterals(FALSE); |
|
1484 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); |
|
1485 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); |
|
1486 |
|
1487 // On the Parentheses stack, start a new frame and add the postions |
|
1488 // of the two NOPs (a normal non-capturing () frame, except for the |
|
1489 // saving of the orignal mode flags.) |
|
1490 fParenStack.push(fModeFlags, *fStatus); |
|
1491 fParenStack.push(flags, *fStatus); // Frame Marker |
|
1492 fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP |
|
1493 fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP |
|
1494 |
|
1495 // Set the current mode flags to the new values. |
|
1496 U_ASSERT(fNewModeFlags < 0); |
|
1497 fModeFlags = fNewModeFlags; |
|
1498 } |
|
1499 break; |
|
1500 |
|
1501 case doBadModeFlag: |
|
1502 error(U_REGEX_INVALID_FLAG); |
|
1503 break; |
|
1504 |
|
1505 case doSuppressComments: |
|
1506 // We have just scanned a '(?'. We now need to prevent the character scanner from |
|
1507 // treating a '#' as a to-the-end-of-line comment. |
|
1508 // (This Perl compatibility just gets uglier and uglier to do...) |
|
1509 fEOLComments = FALSE; |
|
1510 break; |
|
1511 |
|
1512 |
|
1513 case doSetAddAmp: |
|
1514 { |
|
1515 UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
|
1516 set->add(chAmp); |
|
1517 } |
|
1518 break; |
|
1519 |
|
1520 case doSetAddDash: |
|
1521 { |
|
1522 UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
|
1523 set->add(chDash); |
|
1524 } |
|
1525 break; |
|
1526 |
|
1527 case doSetBackslash_s: |
|
1528 { |
|
1529 UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
|
1530 set->addAll(*RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]); |
|
1531 break; |
|
1532 } |
|
1533 |
|
1534 case doSetBackslash_S: |
|
1535 { |
|
1536 UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
|
1537 UnicodeSet SSet(*RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]); |
|
1538 SSet.complement(); |
|
1539 set->addAll(SSet); |
|
1540 break; |
|
1541 } |
|
1542 |
|
1543 case doSetBackslash_d: |
|
1544 { |
|
1545 UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
|
1546 // TODO - make a static set, ticket 6058. |
|
1547 addCategory(set, U_GC_ND_MASK, *fStatus); |
|
1548 break; |
|
1549 } |
|
1550 |
|
1551 case doSetBackslash_D: |
|
1552 { |
|
1553 UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
|
1554 UnicodeSet digits; |
|
1555 // TODO - make a static set, ticket 6058. |
|
1556 digits.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus); |
|
1557 digits.complement(); |
|
1558 set->addAll(digits); |
|
1559 break; |
|
1560 } |
|
1561 |
|
1562 case doSetBackslash_w: |
|
1563 { |
|
1564 UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
|
1565 set->addAll(*RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]); |
|
1566 break; |
|
1567 } |
|
1568 |
|
1569 case doSetBackslash_W: |
|
1570 { |
|
1571 UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
|
1572 UnicodeSet SSet(*RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]); |
|
1573 SSet.complement(); |
|
1574 set->addAll(SSet); |
|
1575 break; |
|
1576 } |
|
1577 |
|
1578 case doSetBegin: |
|
1579 fixLiterals(FALSE); |
|
1580 fSetStack.push(new UnicodeSet(), *fStatus); |
|
1581 fSetOpStack.push(setStart, *fStatus); |
|
1582 if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) { |
|
1583 fSetOpStack.push(setCaseClose, *fStatus); |
|
1584 } |
|
1585 break; |
|
1586 |
|
1587 case doSetBeginDifference1: |
|
1588 // We have scanned something like [[abc]-[ |
|
1589 // Set up a new UnicodeSet for the set beginning with the just-scanned '[' |
|
1590 // Push a Difference operator, which will cause the new set to be subtracted from what |
|
1591 // went before once it is created. |
|
1592 setPushOp(setDifference1); |
|
1593 fSetOpStack.push(setStart, *fStatus); |
|
1594 if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) { |
|
1595 fSetOpStack.push(setCaseClose, *fStatus); |
|
1596 } |
|
1597 break; |
|
1598 |
|
1599 case doSetBeginIntersection1: |
|
1600 // We have scanned something like [[abc]&[ |
|
1601 // Need both the '&' operator and the open '[' operator. |
|
1602 setPushOp(setIntersection1); |
|
1603 fSetOpStack.push(setStart, *fStatus); |
|
1604 if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) { |
|
1605 fSetOpStack.push(setCaseClose, *fStatus); |
|
1606 } |
|
1607 break; |
|
1608 |
|
1609 case doSetBeginUnion: |
|
1610 // We have scanned something like [[abc][ |
|
1611 // Need to handle the union operation explicitly [[abc] | [ |
|
1612 setPushOp(setUnion); |
|
1613 fSetOpStack.push(setStart, *fStatus); |
|
1614 if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) { |
|
1615 fSetOpStack.push(setCaseClose, *fStatus); |
|
1616 } |
|
1617 break; |
|
1618 |
|
1619 case doSetDifference2: |
|
1620 // We have scanned something like [abc-- |
|
1621 // Consider this to unambiguously be a set difference operator. |
|
1622 setPushOp(setDifference2); |
|
1623 break; |
|
1624 |
|
1625 case doSetEnd: |
|
1626 // Have encountered the ']' that closes a set. |
|
1627 // Force the evaluation of any pending operations within this set, |
|
1628 // leave the completed set on the top of the set stack. |
|
1629 setEval(setEnd); |
|
1630 U_ASSERT(fSetOpStack.peeki()==setStart); |
|
1631 fSetOpStack.popi(); |
|
1632 break; |
|
1633 |
|
1634 case doSetFinish: |
|
1635 { |
|
1636 // Finished a complete set expression, including all nested sets. |
|
1637 // The close bracket has already triggered clearing out pending set operators, |
|
1638 // the operator stack should be empty and the operand stack should have just |
|
1639 // one entry, the result set. |
|
1640 U_ASSERT(fSetOpStack.empty()); |
|
1641 UnicodeSet *theSet = (UnicodeSet *)fSetStack.pop(); |
|
1642 U_ASSERT(fSetStack.empty()); |
|
1643 compileSet(theSet); |
|
1644 break; |
|
1645 } |
|
1646 |
|
1647 case doSetIntersection2: |
|
1648 // Have scanned something like [abc&& |
|
1649 setPushOp(setIntersection2); |
|
1650 break; |
|
1651 |
|
1652 case doSetLiteral: |
|
1653 // Union the just-scanned literal character into the set being built. |
|
1654 // This operation is the highest precedence set operation, so we can always do |
|
1655 // it immediately, without waiting to see what follows. It is necessary to perform |
|
1656 // any pending '-' or '&' operation first, because these have the same precedence |
|
1657 // as union-ing in a literal' |
|
1658 { |
|
1659 setEval(setUnion); |
|
1660 UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); |
|
1661 s->add(fC.fChar); |
|
1662 fLastSetLiteral = fC.fChar; |
|
1663 break; |
|
1664 } |
|
1665 |
|
1666 case doSetLiteralEscaped: |
|
1667 // A back-slash escaped literal character was encountered. |
|
1668 // Processing is the same as with setLiteral, above, with the addition of |
|
1669 // the optional check for errors on escaped ASCII letters. |
|
1670 { |
|
1671 if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 && |
|
1672 ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z] |
|
1673 (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z] |
|
1674 error(U_REGEX_BAD_ESCAPE_SEQUENCE); |
|
1675 } |
|
1676 setEval(setUnion); |
|
1677 UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); |
|
1678 s->add(fC.fChar); |
|
1679 fLastSetLiteral = fC.fChar; |
|
1680 break; |
|
1681 } |
|
1682 |
|
1683 case doSetNamedChar: |
|
1684 // Scanning a \N{UNICODE CHARACTER NAME} |
|
1685 // Aside from the source of the character, the processing is identical to doSetLiteral, |
|
1686 // above. |
|
1687 { |
|
1688 UChar32 c = scanNamedChar(); |
|
1689 setEval(setUnion); |
|
1690 UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); |
|
1691 s->add(c); |
|
1692 fLastSetLiteral = c; |
|
1693 break; |
|
1694 } |
|
1695 |
|
1696 case doSetNamedRange: |
|
1697 // We have scanned literal-\N{CHAR NAME}. Add the range to the set. |
|
1698 // The left character is already in the set, and is saved in fLastSetLiteral. |
|
1699 // The right side needs to be picked up, the scan is at the 'N'. |
|
1700 // Lower Limit > Upper limit being an error matches both Java |
|
1701 // and ICU UnicodeSet behavior. |
|
1702 { |
|
1703 UChar32 c = scanNamedChar(); |
|
1704 if (U_SUCCESS(*fStatus) && fLastSetLiteral > c) { |
|
1705 error(U_REGEX_INVALID_RANGE); |
|
1706 } |
|
1707 UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); |
|
1708 s->add(fLastSetLiteral, c); |
|
1709 fLastSetLiteral = c; |
|
1710 break; |
|
1711 } |
|
1712 |
|
1713 |
|
1714 case doSetNegate: |
|
1715 // Scanned a '^' at the start of a set. |
|
1716 // Push the negation operator onto the set op stack. |
|
1717 // A twist for case-insensitive matching: |
|
1718 // the case closure operation must happen _before_ negation. |
|
1719 // But the case closure operation will already be on the stack if it's required. |
|
1720 // This requires checking for case closure, and swapping the stack order |
|
1721 // if it is present. |
|
1722 { |
|
1723 int32_t tosOp = fSetOpStack.peeki(); |
|
1724 if (tosOp == setCaseClose) { |
|
1725 fSetOpStack.popi(); |
|
1726 fSetOpStack.push(setNegation, *fStatus); |
|
1727 fSetOpStack.push(setCaseClose, *fStatus); |
|
1728 } else { |
|
1729 fSetOpStack.push(setNegation, *fStatus); |
|
1730 } |
|
1731 } |
|
1732 break; |
|
1733 |
|
1734 case doSetNoCloseError: |
|
1735 error(U_REGEX_MISSING_CLOSE_BRACKET); |
|
1736 break; |
|
1737 |
|
1738 case doSetOpError: |
|
1739 error(U_REGEX_RULE_SYNTAX); // -- or && at the end of a set. Illegal. |
|
1740 break; |
|
1741 |
|
1742 case doSetPosixProp: |
|
1743 { |
|
1744 UnicodeSet *s = scanPosixProp(); |
|
1745 if (s != NULL) { |
|
1746 UnicodeSet *tos = (UnicodeSet *)fSetStack.peek(); |
|
1747 tos->addAll(*s); |
|
1748 delete s; |
|
1749 } // else error. scanProp() reported the error status already. |
|
1750 } |
|
1751 break; |
|
1752 |
|
1753 case doSetProp: |
|
1754 // Scanned a \p \P within [brackets]. |
|
1755 { |
|
1756 UnicodeSet *s = scanProp(); |
|
1757 if (s != NULL) { |
|
1758 UnicodeSet *tos = (UnicodeSet *)fSetStack.peek(); |
|
1759 tos->addAll(*s); |
|
1760 delete s; |
|
1761 } // else error. scanProp() reported the error status already. |
|
1762 } |
|
1763 break; |
|
1764 |
|
1765 |
|
1766 case doSetRange: |
|
1767 // We have scanned literal-literal. Add the range to the set. |
|
1768 // The left character is already in the set, and is saved in fLastSetLiteral. |
|
1769 // The right side is the current character. |
|
1770 // Lower Limit > Upper limit being an error matches both Java |
|
1771 // and ICU UnicodeSet behavior. |
|
1772 { |
|
1773 if (fLastSetLiteral > fC.fChar) { |
|
1774 error(U_REGEX_INVALID_RANGE); |
|
1775 } |
|
1776 UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); |
|
1777 s->add(fLastSetLiteral, fC.fChar); |
|
1778 break; |
|
1779 } |
|
1780 |
|
1781 default: |
|
1782 U_ASSERT(FALSE); |
|
1783 error(U_REGEX_INTERNAL_ERROR); |
|
1784 break; |
|
1785 } |
|
1786 |
|
1787 if (U_FAILURE(*fStatus)) { |
|
1788 returnVal = FALSE; |
|
1789 } |
|
1790 |
|
1791 return returnVal; |
|
1792 } |
|
1793 |
|
1794 |
|
1795 |
|
1796 //------------------------------------------------------------------------------ |
|
1797 // |
|
1798 // literalChar We've encountered a literal character from the pattern, |
|
1799 // or an escape sequence that reduces to a character. |
|
1800 // Add it to the string containing all literal chars/strings from |
|
1801 // the pattern. |
|
1802 // |
|
1803 //------------------------------------------------------------------------------ |
|
1804 void RegexCompile::literalChar(UChar32 c) { |
|
1805 fLiteralChars.append(c); |
|
1806 } |
|
1807 |
|
1808 |
|
1809 //------------------------------------------------------------------------------ |
|
1810 // |
|
1811 // fixLiterals When compiling something that can follow a literal |
|
1812 // string in a pattern, emit the code to match the |
|
1813 // accumulated literal string. |
|
1814 // |
|
1815 // Optionally, split the last char of the string off into |
|
1816 // a single "ONE_CHAR" operation, so that quantifiers can |
|
1817 // apply to that char alone. Example: abc* |
|
1818 // The * must apply to the 'c' only. |
|
1819 // |
|
1820 //------------------------------------------------------------------------------ |
|
1821 void RegexCompile::fixLiterals(UBool split) { |
|
1822 int32_t op = 0; // An op from/for the compiled pattern. |
|
1823 |
|
1824 // If no literal characters have been scanned but not yet had code generated |
|
1825 // for them, nothing needs to be done. |
|
1826 if (fLiteralChars.length() == 0) { |
|
1827 return; |
|
1828 } |
|
1829 |
|
1830 int32_t indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1); |
|
1831 UChar32 lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint); |
|
1832 |
|
1833 // Split: We need to ensure that the last item in the compiled pattern |
|
1834 // refers only to the last literal scanned in the pattern, so that |
|
1835 // quantifiers (*, +, etc.) affect only it, and not a longer string. |
|
1836 // Split before case folding for case insensitive matches. |
|
1837 |
|
1838 if (split) { |
|
1839 fLiteralChars.truncate(indexOfLastCodePoint); |
|
1840 fixLiterals(FALSE); // Recursive call, emit code to match the first part of the string. |
|
1841 // Note that the truncated literal string may be empty, in which case |
|
1842 // nothing will be emitted. |
|
1843 |
|
1844 literalChar(lastCodePoint); // Re-add the last code point as if it were a new literal. |
|
1845 fixLiterals(FALSE); // Second recursive call, code for the final code point. |
|
1846 return; |
|
1847 } |
|
1848 |
|
1849 // If we are doing case-insensitive matching, case fold the string. This may expand |
|
1850 // the string, e.g. the German sharp-s turns into "ss" |
|
1851 if (fModeFlags & UREGEX_CASE_INSENSITIVE) { |
|
1852 fLiteralChars.foldCase(); |
|
1853 indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1); |
|
1854 lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint); |
|
1855 } |
|
1856 |
|
1857 if (indexOfLastCodePoint == 0) { |
|
1858 // Single character, emit a URX_ONECHAR op to match it. |
|
1859 if ((fModeFlags & UREGEX_CASE_INSENSITIVE) && |
|
1860 u_hasBinaryProperty(lastCodePoint, UCHAR_CASE_SENSITIVE)) { |
|
1861 op = URX_BUILD(URX_ONECHAR_I, lastCodePoint); |
|
1862 } else { |
|
1863 op = URX_BUILD(URX_ONECHAR, lastCodePoint); |
|
1864 } |
|
1865 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
1866 } else { |
|
1867 // Two or more chars, emit a URX_STRING to match them. |
|
1868 if (fModeFlags & UREGEX_CASE_INSENSITIVE) { |
|
1869 op = URX_BUILD(URX_STRING_I, fRXPat->fLiteralText.length()); |
|
1870 } else { |
|
1871 // TODO here: add optimization to split case sensitive strings of length two |
|
1872 // into two single char ops, for efficiency. |
|
1873 op = URX_BUILD(URX_STRING, fRXPat->fLiteralText.length()); |
|
1874 } |
|
1875 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
1876 op = URX_BUILD(URX_STRING_LEN, fLiteralChars.length()); |
|
1877 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
1878 |
|
1879 // Add this string into the accumulated strings of the compiled pattern. |
|
1880 fRXPat->fLiteralText.append(fLiteralChars); |
|
1881 } |
|
1882 |
|
1883 fLiteralChars.remove(); |
|
1884 } |
|
1885 |
|
1886 |
|
1887 |
|
1888 |
|
1889 |
|
1890 |
|
1891 //------------------------------------------------------------------------------ |
|
1892 // |
|
1893 // insertOp() Insert a slot for a new opcode into the already |
|
1894 // compiled pattern code. |
|
1895 // |
|
1896 // Fill the slot with a NOP. Our caller will replace it |
|
1897 // with what they really wanted. |
|
1898 // |
|
1899 //------------------------------------------------------------------------------ |
|
1900 void RegexCompile::insertOp(int32_t where) { |
|
1901 UVector64 *code = fRXPat->fCompiledPat; |
|
1902 U_ASSERT(where>0 && where < code->size()); |
|
1903 |
|
1904 int32_t nop = URX_BUILD(URX_NOP, 0); |
|
1905 code->insertElementAt(nop, where, *fStatus); |
|
1906 |
|
1907 // Walk through the pattern, looking for any ops with targets that |
|
1908 // were moved down by the insert. Fix them. |
|
1909 int32_t loc; |
|
1910 for (loc=0; loc<code->size(); loc++) { |
|
1911 int32_t op = (int32_t)code->elementAti(loc); |
|
1912 int32_t opType = URX_TYPE(op); |
|
1913 int32_t opValue = URX_VAL(op); |
|
1914 if ((opType == URX_JMP || |
|
1915 opType == URX_JMPX || |
|
1916 opType == URX_STATE_SAVE || |
|
1917 opType == URX_CTR_LOOP || |
|
1918 opType == URX_CTR_LOOP_NG || |
|
1919 opType == URX_JMP_SAV || |
|
1920 opType == URX_JMP_SAV_X || |
|
1921 opType == URX_RELOC_OPRND) && opValue > where) { |
|
1922 // Target location for this opcode is after the insertion point and |
|
1923 // needs to be incremented to adjust for the insertion. |
|
1924 opValue++; |
|
1925 op = URX_BUILD(opType, opValue); |
|
1926 code->setElementAt(op, loc); |
|
1927 } |
|
1928 } |
|
1929 |
|
1930 // Now fix up the parentheses stack. All positive values in it are locations in |
|
1931 // the compiled pattern. (Negative values are frame boundaries, and don't need fixing.) |
|
1932 for (loc=0; loc<fParenStack.size(); loc++) { |
|
1933 int32_t x = fParenStack.elementAti(loc); |
|
1934 U_ASSERT(x < code->size()); |
|
1935 if (x>where) { |
|
1936 x++; |
|
1937 fParenStack.setElementAt(x, loc); |
|
1938 } |
|
1939 } |
|
1940 |
|
1941 if (fMatchCloseParen > where) { |
|
1942 fMatchCloseParen++; |
|
1943 } |
|
1944 if (fMatchOpenParen > where) { |
|
1945 fMatchOpenParen++; |
|
1946 } |
|
1947 } |
|
1948 |
|
1949 |
|
1950 |
|
1951 //------------------------------------------------------------------------------ |
|
1952 // |
|
1953 // blockTopLoc() Find or create a location in the compiled pattern |
|
1954 // at the start of the operation or block that has |
|
1955 // just been compiled. Needed when a quantifier (* or |
|
1956 // whatever) appears, and we need to add an operation |
|
1957 // at the start of the thing being quantified. |
|
1958 // |
|
1959 // (Parenthesized Blocks) have a slot with a NOP that |
|
1960 // is reserved for this purpose. .* or similar don't |
|
1961 // and a slot needs to be added. |
|
1962 // |
|
1963 // parameter reserveLoc : TRUE - ensure that there is space to add an opcode |
|
1964 // at the returned location. |
|
1965 // FALSE - just return the address, |
|
1966 // do not reserve a location there. |
|
1967 // |
|
1968 //------------------------------------------------------------------------------ |
|
1969 int32_t RegexCompile::blockTopLoc(UBool reserveLoc) { |
|
1970 int32_t theLoc; |
|
1971 fixLiterals(TRUE); // Emit code for any pending literals. |
|
1972 // If last item was a string, emit separate op for the its last char. |
|
1973 if (fRXPat->fCompiledPat->size() == fMatchCloseParen) |
|
1974 { |
|
1975 // The item just processed is a parenthesized block. |
|
1976 theLoc = fMatchOpenParen; // A slot is already reserved for us. |
|
1977 U_ASSERT(theLoc > 0); |
|
1978 U_ASSERT(URX_TYPE(((uint32_t)fRXPat->fCompiledPat->elementAti(theLoc))) == URX_NOP); |
|
1979 } |
|
1980 else { |
|
1981 // Item just compiled is a single thing, a ".", or a single char, a string or a set reference. |
|
1982 // No slot for STATE_SAVE was pre-reserved in the compiled code. |
|
1983 // We need to make space now. |
|
1984 theLoc = fRXPat->fCompiledPat->size()-1; |
|
1985 int32_t opAtTheLoc = (int32_t)fRXPat->fCompiledPat->elementAti(theLoc); |
|
1986 if (URX_TYPE(opAtTheLoc) == URX_STRING_LEN) { |
|
1987 // Strings take two opcode, we want the position of the first one. |
|
1988 // We can have a string at this point if a single character case-folded to two. |
|
1989 theLoc--; |
|
1990 } |
|
1991 if (reserveLoc) { |
|
1992 int32_t nop = URX_BUILD(URX_NOP, 0); |
|
1993 fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus); |
|
1994 } |
|
1995 } |
|
1996 return theLoc; |
|
1997 } |
|
1998 |
|
1999 |
|
2000 |
|
2001 //------------------------------------------------------------------------------ |
|
2002 // |
|
2003 // handleCloseParen When compiling a close paren, we need to go back |
|
2004 // and fix up any JMP or SAVE operations within the |
|
2005 // parenthesized block that need to target the end |
|
2006 // of the block. The locations of these are kept on |
|
2007 // the paretheses stack. |
|
2008 // |
|
2009 // This function is called both when encountering a |
|
2010 // real ) and at the end of the pattern. |
|
2011 // |
|
2012 //------------------------------------------------------------------------------ |
|
2013 void RegexCompile::handleCloseParen() { |
|
2014 int32_t patIdx; |
|
2015 int32_t patOp; |
|
2016 if (fParenStack.size() <= 0) { |
|
2017 error(U_REGEX_MISMATCHED_PAREN); |
|
2018 return; |
|
2019 } |
|
2020 |
|
2021 // Emit code for any pending literals. |
|
2022 fixLiterals(FALSE); |
|
2023 |
|
2024 // Fixup any operations within the just-closed parenthesized group |
|
2025 // that need to reference the end of the (block). |
|
2026 // (The first one popped from the stack is an unused slot for |
|
2027 // alternation (OR) state save, but applying the fixup to it does no harm.) |
|
2028 for (;;) { |
|
2029 patIdx = fParenStack.popi(); |
|
2030 if (patIdx < 0) { |
|
2031 // value < 0 flags the start of the frame on the paren stack. |
|
2032 break; |
|
2033 } |
|
2034 U_ASSERT(patIdx>0 && patIdx <= fRXPat->fCompiledPat->size()); |
|
2035 patOp = (int32_t)fRXPat->fCompiledPat->elementAti(patIdx); |
|
2036 U_ASSERT(URX_VAL(patOp) == 0); // Branch target for JMP should not be set. |
|
2037 patOp |= fRXPat->fCompiledPat->size(); // Set it now. |
|
2038 fRXPat->fCompiledPat->setElementAt(patOp, patIdx); |
|
2039 fMatchOpenParen = patIdx; |
|
2040 } |
|
2041 |
|
2042 // At the close of any parenthesized block, restore the match mode flags to |
|
2043 // the value they had at the open paren. Saved value is |
|
2044 // at the top of the paren stack. |
|
2045 fModeFlags = fParenStack.popi(); |
|
2046 U_ASSERT(fModeFlags < 0); |
|
2047 |
|
2048 // DO any additional fixups, depending on the specific kind of |
|
2049 // parentesized grouping this is |
|
2050 |
|
2051 switch (patIdx) { |
|
2052 case plain: |
|
2053 case flags: |
|
2054 // No additional fixups required. |
|
2055 // (Grouping-only parentheses) |
|
2056 break; |
|
2057 case capturing: |
|
2058 // Capturing Parentheses. |
|
2059 // Insert a End Capture op into the pattern. |
|
2060 // The frame offset of the variables for this cg is obtained from the |
|
2061 // start capture op and put it into the end-capture op. |
|
2062 { |
|
2063 int32_t captureOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1); |
|
2064 U_ASSERT(URX_TYPE(captureOp) == URX_START_CAPTURE); |
|
2065 |
|
2066 int32_t frameVarLocation = URX_VAL(captureOp); |
|
2067 int32_t endCaptureOp = URX_BUILD(URX_END_CAPTURE, frameVarLocation); |
|
2068 fRXPat->fCompiledPat->addElement(endCaptureOp, *fStatus); |
|
2069 } |
|
2070 break; |
|
2071 case atomic: |
|
2072 // Atomic Parenthesis. |
|
2073 // Insert a LD_SP operation to restore the state stack to the position |
|
2074 // it was when the atomic parens were entered. |
|
2075 { |
|
2076 int32_t stoOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1); |
|
2077 U_ASSERT(URX_TYPE(stoOp) == URX_STO_SP); |
|
2078 int32_t stoLoc = URX_VAL(stoOp); |
|
2079 int32_t ldOp = URX_BUILD(URX_LD_SP, stoLoc); |
|
2080 fRXPat->fCompiledPat->addElement(ldOp, *fStatus); |
|
2081 } |
|
2082 break; |
|
2083 |
|
2084 case lookAhead: |
|
2085 { |
|
2086 int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5); |
|
2087 U_ASSERT(URX_TYPE(startOp) == URX_LA_START); |
|
2088 int32_t dataLoc = URX_VAL(startOp); |
|
2089 int32_t op = URX_BUILD(URX_LA_END, dataLoc); |
|
2090 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
2091 } |
|
2092 break; |
|
2093 |
|
2094 case negLookAhead: |
|
2095 { |
|
2096 // See comment at doOpenLookAheadNeg |
|
2097 int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1); |
|
2098 U_ASSERT(URX_TYPE(startOp) == URX_LA_START); |
|
2099 int32_t dataLoc = URX_VAL(startOp); |
|
2100 int32_t op = URX_BUILD(URX_LA_END, dataLoc); |
|
2101 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
2102 op = URX_BUILD(URX_BACKTRACK, 0); |
|
2103 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
2104 op = URX_BUILD(URX_LA_END, dataLoc); |
|
2105 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
2106 |
|
2107 // Patch the URX_SAVE near the top of the block. |
|
2108 // The destination of the SAVE is the final LA_END that was just added. |
|
2109 int32_t saveOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen); |
|
2110 U_ASSERT(URX_TYPE(saveOp) == URX_STATE_SAVE); |
|
2111 int32_t dest = fRXPat->fCompiledPat->size()-1; |
|
2112 saveOp = URX_BUILD(URX_STATE_SAVE, dest); |
|
2113 fRXPat->fCompiledPat->setElementAt(saveOp, fMatchOpenParen); |
|
2114 } |
|
2115 break; |
|
2116 |
|
2117 case lookBehind: |
|
2118 { |
|
2119 // See comment at doOpenLookBehind. |
|
2120 |
|
2121 // Append the URX_LB_END and URX_LA_END to the compiled pattern. |
|
2122 int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-4); |
|
2123 U_ASSERT(URX_TYPE(startOp) == URX_LB_START); |
|
2124 int32_t dataLoc = URX_VAL(startOp); |
|
2125 int32_t op = URX_BUILD(URX_LB_END, dataLoc); |
|
2126 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
2127 op = URX_BUILD(URX_LA_END, dataLoc); |
|
2128 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
2129 |
|
2130 // Determine the min and max bounds for the length of the |
|
2131 // string that the pattern can match. |
|
2132 // An unbounded upper limit is an error. |
|
2133 int32_t patEnd = fRXPat->fCompiledPat->size() - 1; |
|
2134 int32_t minML = minMatchLength(fMatchOpenParen, patEnd); |
|
2135 int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd); |
|
2136 if (maxML == INT32_MAX) { |
|
2137 error(U_REGEX_LOOK_BEHIND_LIMIT); |
|
2138 break; |
|
2139 } |
|
2140 U_ASSERT(minML <= maxML); |
|
2141 |
|
2142 // Insert the min and max match len bounds into the URX_LB_CONT op that |
|
2143 // appears at the top of the look-behind block, at location fMatchOpenParen+1 |
|
2144 fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-2); |
|
2145 fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-1); |
|
2146 |
|
2147 } |
|
2148 break; |
|
2149 |
|
2150 |
|
2151 |
|
2152 case lookBehindN: |
|
2153 { |
|
2154 // See comment at doOpenLookBehindNeg. |
|
2155 |
|
2156 // Append the URX_LBN_END to the compiled pattern. |
|
2157 int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5); |
|
2158 U_ASSERT(URX_TYPE(startOp) == URX_LB_START); |
|
2159 int32_t dataLoc = URX_VAL(startOp); |
|
2160 int32_t op = URX_BUILD(URX_LBN_END, dataLoc); |
|
2161 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
2162 |
|
2163 // Determine the min and max bounds for the length of the |
|
2164 // string that the pattern can match. |
|
2165 // An unbounded upper limit is an error. |
|
2166 int32_t patEnd = fRXPat->fCompiledPat->size() - 1; |
|
2167 int32_t minML = minMatchLength(fMatchOpenParen, patEnd); |
|
2168 int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd); |
|
2169 if (maxML == INT32_MAX) { |
|
2170 error(U_REGEX_LOOK_BEHIND_LIMIT); |
|
2171 break; |
|
2172 } |
|
2173 U_ASSERT(minML <= maxML); |
|
2174 |
|
2175 // Insert the min and max match len bounds into the URX_LB_CONT op that |
|
2176 // appears at the top of the look-behind block, at location fMatchOpenParen+1 |
|
2177 fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-3); |
|
2178 fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-2); |
|
2179 |
|
2180 // Insert the pattern location to continue at after a successful match |
|
2181 // as the last operand of the URX_LBN_CONT |
|
2182 op = URX_BUILD(URX_RELOC_OPRND, fRXPat->fCompiledPat->size()); |
|
2183 fRXPat->fCompiledPat->setElementAt(op, fMatchOpenParen-1); |
|
2184 } |
|
2185 break; |
|
2186 |
|
2187 |
|
2188 |
|
2189 default: |
|
2190 U_ASSERT(FALSE); |
|
2191 } |
|
2192 |
|
2193 // remember the next location in the compiled pattern. |
|
2194 // The compilation of Quantifiers will look at this to see whether its looping |
|
2195 // over a parenthesized block or a single item |
|
2196 fMatchCloseParen = fRXPat->fCompiledPat->size(); |
|
2197 } |
|
2198 |
|
2199 |
|
2200 |
|
2201 //------------------------------------------------------------------------------ |
|
2202 // |
|
2203 // compileSet Compile the pattern operations for a reference to a |
|
2204 // UnicodeSet. |
|
2205 // |
|
2206 //------------------------------------------------------------------------------ |
|
2207 void RegexCompile::compileSet(UnicodeSet *theSet) |
|
2208 { |
|
2209 if (theSet == NULL) { |
|
2210 return; |
|
2211 } |
|
2212 // Remove any strings from the set. |
|
2213 // There shoudn't be any, but just in case. |
|
2214 // (Case Closure can add them; if we had a simple case closure avaialble that |
|
2215 // ignored strings, that would be better.) |
|
2216 theSet->removeAllStrings(); |
|
2217 int32_t setSize = theSet->size(); |
|
2218 |
|
2219 switch (setSize) { |
|
2220 case 0: |
|
2221 { |
|
2222 // Set of no elements. Always fails to match. |
|
2223 fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKTRACK, 0), *fStatus); |
|
2224 delete theSet; |
|
2225 } |
|
2226 break; |
|
2227 |
|
2228 case 1: |
|
2229 { |
|
2230 // The set contains only a single code point. Put it into |
|
2231 // the compiled pattern as a single char operation rather |
|
2232 // than a set, and discard the set itself. |
|
2233 literalChar(theSet->charAt(0)); |
|
2234 delete theSet; |
|
2235 } |
|
2236 break; |
|
2237 |
|
2238 default: |
|
2239 { |
|
2240 // The set contains two or more chars. (the normal case) |
|
2241 // Put it into the compiled pattern as a set. |
|
2242 int32_t setNumber = fRXPat->fSets->size(); |
|
2243 fRXPat->fSets->addElement(theSet, *fStatus); |
|
2244 int32_t setOp = URX_BUILD(URX_SETREF, setNumber); |
|
2245 fRXPat->fCompiledPat->addElement(setOp, *fStatus); |
|
2246 } |
|
2247 } |
|
2248 } |
|
2249 |
|
2250 |
|
2251 //------------------------------------------------------------------------------ |
|
2252 // |
|
2253 // compileInterval Generate the code for a {min, max} style interval quantifier. |
|
2254 // Except for the specific opcodes used, the code is the same |
|
2255 // for all three types (greedy, non-greedy, possessive) of |
|
2256 // intervals. The opcodes are supplied as parameters. |
|
2257 // (There are two sets of opcodes - greedy & possessive use the |
|
2258 // same ones, while non-greedy has it's own.) |
|
2259 // |
|
2260 // The code for interval loops has this form: |
|
2261 // 0 CTR_INIT counter loc (in stack frame) |
|
2262 // 1 5 patt address of CTR_LOOP at bottom of block |
|
2263 // 2 min count |
|
2264 // 3 max count (-1 for unbounded) |
|
2265 // 4 ... block to be iterated over |
|
2266 // 5 CTR_LOOP |
|
2267 // |
|
2268 // In |
|
2269 //------------------------------------------------------------------------------ |
|
2270 void RegexCompile::compileInterval(int32_t InitOp, int32_t LoopOp) |
|
2271 { |
|
2272 // The CTR_INIT op at the top of the block with the {n,m} quantifier takes |
|
2273 // four slots in the compiled code. Reserve them. |
|
2274 int32_t topOfBlock = blockTopLoc(TRUE); |
|
2275 insertOp(topOfBlock); |
|
2276 insertOp(topOfBlock); |
|
2277 insertOp(topOfBlock); |
|
2278 |
|
2279 // The operands for the CTR_INIT opcode include the index in the matcher data |
|
2280 // of the counter. Allocate it now. There are two data items |
|
2281 // counterLoc --> Loop counter |
|
2282 // +1 --> Input index (for breaking non-progressing loops) |
|
2283 // (Only present if unbounded upper limit on loop) |
|
2284 int32_t counterLoc = fRXPat->fFrameSize; |
|
2285 fRXPat->fFrameSize++; |
|
2286 if (fIntervalUpper < 0) { |
|
2287 fRXPat->fFrameSize++; |
|
2288 } |
|
2289 |
|
2290 int32_t op = URX_BUILD(InitOp, counterLoc); |
|
2291 fRXPat->fCompiledPat->setElementAt(op, topOfBlock); |
|
2292 |
|
2293 // The second operand of CTR_INIT is the location following the end of the loop. |
|
2294 // Must put in as a URX_RELOC_OPRND so that the value will be adjusted if the |
|
2295 // compilation of something later on causes the code to grow and the target |
|
2296 // position to move. |
|
2297 int32_t loopEnd = fRXPat->fCompiledPat->size(); |
|
2298 op = URX_BUILD(URX_RELOC_OPRND, loopEnd); |
|
2299 fRXPat->fCompiledPat->setElementAt(op, topOfBlock+1); |
|
2300 |
|
2301 // Followed by the min and max counts. |
|
2302 fRXPat->fCompiledPat->setElementAt(fIntervalLow, topOfBlock+2); |
|
2303 fRXPat->fCompiledPat->setElementAt(fIntervalUpper, topOfBlock+3); |
|
2304 |
|
2305 // Apend the CTR_LOOP op. The operand is the location of the CTR_INIT op. |
|
2306 // Goes at end of the block being looped over, so just append to the code so far. |
|
2307 op = URX_BUILD(LoopOp, topOfBlock); |
|
2308 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
2309 |
|
2310 if ((fIntervalLow & 0xff000000) != 0 || |
|
2311 (fIntervalUpper > 0 && (fIntervalUpper & 0xff000000) != 0)) { |
|
2312 error(U_REGEX_NUMBER_TOO_BIG); |
|
2313 } |
|
2314 |
|
2315 if (fIntervalLow > fIntervalUpper && fIntervalUpper != -1) { |
|
2316 error(U_REGEX_MAX_LT_MIN); |
|
2317 } |
|
2318 } |
|
2319 |
|
2320 |
|
2321 |
|
2322 UBool RegexCompile::compileInlineInterval() { |
|
2323 if (fIntervalUpper > 10 || fIntervalUpper < fIntervalLow) { |
|
2324 // Too big to inline. Fail, which will cause looping code to be generated. |
|
2325 // (Upper < Lower picks up unbounded upper and errors, both.) |
|
2326 return FALSE; |
|
2327 } |
|
2328 |
|
2329 int32_t topOfBlock = blockTopLoc(FALSE); |
|
2330 if (fIntervalUpper == 0) { |
|
2331 // Pathological case. Attempt no matches, as if the block doesn't exist. |
|
2332 fRXPat->fCompiledPat->setSize(topOfBlock); |
|
2333 return TRUE; |
|
2334 } |
|
2335 |
|
2336 if (topOfBlock != fRXPat->fCompiledPat->size()-1 && fIntervalUpper != 1) { |
|
2337 // The thing being repeated is not a single op, but some |
|
2338 // more complex block. Do it as a loop, not inlines. |
|
2339 // Note that things "repeated" a max of once are handled as inline, because |
|
2340 // the one copy of the code already generated is just fine. |
|
2341 return FALSE; |
|
2342 } |
|
2343 |
|
2344 // Pick up the opcode that is to be repeated |
|
2345 // |
|
2346 int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(topOfBlock); |
|
2347 |
|
2348 // Compute the pattern location where the inline sequence |
|
2349 // will end, and set up the state save op that will be needed. |
|
2350 // |
|
2351 int32_t endOfSequenceLoc = fRXPat->fCompiledPat->size()-1 |
|
2352 + fIntervalUpper + (fIntervalUpper-fIntervalLow); |
|
2353 int32_t saveOp = URX_BUILD(URX_STATE_SAVE, endOfSequenceLoc); |
|
2354 if (fIntervalLow == 0) { |
|
2355 insertOp(topOfBlock); |
|
2356 fRXPat->fCompiledPat->setElementAt(saveOp, topOfBlock); |
|
2357 } |
|
2358 |
|
2359 |
|
2360 |
|
2361 // Loop, emitting the op for the thing being repeated each time. |
|
2362 // Loop starts at 1 because one instance of the op already exists in the pattern, |
|
2363 // it was put there when it was originally encountered. |
|
2364 int32_t i; |
|
2365 for (i=1; i<fIntervalUpper; i++ ) { |
|
2366 if (i == fIntervalLow) { |
|
2367 fRXPat->fCompiledPat->addElement(saveOp, *fStatus); |
|
2368 } |
|
2369 if (i > fIntervalLow) { |
|
2370 fRXPat->fCompiledPat->addElement(saveOp, *fStatus); |
|
2371 } |
|
2372 fRXPat->fCompiledPat->addElement(op, *fStatus); |
|
2373 } |
|
2374 return TRUE; |
|
2375 } |
|
2376 |
|
2377 |
|
2378 |
|
2379 //------------------------------------------------------------------------------ |
|
2380 // |
|
2381 // matchStartType Determine how a match can start. |
|
2382 // Used to optimize find() operations. |
|
2383 // |
|
2384 // Operation is very similar to minMatchLength(). Walk the compiled |
|
2385 // pattern, keeping an on-going minimum-match-length. For any |
|
2386 // op where the min match coming in is zero, add that ops possible |
|
2387 // starting matches to the possible starts for the overall pattern. |
|
2388 // |
|
2389 //------------------------------------------------------------------------------ |
|
2390 void RegexCompile::matchStartType() { |
|
2391 if (U_FAILURE(*fStatus)) { |
|
2392 return; |
|
2393 } |
|
2394 |
|
2395 |
|
2396 int32_t loc; // Location in the pattern of the current op being processed. |
|
2397 int32_t op; // The op being processed |
|
2398 int32_t opType; // The opcode type of the op |
|
2399 int32_t currentLen = 0; // Minimum length of a match to this point (loc) in the pattern |
|
2400 int32_t numInitialStrings = 0; // Number of strings encountered that could match at start. |
|
2401 |
|
2402 UBool atStart = TRUE; // True if no part of the pattern yet encountered |
|
2403 // could have advanced the position in a match. |
|
2404 // (Maximum match length so far == 0) |
|
2405 |
|
2406 // forwardedLength is a vector holding minimum-match-length values that |
|
2407 // are propagated forward in the pattern by JMP or STATE_SAVE operations. |
|
2408 // It must be one longer than the pattern being checked because some ops |
|
2409 // will jmp to a end-of-block+1 location from within a block, and we must |
|
2410 // count those when checking the block. |
|
2411 int32_t end = fRXPat->fCompiledPat->size(); |
|
2412 UVector32 forwardedLength(end+1, *fStatus); |
|
2413 forwardedLength.setSize(end+1); |
|
2414 for (loc=3; loc<end; loc++) { |
|
2415 forwardedLength.setElementAt(INT32_MAX, loc); |
|
2416 } |
|
2417 |
|
2418 for (loc = 3; loc<end; loc++) { |
|
2419 op = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
|
2420 opType = URX_TYPE(op); |
|
2421 |
|
2422 // The loop is advancing linearly through the pattern. |
|
2423 // If the op we are now at was the destination of a branch in the pattern, |
|
2424 // and that path has a shorter minimum length than the current accumulated value, |
|
2425 // replace the current accumulated value. |
|
2426 if (forwardedLength.elementAti(loc) < currentLen) { |
|
2427 currentLen = forwardedLength.elementAti(loc); |
|
2428 U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); |
|
2429 } |
|
2430 |
|
2431 switch (opType) { |
|
2432 // Ops that don't change the total length matched |
|
2433 case URX_RESERVED_OP: |
|
2434 case URX_END: |
|
2435 case URX_FAIL: |
|
2436 case URX_STRING_LEN: |
|
2437 case URX_NOP: |
|
2438 case URX_START_CAPTURE: |
|
2439 case URX_END_CAPTURE: |
|
2440 case URX_BACKSLASH_B: |
|
2441 case URX_BACKSLASH_BU: |
|
2442 case URX_BACKSLASH_G: |
|
2443 case URX_BACKSLASH_Z: |
|
2444 case URX_DOLLAR: |
|
2445 case URX_DOLLAR_M: |
|
2446 case URX_DOLLAR_D: |
|
2447 case URX_DOLLAR_MD: |
|
2448 case URX_RELOC_OPRND: |
|
2449 case URX_STO_INP_LOC: |
|
2450 case URX_BACKREF: // BackRef. Must assume that it might be a zero length match |
|
2451 case URX_BACKREF_I: |
|
2452 |
|
2453 case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. |
|
2454 case URX_LD_SP: |
|
2455 break; |
|
2456 |
|
2457 case URX_CARET: |
|
2458 if (atStart) { |
|
2459 fRXPat->fStartType = START_START; |
|
2460 } |
|
2461 break; |
|
2462 |
|
2463 case URX_CARET_M: |
|
2464 case URX_CARET_M_UNIX: |
|
2465 if (atStart) { |
|
2466 fRXPat->fStartType = START_LINE; |
|
2467 } |
|
2468 break; |
|
2469 |
|
2470 case URX_ONECHAR: |
|
2471 if (currentLen == 0) { |
|
2472 // This character could appear at the start of a match. |
|
2473 // Add it to the set of possible starting characters. |
|
2474 fRXPat->fInitialChars->add(URX_VAL(op)); |
|
2475 numInitialStrings += 2; |
|
2476 } |
|
2477 currentLen++; |
|
2478 atStart = FALSE; |
|
2479 break; |
|
2480 |
|
2481 |
|
2482 case URX_SETREF: |
|
2483 if (currentLen == 0) { |
|
2484 int32_t sn = URX_VAL(op); |
|
2485 U_ASSERT(sn > 0 && sn < fRXPat->fSets->size()); |
|
2486 const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn); |
|
2487 fRXPat->fInitialChars->addAll(*s); |
|
2488 numInitialStrings += 2; |
|
2489 } |
|
2490 currentLen++; |
|
2491 atStart = FALSE; |
|
2492 break; |
|
2493 |
|
2494 case URX_LOOP_SR_I: |
|
2495 // [Set]*, like a SETREF, above, in what it can match, |
|
2496 // but may not match at all, so currentLen is not incremented. |
|
2497 if (currentLen == 0) { |
|
2498 int32_t sn = URX_VAL(op); |
|
2499 U_ASSERT(sn > 0 && sn < fRXPat->fSets->size()); |
|
2500 const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn); |
|
2501 fRXPat->fInitialChars->addAll(*s); |
|
2502 numInitialStrings += 2; |
|
2503 } |
|
2504 atStart = FALSE; |
|
2505 break; |
|
2506 |
|
2507 case URX_LOOP_DOT_I: |
|
2508 if (currentLen == 0) { |
|
2509 // .* at the start of a pattern. |
|
2510 // Any character can begin the match. |
|
2511 fRXPat->fInitialChars->clear(); |
|
2512 fRXPat->fInitialChars->complement(); |
|
2513 numInitialStrings += 2; |
|
2514 } |
|
2515 atStart = FALSE; |
|
2516 break; |
|
2517 |
|
2518 |
|
2519 case URX_STATIC_SETREF: |
|
2520 if (currentLen == 0) { |
|
2521 int32_t sn = URX_VAL(op); |
|
2522 U_ASSERT(sn>0 && sn<URX_LAST_SET); |
|
2523 const UnicodeSet *s = fRXPat->fStaticSets[sn]; |
|
2524 fRXPat->fInitialChars->addAll(*s); |
|
2525 numInitialStrings += 2; |
|
2526 } |
|
2527 currentLen++; |
|
2528 atStart = FALSE; |
|
2529 break; |
|
2530 |
|
2531 |
|
2532 |
|
2533 case URX_STAT_SETREF_N: |
|
2534 if (currentLen == 0) { |
|
2535 int32_t sn = URX_VAL(op); |
|
2536 const UnicodeSet *s = fRXPat->fStaticSets[sn]; |
|
2537 UnicodeSet sc(*s); |
|
2538 sc.complement(); |
|
2539 fRXPat->fInitialChars->addAll(sc); |
|
2540 numInitialStrings += 2; |
|
2541 } |
|
2542 currentLen++; |
|
2543 atStart = FALSE; |
|
2544 break; |
|
2545 |
|
2546 |
|
2547 |
|
2548 case URX_BACKSLASH_D: |
|
2549 // Digit Char |
|
2550 if (currentLen == 0) { |
|
2551 UnicodeSet s; |
|
2552 s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus); |
|
2553 if (URX_VAL(op) != 0) { |
|
2554 s.complement(); |
|
2555 } |
|
2556 fRXPat->fInitialChars->addAll(s); |
|
2557 numInitialStrings += 2; |
|
2558 } |
|
2559 currentLen++; |
|
2560 atStart = FALSE; |
|
2561 break; |
|
2562 |
|
2563 |
|
2564 case URX_ONECHAR_I: |
|
2565 // Case Insensitive Single Character. |
|
2566 if (currentLen == 0) { |
|
2567 UChar32 c = URX_VAL(op); |
|
2568 if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) { |
|
2569 |
|
2570 // Disable optimizations on first char of match. |
|
2571 // TODO: Compute the set of chars that case fold to this char, or to |
|
2572 // a string that begins with this char. |
|
2573 // For simple case folding, this code worked: |
|
2574 // UnicodeSet s(c, c); |
|
2575 // s.closeOver(USET_CASE_INSENSITIVE); |
|
2576 // fRXPat->fInitialChars->addAll(s); |
|
2577 |
|
2578 fRXPat->fInitialChars->clear(); |
|
2579 fRXPat->fInitialChars->complement(); |
|
2580 } else { |
|
2581 // Char has no case variants. Just add it as-is to the |
|
2582 // set of possible starting chars. |
|
2583 fRXPat->fInitialChars->add(c); |
|
2584 } |
|
2585 numInitialStrings += 2; |
|
2586 } |
|
2587 currentLen++; |
|
2588 atStart = FALSE; |
|
2589 break; |
|
2590 |
|
2591 |
|
2592 case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded. |
|
2593 case URX_DOTANY_ALL: // . matches one or two. |
|
2594 case URX_DOTANY: |
|
2595 case URX_DOTANY_UNIX: |
|
2596 if (currentLen == 0) { |
|
2597 // These constructs are all bad news when they appear at the start |
|
2598 // of a match. Any character can begin the match. |
|
2599 fRXPat->fInitialChars->clear(); |
|
2600 fRXPat->fInitialChars->complement(); |
|
2601 numInitialStrings += 2; |
|
2602 } |
|
2603 currentLen++; |
|
2604 atStart = FALSE; |
|
2605 break; |
|
2606 |
|
2607 |
|
2608 case URX_JMPX: |
|
2609 loc++; // Except for extra operand on URX_JMPX, same as URX_JMP. |
|
2610 case URX_JMP: |
|
2611 { |
|
2612 int32_t jmpDest = URX_VAL(op); |
|
2613 if (jmpDest < loc) { |
|
2614 // Loop of some kind. Can safely ignore, the worst that will happen |
|
2615 // is that we understate the true minimum length |
|
2616 currentLen = forwardedLength.elementAti(loc+1); |
|
2617 |
|
2618 } else { |
|
2619 // Forward jump. Propagate the current min length to the target loc of the jump. |
|
2620 U_ASSERT(jmpDest <= end+1); |
|
2621 if (forwardedLength.elementAti(jmpDest) > currentLen) { |
|
2622 forwardedLength.setElementAt(currentLen, jmpDest); |
|
2623 } |
|
2624 } |
|
2625 } |
|
2626 atStart = FALSE; |
|
2627 break; |
|
2628 |
|
2629 case URX_JMP_SAV: |
|
2630 case URX_JMP_SAV_X: |
|
2631 // Combo of state save to the next loc, + jmp backwards. |
|
2632 // Net effect on min. length computation is nothing. |
|
2633 atStart = FALSE; |
|
2634 break; |
|
2635 |
|
2636 case URX_BACKTRACK: |
|
2637 // Fails are kind of like a branch, except that the min length was |
|
2638 // propagated already, by the state save. |
|
2639 currentLen = forwardedLength.elementAti(loc+1); |
|
2640 atStart = FALSE; |
|
2641 break; |
|
2642 |
|
2643 |
|
2644 case URX_STATE_SAVE: |
|
2645 { |
|
2646 // State Save, for forward jumps, propagate the current minimum. |
|
2647 // of the state save. |
|
2648 int32_t jmpDest = URX_VAL(op); |
|
2649 if (jmpDest > loc) { |
|
2650 if (currentLen < forwardedLength.elementAti(jmpDest)) { |
|
2651 forwardedLength.setElementAt(currentLen, jmpDest); |
|
2652 } |
|
2653 } |
|
2654 } |
|
2655 atStart = FALSE; |
|
2656 break; |
|
2657 |
|
2658 |
|
2659 |
|
2660 |
|
2661 case URX_STRING: |
|
2662 { |
|
2663 loc++; |
|
2664 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
|
2665 int32_t stringLen = URX_VAL(stringLenOp); |
|
2666 U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN); |
|
2667 U_ASSERT(stringLenOp >= 2); |
|
2668 if (currentLen == 0) { |
|
2669 // Add the starting character of this string to the set of possible starting |
|
2670 // characters for this pattern. |
|
2671 int32_t stringStartIdx = URX_VAL(op); |
|
2672 UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx); |
|
2673 fRXPat->fInitialChars->add(c); |
|
2674 |
|
2675 // Remember this string. After the entire pattern has been checked, |
|
2676 // if nothing else is identified that can start a match, we'll use it. |
|
2677 numInitialStrings++; |
|
2678 fRXPat->fInitialStringIdx = stringStartIdx; |
|
2679 fRXPat->fInitialStringLen = stringLen; |
|
2680 } |
|
2681 |
|
2682 currentLen += stringLen; |
|
2683 atStart = FALSE; |
|
2684 } |
|
2685 break; |
|
2686 |
|
2687 case URX_STRING_I: |
|
2688 { |
|
2689 // Case-insensitive string. Unlike exact-match strings, we won't |
|
2690 // attempt a string search for possible match positions. But we |
|
2691 // do update the set of possible starting characters. |
|
2692 loc++; |
|
2693 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
|
2694 int32_t stringLen = URX_VAL(stringLenOp); |
|
2695 U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN); |
|
2696 U_ASSERT(stringLenOp >= 2); |
|
2697 if (currentLen == 0) { |
|
2698 // Add the starting character of this string to the set of possible starting |
|
2699 // characters for this pattern. |
|
2700 int32_t stringStartIdx = URX_VAL(op); |
|
2701 UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx); |
|
2702 UnicodeSet s(c, c); |
|
2703 |
|
2704 // TODO: compute correct set of starting chars for full case folding. |
|
2705 // For the moment, say any char can start. |
|
2706 // s.closeOver(USET_CASE_INSENSITIVE); |
|
2707 s.clear(); |
|
2708 s.complement(); |
|
2709 |
|
2710 fRXPat->fInitialChars->addAll(s); |
|
2711 numInitialStrings += 2; // Matching on an initial string not possible. |
|
2712 } |
|
2713 currentLen += stringLen; |
|
2714 atStart = FALSE; |
|
2715 } |
|
2716 break; |
|
2717 |
|
2718 case URX_CTR_INIT: |
|
2719 case URX_CTR_INIT_NG: |
|
2720 { |
|
2721 // Loop Init Ops. These don't change the min length, but they are 4 word ops |
|
2722 // so location must be updated accordingly. |
|
2723 // Loop Init Ops. |
|
2724 // If the min loop count == 0 |
|
2725 // move loc forwards to the end of the loop, skipping over the body. |
|
2726 // If the min count is > 0, |
|
2727 // continue normal processing of the body of the loop. |
|
2728 int32_t loopEndLoc = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1); |
|
2729 loopEndLoc = URX_VAL(loopEndLoc); |
|
2730 int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2); |
|
2731 if (minLoopCount == 0) { |
|
2732 // Min Loop Count of 0, treat like a forward branch and |
|
2733 // move the current minimum length up to the target |
|
2734 // (end of loop) location. |
|
2735 U_ASSERT(loopEndLoc <= end+1); |
|
2736 if (forwardedLength.elementAti(loopEndLoc) > currentLen) { |
|
2737 forwardedLength.setElementAt(currentLen, loopEndLoc); |
|
2738 } |
|
2739 } |
|
2740 loc+=3; // Skips over operands of CTR_INIT |
|
2741 } |
|
2742 atStart = FALSE; |
|
2743 break; |
|
2744 |
|
2745 |
|
2746 case URX_CTR_LOOP: |
|
2747 case URX_CTR_LOOP_NG: |
|
2748 // Loop ops. |
|
2749 // The jump is conditional, backwards only. |
|
2750 atStart = FALSE; |
|
2751 break; |
|
2752 |
|
2753 case URX_LOOP_C: |
|
2754 // More loop ops. These state-save to themselves. |
|
2755 // don't change the minimum match |
|
2756 atStart = FALSE; |
|
2757 break; |
|
2758 |
|
2759 |
|
2760 case URX_LA_START: |
|
2761 case URX_LB_START: |
|
2762 { |
|
2763 // Look-around. Scan forward until the matching look-ahead end, |
|
2764 // without processing the look-around block. This is overly pessimistic. |
|
2765 |
|
2766 // Keep track of the nesting depth of look-around blocks. Boilerplate code for |
|
2767 // lookahead contains two LA_END instructions, so count goes up by two |
|
2768 // for each LA_START. |
|
2769 int32_t depth = (opType == URX_LA_START? 2: 1); |
|
2770 for (;;) { |
|
2771 loc++; |
|
2772 op = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
|
2773 if (URX_TYPE(op) == URX_LA_START) { |
|
2774 depth+=2; |
|
2775 } |
|
2776 if (URX_TYPE(op) == URX_LB_START) { |
|
2777 depth++; |
|
2778 } |
|
2779 if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) { |
|
2780 depth--; |
|
2781 if (depth == 0) { |
|
2782 break; |
|
2783 } |
|
2784 } |
|
2785 if (URX_TYPE(op) == URX_STATE_SAVE) { |
|
2786 // Need this because neg lookahead blocks will FAIL to outside |
|
2787 // of the block. |
|
2788 int32_t jmpDest = URX_VAL(op); |
|
2789 if (jmpDest > loc) { |
|
2790 if (currentLen < forwardedLength.elementAti(jmpDest)) { |
|
2791 forwardedLength.setElementAt(currentLen, jmpDest); |
|
2792 } |
|
2793 } |
|
2794 } |
|
2795 U_ASSERT(loc <= end); |
|
2796 } |
|
2797 } |
|
2798 break; |
|
2799 |
|
2800 case URX_LA_END: |
|
2801 case URX_LB_CONT: |
|
2802 case URX_LB_END: |
|
2803 case URX_LBN_CONT: |
|
2804 case URX_LBN_END: |
|
2805 U_ASSERT(FALSE); // Shouldn't get here. These ops should be |
|
2806 // consumed by the scan in URX_LA_START and LB_START |
|
2807 |
|
2808 break; |
|
2809 |
|
2810 default: |
|
2811 U_ASSERT(FALSE); |
|
2812 } |
|
2813 |
|
2814 } |
|
2815 |
|
2816 |
|
2817 // We have finished walking through the ops. Check whether some forward jump |
|
2818 // propagated a shorter length to location end+1. |
|
2819 if (forwardedLength.elementAti(end+1) < currentLen) { |
|
2820 currentLen = forwardedLength.elementAti(end+1); |
|
2821 } |
|
2822 |
|
2823 |
|
2824 fRXPat->fInitialChars8->init(fRXPat->fInitialChars); |
|
2825 |
|
2826 |
|
2827 // Sort out what we should check for when looking for candidate match start positions. |
|
2828 // In order of preference, |
|
2829 // 1. Start of input text buffer. |
|
2830 // 2. A literal string. |
|
2831 // 3. Start of line in multi-line mode. |
|
2832 // 4. A single literal character. |
|
2833 // 5. A character from a set of characters. |
|
2834 // |
|
2835 if (fRXPat->fStartType == START_START) { |
|
2836 // Match only at the start of an input text string. |
|
2837 // start type is already set. We're done. |
|
2838 } else if (numInitialStrings == 1 && fRXPat->fMinMatchLen > 0) { |
|
2839 // Match beginning only with a literal string. |
|
2840 UChar32 c = fRXPat->fLiteralText.char32At(fRXPat->fInitialStringIdx); |
|
2841 U_ASSERT(fRXPat->fInitialChars->contains(c)); |
|
2842 fRXPat->fStartType = START_STRING; |
|
2843 fRXPat->fInitialChar = c; |
|
2844 } else if (fRXPat->fStartType == START_LINE) { |
|
2845 // Match at start of line in Multi-Line mode. |
|
2846 // Nothing to do here; everything is already set. |
|
2847 } else if (fRXPat->fMinMatchLen == 0) { |
|
2848 // Zero length match possible. We could start anywhere. |
|
2849 fRXPat->fStartType = START_NO_INFO; |
|
2850 } else if (fRXPat->fInitialChars->size() == 1) { |
|
2851 // All matches begin with the same char. |
|
2852 fRXPat->fStartType = START_CHAR; |
|
2853 fRXPat->fInitialChar = fRXPat->fInitialChars->charAt(0); |
|
2854 U_ASSERT(fRXPat->fInitialChar != (UChar32)-1); |
|
2855 } else if (fRXPat->fInitialChars->contains((UChar32)0, (UChar32)0x10ffff) == FALSE && |
|
2856 fRXPat->fMinMatchLen > 0) { |
|
2857 // Matches start with a set of character smaller than the set of all chars. |
|
2858 fRXPat->fStartType = START_SET; |
|
2859 } else { |
|
2860 // Matches can start with anything |
|
2861 fRXPat->fStartType = START_NO_INFO; |
|
2862 } |
|
2863 |
|
2864 return; |
|
2865 } |
|
2866 |
|
2867 |
|
2868 |
|
2869 //------------------------------------------------------------------------------ |
|
2870 // |
|
2871 // minMatchLength Calculate the length of the shortest string that could |
|
2872 // match the specified pattern. |
|
2873 // Length is in 16 bit code units, not code points. |
|
2874 // |
|
2875 // The calculated length may not be exact. The returned |
|
2876 // value may be shorter than the actual minimum; it must |
|
2877 // never be longer. |
|
2878 // |
|
2879 // start and end are the range of p-code operations to be |
|
2880 // examined. The endpoints are included in the range. |
|
2881 // |
|
2882 //------------------------------------------------------------------------------ |
|
2883 int32_t RegexCompile::minMatchLength(int32_t start, int32_t end) { |
|
2884 if (U_FAILURE(*fStatus)) { |
|
2885 return 0; |
|
2886 } |
|
2887 |
|
2888 U_ASSERT(start <= end); |
|
2889 U_ASSERT(end < fRXPat->fCompiledPat->size()); |
|
2890 |
|
2891 |
|
2892 int32_t loc; |
|
2893 int32_t op; |
|
2894 int32_t opType; |
|
2895 int32_t currentLen = 0; |
|
2896 |
|
2897 |
|
2898 // forwardedLength is a vector holding minimum-match-length values that |
|
2899 // are propagated forward in the pattern by JMP or STATE_SAVE operations. |
|
2900 // It must be one longer than the pattern being checked because some ops |
|
2901 // will jmp to a end-of-block+1 location from within a block, and we must |
|
2902 // count those when checking the block. |
|
2903 UVector32 forwardedLength(end+2, *fStatus); |
|
2904 forwardedLength.setSize(end+2); |
|
2905 for (loc=start; loc<=end+1; loc++) { |
|
2906 forwardedLength.setElementAt(INT32_MAX, loc); |
|
2907 } |
|
2908 |
|
2909 for (loc = start; loc<=end; loc++) { |
|
2910 op = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
|
2911 opType = URX_TYPE(op); |
|
2912 |
|
2913 // The loop is advancing linearly through the pattern. |
|
2914 // If the op we are now at was the destination of a branch in the pattern, |
|
2915 // and that path has a shorter minimum length than the current accumulated value, |
|
2916 // replace the current accumulated value. |
|
2917 // U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); // MinLength == INT32_MAX for some |
|
2918 // no-match-possible cases. |
|
2919 if (forwardedLength.elementAti(loc) < currentLen) { |
|
2920 currentLen = forwardedLength.elementAti(loc); |
|
2921 U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); |
|
2922 } |
|
2923 |
|
2924 switch (opType) { |
|
2925 // Ops that don't change the total length matched |
|
2926 case URX_RESERVED_OP: |
|
2927 case URX_END: |
|
2928 case URX_STRING_LEN: |
|
2929 case URX_NOP: |
|
2930 case URX_START_CAPTURE: |
|
2931 case URX_END_CAPTURE: |
|
2932 case URX_BACKSLASH_B: |
|
2933 case URX_BACKSLASH_BU: |
|
2934 case URX_BACKSLASH_G: |
|
2935 case URX_BACKSLASH_Z: |
|
2936 case URX_CARET: |
|
2937 case URX_DOLLAR: |
|
2938 case URX_DOLLAR_M: |
|
2939 case URX_DOLLAR_D: |
|
2940 case URX_DOLLAR_MD: |
|
2941 case URX_RELOC_OPRND: |
|
2942 case URX_STO_INP_LOC: |
|
2943 case URX_CARET_M: |
|
2944 case URX_CARET_M_UNIX: |
|
2945 case URX_BACKREF: // BackRef. Must assume that it might be a zero length match |
|
2946 case URX_BACKREF_I: |
|
2947 |
|
2948 case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. |
|
2949 case URX_LD_SP: |
|
2950 |
|
2951 case URX_JMP_SAV: |
|
2952 case URX_JMP_SAV_X: |
|
2953 break; |
|
2954 |
|
2955 |
|
2956 // Ops that match a minimum of one character (one or two 16 bit code units.) |
|
2957 // |
|
2958 case URX_ONECHAR: |
|
2959 case URX_STATIC_SETREF: |
|
2960 case URX_STAT_SETREF_N: |
|
2961 case URX_SETREF: |
|
2962 case URX_BACKSLASH_D: |
|
2963 case URX_ONECHAR_I: |
|
2964 case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded. |
|
2965 case URX_DOTANY_ALL: // . matches one or two. |
|
2966 case URX_DOTANY: |
|
2967 case URX_DOTANY_UNIX: |
|
2968 currentLen++; |
|
2969 break; |
|
2970 |
|
2971 |
|
2972 case URX_JMPX: |
|
2973 loc++; // URX_JMPX has an extra operand, ignored here, |
|
2974 // otherwise processed identically to URX_JMP. |
|
2975 case URX_JMP: |
|
2976 { |
|
2977 int32_t jmpDest = URX_VAL(op); |
|
2978 if (jmpDest < loc) { |
|
2979 // Loop of some kind. Can safely ignore, the worst that will happen |
|
2980 // is that we understate the true minimum length |
|
2981 currentLen = forwardedLength.elementAti(loc+1); |
|
2982 } else { |
|
2983 // Forward jump. Propagate the current min length to the target loc of the jump. |
|
2984 U_ASSERT(jmpDest <= end+1); |
|
2985 if (forwardedLength.elementAti(jmpDest) > currentLen) { |
|
2986 forwardedLength.setElementAt(currentLen, jmpDest); |
|
2987 } |
|
2988 } |
|
2989 } |
|
2990 break; |
|
2991 |
|
2992 case URX_BACKTRACK: |
|
2993 { |
|
2994 // Back-tracks are kind of like a branch, except that the min length was |
|
2995 // propagated already, by the state save. |
|
2996 currentLen = forwardedLength.elementAti(loc+1); |
|
2997 } |
|
2998 break; |
|
2999 |
|
3000 |
|
3001 case URX_STATE_SAVE: |
|
3002 { |
|
3003 // State Save, for forward jumps, propagate the current minimum. |
|
3004 // of the state save. |
|
3005 int32_t jmpDest = URX_VAL(op); |
|
3006 if (jmpDest > loc) { |
|
3007 if (currentLen < forwardedLength.elementAti(jmpDest)) { |
|
3008 forwardedLength.setElementAt(currentLen, jmpDest); |
|
3009 } |
|
3010 } |
|
3011 } |
|
3012 break; |
|
3013 |
|
3014 |
|
3015 case URX_STRING: |
|
3016 { |
|
3017 loc++; |
|
3018 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
|
3019 currentLen += URX_VAL(stringLenOp); |
|
3020 } |
|
3021 break; |
|
3022 |
|
3023 |
|
3024 case URX_STRING_I: |
|
3025 { |
|
3026 loc++; |
|
3027 // TODO: with full case folding, matching input text may be shorter than |
|
3028 // the string we have here. More smarts could put some bounds on it. |
|
3029 // Assume a min length of one for now. A min length of zero causes |
|
3030 // optimization failures for a pattern like "string"+ |
|
3031 // currentLen += URX_VAL(stringLenOp); |
|
3032 currentLen += 1; |
|
3033 } |
|
3034 break; |
|
3035 |
|
3036 case URX_CTR_INIT: |
|
3037 case URX_CTR_INIT_NG: |
|
3038 { |
|
3039 // Loop Init Ops. |
|
3040 // If the min loop count == 0 |
|
3041 // move loc forwards to the end of the loop, skipping over the body. |
|
3042 // If the min count is > 0, |
|
3043 // continue normal processing of the body of the loop. |
|
3044 int32_t loopEndLoc = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1); |
|
3045 loopEndLoc = URX_VAL(loopEndLoc); |
|
3046 int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2); |
|
3047 if (minLoopCount == 0) { |
|
3048 loc = loopEndLoc; |
|
3049 } else { |
|
3050 loc+=3; // Skips over operands of CTR_INIT |
|
3051 } |
|
3052 } |
|
3053 break; |
|
3054 |
|
3055 |
|
3056 case URX_CTR_LOOP: |
|
3057 case URX_CTR_LOOP_NG: |
|
3058 // Loop ops. |
|
3059 // The jump is conditional, backwards only. |
|
3060 break; |
|
3061 |
|
3062 case URX_LOOP_SR_I: |
|
3063 case URX_LOOP_DOT_I: |
|
3064 case URX_LOOP_C: |
|
3065 // More loop ops. These state-save to themselves. |
|
3066 // don't change the minimum match - could match nothing at all. |
|
3067 break; |
|
3068 |
|
3069 |
|
3070 case URX_LA_START: |
|
3071 case URX_LB_START: |
|
3072 { |
|
3073 // Look-around. Scan forward until the matching look-ahead end, |
|
3074 // without processing the look-around block. This is overly pessimistic for look-ahead, |
|
3075 // it assumes that the look-ahead match might be zero-length. |
|
3076 // TODO: Positive lookahead could recursively do the block, then continue |
|
3077 // with the longer of the block or the value coming in. Ticket 6060 |
|
3078 int32_t depth = (opType == URX_LA_START? 2: 1);; |
|
3079 for (;;) { |
|
3080 loc++; |
|
3081 op = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
|
3082 if (URX_TYPE(op) == URX_LA_START) { |
|
3083 // The boilerplate for look-ahead includes two LA_END insturctions, |
|
3084 // Depth will be decremented by each one when it is seen. |
|
3085 depth += 2; |
|
3086 } |
|
3087 if (URX_TYPE(op) == URX_LB_START) { |
|
3088 depth++; |
|
3089 } |
|
3090 if (URX_TYPE(op) == URX_LA_END) { |
|
3091 depth--; |
|
3092 if (depth == 0) { |
|
3093 break; |
|
3094 } |
|
3095 } |
|
3096 if (URX_TYPE(op)==URX_LBN_END) { |
|
3097 depth--; |
|
3098 if (depth == 0) { |
|
3099 break; |
|
3100 } |
|
3101 } |
|
3102 if (URX_TYPE(op) == URX_STATE_SAVE) { |
|
3103 // Need this because neg lookahead blocks will FAIL to outside |
|
3104 // of the block. |
|
3105 int32_t jmpDest = URX_VAL(op); |
|
3106 if (jmpDest > loc) { |
|
3107 if (currentLen < forwardedLength.elementAti(jmpDest)) { |
|
3108 forwardedLength.setElementAt(currentLen, jmpDest); |
|
3109 } |
|
3110 } |
|
3111 } |
|
3112 U_ASSERT(loc <= end); |
|
3113 } |
|
3114 } |
|
3115 break; |
|
3116 |
|
3117 case URX_LA_END: |
|
3118 case URX_LB_CONT: |
|
3119 case URX_LB_END: |
|
3120 case URX_LBN_CONT: |
|
3121 case URX_LBN_END: |
|
3122 // Only come here if the matching URX_LA_START or URX_LB_START was not in the |
|
3123 // range being sized, which happens when measuring size of look-behind blocks. |
|
3124 break; |
|
3125 |
|
3126 default: |
|
3127 U_ASSERT(FALSE); |
|
3128 } |
|
3129 |
|
3130 } |
|
3131 |
|
3132 // We have finished walking through the ops. Check whether some forward jump |
|
3133 // propagated a shorter length to location end+1. |
|
3134 if (forwardedLength.elementAti(end+1) < currentLen) { |
|
3135 currentLen = forwardedLength.elementAti(end+1); |
|
3136 U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); |
|
3137 } |
|
3138 |
|
3139 return currentLen; |
|
3140 } |
|
3141 |
|
3142 // Increment with overflow check. |
|
3143 // val and delta will both be positive. |
|
3144 |
|
3145 static int32_t safeIncrement(int32_t val, int32_t delta) { |
|
3146 if (INT32_MAX - val > delta) { |
|
3147 return val + delta; |
|
3148 } else { |
|
3149 return INT32_MAX; |
|
3150 } |
|
3151 } |
|
3152 |
|
3153 |
|
3154 //------------------------------------------------------------------------------ |
|
3155 // |
|
3156 // maxMatchLength Calculate the length of the longest string that could |
|
3157 // match the specified pattern. |
|
3158 // Length is in 16 bit code units, not code points. |
|
3159 // |
|
3160 // The calculated length may not be exact. The returned |
|
3161 // value may be longer than the actual maximum; it must |
|
3162 // never be shorter. |
|
3163 // |
|
3164 //------------------------------------------------------------------------------ |
|
3165 int32_t RegexCompile::maxMatchLength(int32_t start, int32_t end) { |
|
3166 if (U_FAILURE(*fStatus)) { |
|
3167 return 0; |
|
3168 } |
|
3169 U_ASSERT(start <= end); |
|
3170 U_ASSERT(end < fRXPat->fCompiledPat->size()); |
|
3171 |
|
3172 |
|
3173 int32_t loc; |
|
3174 int32_t op; |
|
3175 int32_t opType; |
|
3176 int32_t currentLen = 0; |
|
3177 UVector32 forwardedLength(end+1, *fStatus); |
|
3178 forwardedLength.setSize(end+1); |
|
3179 |
|
3180 for (loc=start; loc<=end; loc++) { |
|
3181 forwardedLength.setElementAt(0, loc); |
|
3182 } |
|
3183 |
|
3184 for (loc = start; loc<=end; loc++) { |
|
3185 op = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
|
3186 opType = URX_TYPE(op); |
|
3187 |
|
3188 // The loop is advancing linearly through the pattern. |
|
3189 // If the op we are now at was the destination of a branch in the pattern, |
|
3190 // and that path has a longer maximum length than the current accumulated value, |
|
3191 // replace the current accumulated value. |
|
3192 if (forwardedLength.elementAti(loc) > currentLen) { |
|
3193 currentLen = forwardedLength.elementAti(loc); |
|
3194 } |
|
3195 |
|
3196 switch (opType) { |
|
3197 // Ops that don't change the total length matched |
|
3198 case URX_RESERVED_OP: |
|
3199 case URX_END: |
|
3200 case URX_STRING_LEN: |
|
3201 case URX_NOP: |
|
3202 case URX_START_CAPTURE: |
|
3203 case URX_END_CAPTURE: |
|
3204 case URX_BACKSLASH_B: |
|
3205 case URX_BACKSLASH_BU: |
|
3206 case URX_BACKSLASH_G: |
|
3207 case URX_BACKSLASH_Z: |
|
3208 case URX_CARET: |
|
3209 case URX_DOLLAR: |
|
3210 case URX_DOLLAR_M: |
|
3211 case URX_DOLLAR_D: |
|
3212 case URX_DOLLAR_MD: |
|
3213 case URX_RELOC_OPRND: |
|
3214 case URX_STO_INP_LOC: |
|
3215 case URX_CARET_M: |
|
3216 case URX_CARET_M_UNIX: |
|
3217 |
|
3218 case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. |
|
3219 case URX_LD_SP: |
|
3220 |
|
3221 case URX_LB_END: |
|
3222 case URX_LB_CONT: |
|
3223 case URX_LBN_CONT: |
|
3224 case URX_LBN_END: |
|
3225 break; |
|
3226 |
|
3227 |
|
3228 // Ops that increase that cause an unbounded increase in the length |
|
3229 // of a matched string, or that increase it a hard to characterize way. |
|
3230 // Call the max length unbounded, and stop further checking. |
|
3231 case URX_BACKREF: // BackRef. Must assume that it might be a zero length match |
|
3232 case URX_BACKREF_I: |
|
3233 case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded. |
|
3234 currentLen = INT32_MAX; |
|
3235 break; |
|
3236 |
|
3237 |
|
3238 // Ops that match a max of one character (possibly two 16 bit code units.) |
|
3239 // |
|
3240 case URX_STATIC_SETREF: |
|
3241 case URX_STAT_SETREF_N: |
|
3242 case URX_SETREF: |
|
3243 case URX_BACKSLASH_D: |
|
3244 case URX_ONECHAR_I: |
|
3245 case URX_DOTANY_ALL: |
|
3246 case URX_DOTANY: |
|
3247 case URX_DOTANY_UNIX: |
|
3248 currentLen = safeIncrement(currentLen, 2); |
|
3249 break; |
|
3250 |
|
3251 // Single literal character. Increase current max length by one or two, |
|
3252 // depending on whether the char is in the supplementary range. |
|
3253 case URX_ONECHAR: |
|
3254 currentLen = safeIncrement(currentLen, 1); |
|
3255 if (URX_VAL(op) > 0x10000) { |
|
3256 currentLen = safeIncrement(currentLen, 1); |
|
3257 } |
|
3258 break; |
|
3259 |
|
3260 // Jumps. |
|
3261 // |
|
3262 case URX_JMP: |
|
3263 case URX_JMPX: |
|
3264 case URX_JMP_SAV: |
|
3265 case URX_JMP_SAV_X: |
|
3266 { |
|
3267 int32_t jmpDest = URX_VAL(op); |
|
3268 if (jmpDest < loc) { |
|
3269 // Loop of some kind. Max match length is unbounded. |
|
3270 currentLen = INT32_MAX; |
|
3271 } else { |
|
3272 // Forward jump. Propagate the current min length to the target loc of the jump. |
|
3273 if (forwardedLength.elementAti(jmpDest) < currentLen) { |
|
3274 forwardedLength.setElementAt(currentLen, jmpDest); |
|
3275 } |
|
3276 currentLen = 0; |
|
3277 } |
|
3278 } |
|
3279 break; |
|
3280 |
|
3281 case URX_BACKTRACK: |
|
3282 // back-tracks are kind of like a branch, except that the max length was |
|
3283 // propagated already, by the state save. |
|
3284 currentLen = forwardedLength.elementAti(loc+1); |
|
3285 break; |
|
3286 |
|
3287 |
|
3288 case URX_STATE_SAVE: |
|
3289 { |
|
3290 // State Save, for forward jumps, propagate the current minimum. |
|
3291 // of the state save. |
|
3292 // For backwards jumps, they create a loop, maximum |
|
3293 // match length is unbounded. |
|
3294 int32_t jmpDest = URX_VAL(op); |
|
3295 if (jmpDest > loc) { |
|
3296 if (currentLen > forwardedLength.elementAti(jmpDest)) { |
|
3297 forwardedLength.setElementAt(currentLen, jmpDest); |
|
3298 } |
|
3299 } else { |
|
3300 currentLen = INT32_MAX; |
|
3301 } |
|
3302 } |
|
3303 break; |
|
3304 |
|
3305 |
|
3306 |
|
3307 |
|
3308 case URX_STRING: |
|
3309 { |
|
3310 loc++; |
|
3311 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
|
3312 currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp)); |
|
3313 break; |
|
3314 } |
|
3315 |
|
3316 case URX_STRING_I: |
|
3317 // TODO: This code assumes that any user string that matches will be no longer |
|
3318 // than our compiled string, with case insensitive matching. |
|
3319 // Our compiled string has been case-folded already. |
|
3320 // |
|
3321 // Any matching user string will have no more code points than our |
|
3322 // compiled (folded) string. Folding may add code points, but |
|
3323 // not remove them. |
|
3324 // |
|
3325 // There is a potential problem if a supplemental code point |
|
3326 // case-folds to a BMP code point. In this case our compiled string |
|
3327 // could be shorter (in code units) than a matching user string. |
|
3328 // |
|
3329 // At this time (Unicode 6.1) there are no such characters, and this case |
|
3330 // is not being handled. A test, intltest regex/Bug9283, will fail if |
|
3331 // any problematic characters are added to Unicode. |
|
3332 // |
|
3333 // If this happens, we can make a set of the BMP chars that the |
|
3334 // troublesome supplementals fold to, scan our string, and bump the |
|
3335 // currentLen one extra for each that is found. |
|
3336 // |
|
3337 { |
|
3338 loc++; |
|
3339 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
|
3340 currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp)); |
|
3341 } |
|
3342 break; |
|
3343 |
|
3344 case URX_CTR_INIT: |
|
3345 case URX_CTR_INIT_NG: |
|
3346 // For Loops, recursively call this function on the pattern for the loop body, |
|
3347 // then multiply the result by the maximum loop count. |
|
3348 { |
|
3349 int32_t loopEndLoc = URX_VAL(fRXPat->fCompiledPat->elementAti(loc+1)); |
|
3350 if (loopEndLoc == loc+4) { |
|
3351 // Loop has an empty body. No affect on max match length. |
|
3352 // Continue processing with code after the loop end. |
|
3353 loc = loopEndLoc; |
|
3354 break; |
|
3355 } |
|
3356 |
|
3357 int32_t maxLoopCount = fRXPat->fCompiledPat->elementAti(loc+3); |
|
3358 if (maxLoopCount == -1) { |
|
3359 // Unbounded Loop. No upper bound on match length. |
|
3360 currentLen = INT32_MAX; |
|
3361 break; |
|
3362 } |
|
3363 |
|
3364 U_ASSERT(loopEndLoc >= loc+4); |
|
3365 int32_t blockLen = maxMatchLength(loc+4, loopEndLoc-1); // Recursive call. |
|
3366 if (blockLen == INT32_MAX) { |
|
3367 currentLen = blockLen; |
|
3368 break; |
|
3369 } |
|
3370 currentLen += blockLen * maxLoopCount; |
|
3371 loc = loopEndLoc; |
|
3372 break; |
|
3373 } |
|
3374 |
|
3375 case URX_CTR_LOOP: |
|
3376 case URX_CTR_LOOP_NG: |
|
3377 // These opcodes will be skipped over by code for URX_CRT_INIT. |
|
3378 // We shouldn't encounter them here. |
|
3379 U_ASSERT(FALSE); |
|
3380 break; |
|
3381 |
|
3382 case URX_LOOP_SR_I: |
|
3383 case URX_LOOP_DOT_I: |
|
3384 case URX_LOOP_C: |
|
3385 // For anything to do with loops, make the match length unbounded. |
|
3386 currentLen = INT32_MAX; |
|
3387 break; |
|
3388 |
|
3389 |
|
3390 |
|
3391 case URX_LA_START: |
|
3392 case URX_LA_END: |
|
3393 // Look-ahead. Just ignore, treat the look-ahead block as if |
|
3394 // it were normal pattern. Gives a too-long match length, |
|
3395 // but good enough for now. |
|
3396 break; |
|
3397 |
|
3398 // End of look-ahead ops should always be consumed by the processing at |
|
3399 // the URX_LA_START op. |
|
3400 // U_ASSERT(FALSE); |
|
3401 // break; |
|
3402 |
|
3403 case URX_LB_START: |
|
3404 { |
|
3405 // Look-behind. Scan forward until the matching look-around end, |
|
3406 // without processing the look-behind block. |
|
3407 int32_t depth = 0; |
|
3408 for (;;) { |
|
3409 loc++; |
|
3410 op = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
|
3411 if (URX_TYPE(op) == URX_LA_START || URX_TYPE(op) == URX_LB_START) { |
|
3412 depth++; |
|
3413 } |
|
3414 if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) { |
|
3415 if (depth == 0) { |
|
3416 break; |
|
3417 } |
|
3418 depth--; |
|
3419 } |
|
3420 U_ASSERT(loc < end); |
|
3421 } |
|
3422 } |
|
3423 break; |
|
3424 |
|
3425 default: |
|
3426 U_ASSERT(FALSE); |
|
3427 } |
|
3428 |
|
3429 |
|
3430 if (currentLen == INT32_MAX) { |
|
3431 // The maximum length is unbounded. |
|
3432 // Stop further processing of the pattern. |
|
3433 break; |
|
3434 } |
|
3435 |
|
3436 } |
|
3437 return currentLen; |
|
3438 |
|
3439 } |
|
3440 |
|
3441 |
|
3442 //------------------------------------------------------------------------------ |
|
3443 // |
|
3444 // stripNOPs Remove any NOP operations from the compiled pattern code. |
|
3445 // Extra NOPs are inserted for some constructs during the initial |
|
3446 // code generation to provide locations that may be patched later. |
|
3447 // Many end up unneeded, and are removed by this function. |
|
3448 // |
|
3449 // In order to minimize the number of passes through the pattern, |
|
3450 // back-reference fixup is also performed here (adjusting |
|
3451 // back-reference operands to point to the correct frame offsets). |
|
3452 // |
|
3453 //------------------------------------------------------------------------------ |
|
3454 void RegexCompile::stripNOPs() { |
|
3455 |
|
3456 if (U_FAILURE(*fStatus)) { |
|
3457 return; |
|
3458 } |
|
3459 |
|
3460 int32_t end = fRXPat->fCompiledPat->size(); |
|
3461 UVector32 deltas(end, *fStatus); |
|
3462 |
|
3463 // Make a first pass over the code, computing the amount that things |
|
3464 // will be offset at each location in the original code. |
|
3465 int32_t loc; |
|
3466 int32_t d = 0; |
|
3467 for (loc=0; loc<end; loc++) { |
|
3468 deltas.addElement(d, *fStatus); |
|
3469 int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
|
3470 if (URX_TYPE(op) == URX_NOP) { |
|
3471 d++; |
|
3472 } |
|
3473 } |
|
3474 |
|
3475 UnicodeString caseStringBuffer; |
|
3476 |
|
3477 // Make a second pass over the code, removing the NOPs by moving following |
|
3478 // code up, and patching operands that refer to code locations that |
|
3479 // are being moved. The array of offsets from the first step is used |
|
3480 // to compute the new operand values. |
|
3481 int32_t src; |
|
3482 int32_t dst = 0; |
|
3483 for (src=0; src<end; src++) { |
|
3484 int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(src); |
|
3485 int32_t opType = URX_TYPE(op); |
|
3486 switch (opType) { |
|
3487 case URX_NOP: |
|
3488 break; |
|
3489 |
|
3490 case URX_STATE_SAVE: |
|
3491 case URX_JMP: |
|
3492 case URX_CTR_LOOP: |
|
3493 case URX_CTR_LOOP_NG: |
|
3494 case URX_RELOC_OPRND: |
|
3495 case URX_JMPX: |
|
3496 case URX_JMP_SAV: |
|
3497 case URX_JMP_SAV_X: |
|
3498 // These are instructions with operands that refer to code locations. |
|
3499 { |
|
3500 int32_t operandAddress = URX_VAL(op); |
|
3501 U_ASSERT(operandAddress>=0 && operandAddress<deltas.size()); |
|
3502 int32_t fixedOperandAddress = operandAddress - deltas.elementAti(operandAddress); |
|
3503 op = URX_BUILD(opType, fixedOperandAddress); |
|
3504 fRXPat->fCompiledPat->setElementAt(op, dst); |
|
3505 dst++; |
|
3506 break; |
|
3507 } |
|
3508 |
|
3509 case URX_BACKREF: |
|
3510 case URX_BACKREF_I: |
|
3511 { |
|
3512 int32_t where = URX_VAL(op); |
|
3513 if (where > fRXPat->fGroupMap->size()) { |
|
3514 error(U_REGEX_INVALID_BACK_REF); |
|
3515 break; |
|
3516 } |
|
3517 where = fRXPat->fGroupMap->elementAti(where-1); |
|
3518 op = URX_BUILD(opType, where); |
|
3519 fRXPat->fCompiledPat->setElementAt(op, dst); |
|
3520 dst++; |
|
3521 |
|
3522 fRXPat->fNeedsAltInput = TRUE; |
|
3523 break; |
|
3524 } |
|
3525 case URX_RESERVED_OP: |
|
3526 case URX_RESERVED_OP_N: |
|
3527 case URX_BACKTRACK: |
|
3528 case URX_END: |
|
3529 case URX_ONECHAR: |
|
3530 case URX_STRING: |
|
3531 case URX_STRING_LEN: |
|
3532 case URX_START_CAPTURE: |
|
3533 case URX_END_CAPTURE: |
|
3534 case URX_STATIC_SETREF: |
|
3535 case URX_STAT_SETREF_N: |
|
3536 case URX_SETREF: |
|
3537 case URX_DOTANY: |
|
3538 case URX_FAIL: |
|
3539 case URX_BACKSLASH_B: |
|
3540 case URX_BACKSLASH_BU: |
|
3541 case URX_BACKSLASH_G: |
|
3542 case URX_BACKSLASH_X: |
|
3543 case URX_BACKSLASH_Z: |
|
3544 case URX_DOTANY_ALL: |
|
3545 case URX_BACKSLASH_D: |
|
3546 case URX_CARET: |
|
3547 case URX_DOLLAR: |
|
3548 case URX_CTR_INIT: |
|
3549 case URX_CTR_INIT_NG: |
|
3550 case URX_DOTANY_UNIX: |
|
3551 case URX_STO_SP: |
|
3552 case URX_LD_SP: |
|
3553 case URX_STO_INP_LOC: |
|
3554 case URX_LA_START: |
|
3555 case URX_LA_END: |
|
3556 case URX_ONECHAR_I: |
|
3557 case URX_STRING_I: |
|
3558 case URX_DOLLAR_M: |
|
3559 case URX_CARET_M: |
|
3560 case URX_CARET_M_UNIX: |
|
3561 case URX_LB_START: |
|
3562 case URX_LB_CONT: |
|
3563 case URX_LB_END: |
|
3564 case URX_LBN_CONT: |
|
3565 case URX_LBN_END: |
|
3566 case URX_LOOP_SR_I: |
|
3567 case URX_LOOP_DOT_I: |
|
3568 case URX_LOOP_C: |
|
3569 case URX_DOLLAR_D: |
|
3570 case URX_DOLLAR_MD: |
|
3571 // These instructions are unaltered by the relocation. |
|
3572 fRXPat->fCompiledPat->setElementAt(op, dst); |
|
3573 dst++; |
|
3574 break; |
|
3575 |
|
3576 default: |
|
3577 // Some op is unaccounted for. |
|
3578 U_ASSERT(FALSE); |
|
3579 error(U_REGEX_INTERNAL_ERROR); |
|
3580 } |
|
3581 } |
|
3582 |
|
3583 fRXPat->fCompiledPat->setSize(dst); |
|
3584 } |
|
3585 |
|
3586 |
|
3587 |
|
3588 |
|
3589 //------------------------------------------------------------------------------ |
|
3590 // |
|
3591 // Error Report a rule parse error. |
|
3592 // Only report it if no previous error has been recorded. |
|
3593 // |
|
3594 //------------------------------------------------------------------------------ |
|
3595 void RegexCompile::error(UErrorCode e) { |
|
3596 if (U_SUCCESS(*fStatus)) { |
|
3597 *fStatus = e; |
|
3598 // Hmm. fParseErr (UParseError) line & offset fields are int32_t in public |
|
3599 // API (see common/unicode/parseerr.h), while fLineNum and fCharNum are |
|
3600 // int64_t. If the values of the latter are out of range for the former, |
|
3601 // set them to the appropriate "field not supported" values. |
|
3602 if (fLineNum > 0x7FFFFFFF) { |
|
3603 fParseErr->line = 0; |
|
3604 fParseErr->offset = -1; |
|
3605 } else if (fCharNum > 0x7FFFFFFF) { |
|
3606 fParseErr->line = (int32_t)fLineNum; |
|
3607 fParseErr->offset = -1; |
|
3608 } else { |
|
3609 fParseErr->line = (int32_t)fLineNum; |
|
3610 fParseErr->offset = (int32_t)fCharNum; |
|
3611 } |
|
3612 |
|
3613 UErrorCode status = U_ZERO_ERROR; // throwaway status for extracting context |
|
3614 |
|
3615 // Fill in the context. |
|
3616 // Note: extractBetween() pins supplied indicies to the string bounds. |
|
3617 uprv_memset(fParseErr->preContext, 0, sizeof(fParseErr->preContext)); |
|
3618 uprv_memset(fParseErr->postContext, 0, sizeof(fParseErr->postContext)); |
|
3619 utext_extract(fRXPat->fPattern, fScanIndex-U_PARSE_CONTEXT_LEN+1, fScanIndex, fParseErr->preContext, U_PARSE_CONTEXT_LEN, &status); |
|
3620 utext_extract(fRXPat->fPattern, fScanIndex, fScanIndex+U_PARSE_CONTEXT_LEN-1, fParseErr->postContext, U_PARSE_CONTEXT_LEN, &status); |
|
3621 } |
|
3622 } |
|
3623 |
|
3624 |
|
3625 // |
|
3626 // Assorted Unicode character constants. |
|
3627 // Numeric because there is no portable way to enter them as literals. |
|
3628 // (Think EBCDIC). |
|
3629 // |
|
3630 static const UChar chCR = 0x0d; // New lines, for terminating comments. |
|
3631 static const UChar chLF = 0x0a; // Line Feed |
|
3632 static const UChar chPound = 0x23; // '#', introduces a comment. |
|
3633 static const UChar chDigit0 = 0x30; // '0' |
|
3634 static const UChar chDigit7 = 0x37; // '9' |
|
3635 static const UChar chColon = 0x3A; // ':' |
|
3636 static const UChar chE = 0x45; // 'E' |
|
3637 static const UChar chQ = 0x51; // 'Q' |
|
3638 //static const UChar chN = 0x4E; // 'N' |
|
3639 static const UChar chP = 0x50; // 'P' |
|
3640 static const UChar chBackSlash = 0x5c; // '\' introduces a char escape |
|
3641 //static const UChar chLBracket = 0x5b; // '[' |
|
3642 static const UChar chRBracket = 0x5d; // ']' |
|
3643 static const UChar chUp = 0x5e; // '^' |
|
3644 static const UChar chLowerP = 0x70; |
|
3645 static const UChar chLBrace = 0x7b; // '{' |
|
3646 static const UChar chRBrace = 0x7d; // '}' |
|
3647 static const UChar chNEL = 0x85; // NEL newline variant |
|
3648 static const UChar chLS = 0x2028; // Unicode Line Separator |
|
3649 |
|
3650 |
|
3651 //------------------------------------------------------------------------------ |
|
3652 // |
|
3653 // nextCharLL Low Level Next Char from the regex pattern. |
|
3654 // Get a char from the string, keep track of input position |
|
3655 // for error reporting. |
|
3656 // |
|
3657 //------------------------------------------------------------------------------ |
|
3658 UChar32 RegexCompile::nextCharLL() { |
|
3659 UChar32 ch; |
|
3660 |
|
3661 if (fPeekChar != -1) { |
|
3662 ch = fPeekChar; |
|
3663 fPeekChar = -1; |
|
3664 return ch; |
|
3665 } |
|
3666 |
|
3667 // assume we're already in the right place |
|
3668 ch = UTEXT_NEXT32(fRXPat->fPattern); |
|
3669 if (ch == U_SENTINEL) { |
|
3670 return ch; |
|
3671 } |
|
3672 |
|
3673 if (ch == chCR || |
|
3674 ch == chNEL || |
|
3675 ch == chLS || |
|
3676 (ch == chLF && fLastChar != chCR)) { |
|
3677 // Character is starting a new line. Bump up the line number, and |
|
3678 // reset the column to 0. |
|
3679 fLineNum++; |
|
3680 fCharNum=0; |
|
3681 } |
|
3682 else { |
|
3683 // Character is not starting a new line. Except in the case of a |
|
3684 // LF following a CR, increment the column position. |
|
3685 if (ch != chLF) { |
|
3686 fCharNum++; |
|
3687 } |
|
3688 } |
|
3689 fLastChar = ch; |
|
3690 return ch; |
|
3691 } |
|
3692 |
|
3693 //------------------------------------------------------------------------------ |
|
3694 // |
|
3695 // peekCharLL Low Level Character Scanning, sneak a peek at the next |
|
3696 // character without actually getting it. |
|
3697 // |
|
3698 //------------------------------------------------------------------------------ |
|
3699 UChar32 RegexCompile::peekCharLL() { |
|
3700 if (fPeekChar == -1) { |
|
3701 fPeekChar = nextCharLL(); |
|
3702 } |
|
3703 return fPeekChar; |
|
3704 } |
|
3705 |
|
3706 |
|
3707 //------------------------------------------------------------------------------ |
|
3708 // |
|
3709 // nextChar for pattern scanning. At this level, we handle stripping |
|
3710 // out comments and processing some backslash character escapes. |
|
3711 // The rest of the pattern grammar is handled at the next level up. |
|
3712 // |
|
3713 //------------------------------------------------------------------------------ |
|
3714 void RegexCompile::nextChar(RegexPatternChar &c) { |
|
3715 |
|
3716 fScanIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern); |
|
3717 c.fChar = nextCharLL(); |
|
3718 c.fQuoted = FALSE; |
|
3719 |
|
3720 if (fQuoteMode) { |
|
3721 c.fQuoted = TRUE; |
|
3722 if ((c.fChar==chBackSlash && peekCharLL()==chE && ((fModeFlags & UREGEX_LITERAL) == 0)) || |
|
3723 c.fChar == (UChar32)-1) { |
|
3724 fQuoteMode = FALSE; // Exit quote mode, |
|
3725 nextCharLL(); // discard the E |
|
3726 nextChar(c); // recurse to get the real next char |
|
3727 } |
|
3728 } |
|
3729 else if (fInBackslashQuote) { |
|
3730 // The current character immediately follows a '\' |
|
3731 // Don't check for any further escapes, just return it as-is. |
|
3732 // Don't set c.fQuoted, because that would prevent the state machine from |
|
3733 // dispatching on the character. |
|
3734 fInBackslashQuote = FALSE; |
|
3735 } |
|
3736 else |
|
3737 { |
|
3738 // We are not in a \Q quoted region \E of the source. |
|
3739 // |
|
3740 if (fModeFlags & UREGEX_COMMENTS) { |
|
3741 // |
|
3742 // We are in free-spacing and comments mode. |
|
3743 // Scan through any white space and comments, until we |
|
3744 // reach a significant character or the end of inut. |
|
3745 for (;;) { |
|
3746 if (c.fChar == (UChar32)-1) { |
|
3747 break; // End of Input |
|
3748 } |
|
3749 if (c.fChar == chPound && fEOLComments == TRUE) { |
|
3750 // Start of a comment. Consume the rest of it, until EOF or a new line |
|
3751 for (;;) { |
|
3752 c.fChar = nextCharLL(); |
|
3753 if (c.fChar == (UChar32)-1 || // EOF |
|
3754 c.fChar == chCR || |
|
3755 c.fChar == chLF || |
|
3756 c.fChar == chNEL || |
|
3757 c.fChar == chLS) { |
|
3758 break; |
|
3759 } |
|
3760 } |
|
3761 } |
|
3762 // TODO: check what Java & Perl do with non-ASCII white spaces. Ticket 6061. |
|
3763 if (PatternProps::isWhiteSpace(c.fChar) == FALSE) { |
|
3764 break; |
|
3765 } |
|
3766 c.fChar = nextCharLL(); |
|
3767 } |
|
3768 } |
|
3769 |
|
3770 // |
|
3771 // check for backslash escaped characters. |
|
3772 // |
|
3773 if (c.fChar == chBackSlash) { |
|
3774 int64_t pos = UTEXT_GETNATIVEINDEX(fRXPat->fPattern); |
|
3775 if (RegexStaticSets::gStaticSets->fUnescapeCharSet.contains(peekCharLL())) { |
|
3776 // |
|
3777 // A '\' sequence that is handled by ICU's standard unescapeAt function. |
|
3778 // Includes \uxxxx, \n, \r, many others. |
|
3779 // Return the single equivalent character. |
|
3780 // |
|
3781 nextCharLL(); // get & discard the peeked char. |
|
3782 c.fQuoted = TRUE; |
|
3783 |
|
3784 if (UTEXT_FULL_TEXT_IN_CHUNK(fRXPat->fPattern, fPatternLength)) { |
|
3785 int32_t endIndex = (int32_t)pos; |
|
3786 c.fChar = u_unescapeAt(uregex_ucstr_unescape_charAt, &endIndex, (int32_t)fPatternLength, (void *)fRXPat->fPattern->chunkContents); |
|
3787 |
|
3788 if (endIndex == pos) { |
|
3789 error(U_REGEX_BAD_ESCAPE_SEQUENCE); |
|
3790 } |
|
3791 fCharNum += endIndex - pos; |
|
3792 UTEXT_SETNATIVEINDEX(fRXPat->fPattern, endIndex); |
|
3793 } else { |
|
3794 int32_t offset = 0; |
|
3795 struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(fRXPat->fPattern); |
|
3796 |
|
3797 UTEXT_SETNATIVEINDEX(fRXPat->fPattern, pos); |
|
3798 c.fChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context); |
|
3799 |
|
3800 if (offset == 0) { |
|
3801 error(U_REGEX_BAD_ESCAPE_SEQUENCE); |
|
3802 } else if (context.lastOffset == offset) { |
|
3803 UTEXT_PREVIOUS32(fRXPat->fPattern); |
|
3804 } else if (context.lastOffset != offset-1) { |
|
3805 utext_moveIndex32(fRXPat->fPattern, offset - context.lastOffset - 1); |
|
3806 } |
|
3807 fCharNum += offset; |
|
3808 } |
|
3809 } |
|
3810 else if (peekCharLL() == chDigit0) { |
|
3811 // Octal Escape, using Java Regexp Conventions |
|
3812 // which are \0 followed by 1-3 octal digits. |
|
3813 // Different from ICU Unescape handling of Octal, which does not |
|
3814 // require the leading 0. |
|
3815 // Java also has the convention of only consuming 2 octal digits if |
|
3816 // the three digit number would be > 0xff |
|
3817 // |
|
3818 c.fChar = 0; |
|
3819 nextCharLL(); // Consume the initial 0. |
|
3820 int index; |
|
3821 for (index=0; index<3; index++) { |
|
3822 int32_t ch = peekCharLL(); |
|
3823 if (ch<chDigit0 || ch>chDigit7) { |
|
3824 if (index==0) { |
|
3825 // \0 is not followed by any octal digits. |
|
3826 error(U_REGEX_BAD_ESCAPE_SEQUENCE); |
|
3827 } |
|
3828 break; |
|
3829 } |
|
3830 c.fChar <<= 3; |
|
3831 c.fChar += ch&7; |
|
3832 if (c.fChar <= 255) { |
|
3833 nextCharLL(); |
|
3834 } else { |
|
3835 // The last digit made the number too big. Forget we saw it. |
|
3836 c.fChar >>= 3; |
|
3837 } |
|
3838 } |
|
3839 c.fQuoted = TRUE; |
|
3840 } |
|
3841 else if (peekCharLL() == chQ) { |
|
3842 // "\Q" enter quote mode, which will continue until "\E" |
|
3843 fQuoteMode = TRUE; |
|
3844 nextCharLL(); // discard the 'Q'. |
|
3845 nextChar(c); // recurse to get the real next char. |
|
3846 } |
|
3847 else |
|
3848 { |
|
3849 // We are in a '\' escape that will be handled by the state table scanner. |
|
3850 // Just return the backslash, but remember that the following char is to |
|
3851 // be taken literally. |
|
3852 fInBackslashQuote = TRUE; |
|
3853 } |
|
3854 } |
|
3855 } |
|
3856 |
|
3857 // re-enable # to end-of-line comments, in case they were disabled. |
|
3858 // They are disabled by the parser upon seeing '(?', but this lasts for |
|
3859 // the fetching of the next character only. |
|
3860 fEOLComments = TRUE; |
|
3861 |
|
3862 // putc(c.fChar, stdout); |
|
3863 } |
|
3864 |
|
3865 |
|
3866 |
|
3867 //------------------------------------------------------------------------------ |
|
3868 // |
|
3869 // scanNamedChar |
|
3870 // Get a UChar32 from a \N{UNICODE CHARACTER NAME} in the pattern. |
|
3871 // |
|
3872 // The scan position will be at the 'N'. On return |
|
3873 // the scan position should be just after the '}' |
|
3874 // |
|
3875 // Return the UChar32 |
|
3876 // |
|
3877 //------------------------------------------------------------------------------ |
|
3878 UChar32 RegexCompile::scanNamedChar() { |
|
3879 if (U_FAILURE(*fStatus)) { |
|
3880 return 0; |
|
3881 } |
|
3882 |
|
3883 nextChar(fC); |
|
3884 if (fC.fChar != chLBrace) { |
|
3885 error(U_REGEX_PROPERTY_SYNTAX); |
|
3886 return 0; |
|
3887 } |
|
3888 |
|
3889 UnicodeString charName; |
|
3890 for (;;) { |
|
3891 nextChar(fC); |
|
3892 if (fC.fChar == chRBrace) { |
|
3893 break; |
|
3894 } |
|
3895 if (fC.fChar == -1) { |
|
3896 error(U_REGEX_PROPERTY_SYNTAX); |
|
3897 return 0; |
|
3898 } |
|
3899 charName.append(fC.fChar); |
|
3900 } |
|
3901 |
|
3902 char name[100]; |
|
3903 if (!uprv_isInvariantUString(charName.getBuffer(), charName.length()) || |
|
3904 (uint32_t)charName.length()>=sizeof(name)) { |
|
3905 // All Unicode character names have only invariant characters. |
|
3906 // The API to get a character, given a name, accepts only char *, forcing us to convert, |
|
3907 // which requires this error check |
|
3908 error(U_REGEX_PROPERTY_SYNTAX); |
|
3909 return 0; |
|
3910 } |
|
3911 charName.extract(0, charName.length(), name, sizeof(name), US_INV); |
|
3912 |
|
3913 UChar32 theChar = u_charFromName(U_UNICODE_CHAR_NAME, name, fStatus); |
|
3914 if (U_FAILURE(*fStatus)) { |
|
3915 error(U_REGEX_PROPERTY_SYNTAX); |
|
3916 } |
|
3917 |
|
3918 nextChar(fC); // Continue overall regex pattern processing with char after the '}' |
|
3919 return theChar; |
|
3920 } |
|
3921 |
|
3922 //------------------------------------------------------------------------------ |
|
3923 // |
|
3924 // scanProp Construct a UnicodeSet from the text at the current scan |
|
3925 // position, which will be of the form \p{whaterver} |
|
3926 // |
|
3927 // The scan position will be at the 'p' or 'P'. On return |
|
3928 // the scan position should be just after the '}' |
|
3929 // |
|
3930 // Return a UnicodeSet, constructed from the \P pattern, |
|
3931 // or NULL if the pattern is invalid. |
|
3932 // |
|
3933 //------------------------------------------------------------------------------ |
|
3934 UnicodeSet *RegexCompile::scanProp() { |
|
3935 UnicodeSet *uset = NULL; |
|
3936 |
|
3937 if (U_FAILURE(*fStatus)) { |
|
3938 return NULL; |
|
3939 } |
|
3940 U_ASSERT(fC.fChar == chLowerP || fC.fChar == chP); |
|
3941 UBool negated = (fC.fChar == chP); |
|
3942 |
|
3943 UnicodeString propertyName; |
|
3944 nextChar(fC); |
|
3945 if (fC.fChar != chLBrace) { |
|
3946 error(U_REGEX_PROPERTY_SYNTAX); |
|
3947 return NULL; |
|
3948 } |
|
3949 for (;;) { |
|
3950 nextChar(fC); |
|
3951 if (fC.fChar == chRBrace) { |
|
3952 break; |
|
3953 } |
|
3954 if (fC.fChar == -1) { |
|
3955 // Hit the end of the input string without finding the closing '}' |
|
3956 error(U_REGEX_PROPERTY_SYNTAX); |
|
3957 return NULL; |
|
3958 } |
|
3959 propertyName.append(fC.fChar); |
|
3960 } |
|
3961 uset = createSetForProperty(propertyName, negated); |
|
3962 nextChar(fC); // Move input scan to position following the closing '}' |
|
3963 return uset; |
|
3964 } |
|
3965 |
|
3966 //------------------------------------------------------------------------------ |
|
3967 // |
|
3968 // scanPosixProp Construct a UnicodeSet from the text at the current scan |
|
3969 // position, which is expected be of the form [:property expression:] |
|
3970 // |
|
3971 // The scan position will be at the opening ':'. On return |
|
3972 // the scan position must be on the closing ']' |
|
3973 // |
|
3974 // Return a UnicodeSet constructed from the pattern, |
|
3975 // or NULL if this is not a valid POSIX-style set expression. |
|
3976 // If not a property expression, restore the initial scan position |
|
3977 // (to the opening ':') |
|
3978 // |
|
3979 // Note: the opening '[:' is not sufficient to guarantee that |
|
3980 // this is a [:property:] expression. |
|
3981 // [:'+=,] is a perfectly good ordinary set expression that |
|
3982 // happens to include ':' as one of its characters. |
|
3983 // |
|
3984 //------------------------------------------------------------------------------ |
|
3985 UnicodeSet *RegexCompile::scanPosixProp() { |
|
3986 UnicodeSet *uset = NULL; |
|
3987 |
|
3988 if (U_FAILURE(*fStatus)) { |
|
3989 return NULL; |
|
3990 } |
|
3991 |
|
3992 U_ASSERT(fC.fChar == chColon); |
|
3993 |
|
3994 // Save the scanner state. |
|
3995 // TODO: move this into the scanner, with the state encapsulated in some way. Ticket 6062 |
|
3996 int64_t savedScanIndex = fScanIndex; |
|
3997 int64_t savedNextIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern); |
|
3998 UBool savedQuoteMode = fQuoteMode; |
|
3999 UBool savedInBackslashQuote = fInBackslashQuote; |
|
4000 UBool savedEOLComments = fEOLComments; |
|
4001 int64_t savedLineNum = fLineNum; |
|
4002 int64_t savedCharNum = fCharNum; |
|
4003 UChar32 savedLastChar = fLastChar; |
|
4004 UChar32 savedPeekChar = fPeekChar; |
|
4005 RegexPatternChar savedfC = fC; |
|
4006 |
|
4007 // Scan for a closing ]. A little tricky because there are some perverse |
|
4008 // edge cases possible. "[:abc\Qdef:] \E]" is a valid non-property expression, |
|
4009 // ending on the second closing ]. |
|
4010 |
|
4011 UnicodeString propName; |
|
4012 UBool negated = FALSE; |
|
4013 |
|
4014 // Check for and consume the '^' in a negated POSIX property, e.g. [:^Letter:] |
|
4015 nextChar(fC); |
|
4016 if (fC.fChar == chUp) { |
|
4017 negated = TRUE; |
|
4018 nextChar(fC); |
|
4019 } |
|
4020 |
|
4021 // Scan for the closing ":]", collecting the property name along the way. |
|
4022 UBool sawPropSetTerminator = FALSE; |
|
4023 for (;;) { |
|
4024 propName.append(fC.fChar); |
|
4025 nextChar(fC); |
|
4026 if (fC.fQuoted || fC.fChar == -1) { |
|
4027 // Escaped characters or end of input - either says this isn't a [:Property:] |
|
4028 break; |
|
4029 } |
|
4030 if (fC.fChar == chColon) { |
|
4031 nextChar(fC); |
|
4032 if (fC.fChar == chRBracket) { |
|
4033 sawPropSetTerminator = TRUE; |
|
4034 } |
|
4035 break; |
|
4036 } |
|
4037 } |
|
4038 |
|
4039 if (sawPropSetTerminator) { |
|
4040 uset = createSetForProperty(propName, negated); |
|
4041 } |
|
4042 else |
|
4043 { |
|
4044 // No closing ":]". |
|
4045 // Restore the original scan position. |
|
4046 // The main scanner will retry the input as a normal set expression, |
|
4047 // not a [:Property:] expression. |
|
4048 fScanIndex = savedScanIndex; |
|
4049 fQuoteMode = savedQuoteMode; |
|
4050 fInBackslashQuote = savedInBackslashQuote; |
|
4051 fEOLComments = savedEOLComments; |
|
4052 fLineNum = savedLineNum; |
|
4053 fCharNum = savedCharNum; |
|
4054 fLastChar = savedLastChar; |
|
4055 fPeekChar = savedPeekChar; |
|
4056 fC = savedfC; |
|
4057 UTEXT_SETNATIVEINDEX(fRXPat->fPattern, savedNextIndex); |
|
4058 } |
|
4059 return uset; |
|
4060 } |
|
4061 |
|
4062 static inline void addIdentifierIgnorable(UnicodeSet *set, UErrorCode& ec) { |
|
4063 set->add(0, 8).add(0x0e, 0x1b).add(0x7f, 0x9f); |
|
4064 addCategory(set, U_GC_CF_MASK, ec); |
|
4065 } |
|
4066 |
|
4067 // |
|
4068 // Create a Unicode Set from a Unicode Property expression. |
|
4069 // This is common code underlying both \p{...} ane [:...:] expressions. |
|
4070 // Includes trying the Java "properties" that aren't supported as |
|
4071 // normal ICU UnicodeSet properties |
|
4072 // |
|
4073 static const UChar posSetPrefix[] = {0x5b, 0x5c, 0x70, 0x7b, 0}; // "[\p{" |
|
4074 static const UChar negSetPrefix[] = {0x5b, 0x5c, 0x50, 0x7b, 0}; // "[\P{" |
|
4075 UnicodeSet *RegexCompile::createSetForProperty(const UnicodeString &propName, UBool negated) { |
|
4076 UnicodeString setExpr; |
|
4077 UnicodeSet *set; |
|
4078 uint32_t usetFlags = 0; |
|
4079 |
|
4080 if (U_FAILURE(*fStatus)) { |
|
4081 return NULL; |
|
4082 } |
|
4083 |
|
4084 // |
|
4085 // First try the property as we received it |
|
4086 // |
|
4087 if (negated) { |
|
4088 setExpr.append(negSetPrefix, -1); |
|
4089 } else { |
|
4090 setExpr.append(posSetPrefix, -1); |
|
4091 } |
|
4092 setExpr.append(propName); |
|
4093 setExpr.append(chRBrace); |
|
4094 setExpr.append(chRBracket); |
|
4095 if (fModeFlags & UREGEX_CASE_INSENSITIVE) { |
|
4096 usetFlags |= USET_CASE_INSENSITIVE; |
|
4097 } |
|
4098 set = new UnicodeSet(setExpr, usetFlags, NULL, *fStatus); |
|
4099 if (U_SUCCESS(*fStatus)) { |
|
4100 return set; |
|
4101 } |
|
4102 delete set; |
|
4103 set = NULL; |
|
4104 |
|
4105 // |
|
4106 // The property as it was didn't work. |
|
4107 |
|
4108 // Do [:word:]. It is not recognized as a property by UnicodeSet. "word" not standard POSIX |
|
4109 // or standard Java, but many other regular expression packages do recognize it. |
|
4110 |
|
4111 if (propName.caseCompare(UNICODE_STRING_SIMPLE("word"), 0) == 0) { |
|
4112 *fStatus = U_ZERO_ERROR; |
|
4113 set = new UnicodeSet(*(fRXPat->fStaticSets[URX_ISWORD_SET])); |
|
4114 if (set == NULL) { |
|
4115 *fStatus = U_MEMORY_ALLOCATION_ERROR; |
|
4116 return set; |
|
4117 } |
|
4118 if (negated) { |
|
4119 set->complement(); |
|
4120 } |
|
4121 return set; |
|
4122 } |
|
4123 |
|
4124 |
|
4125 // Do Java fixes - |
|
4126 // InGreek -> InGreek or Coptic, that being the official Unicode name for that block. |
|
4127 // InCombiningMarksforSymbols -> InCombiningDiacriticalMarksforSymbols. |
|
4128 // |
|
4129 // Note on Spaces: either "InCombiningMarksForSymbols" or "InCombining Marks for Symbols" |
|
4130 // is accepted by Java. The property part of the name is compared |
|
4131 // case-insenstively. The spaces must be exactly as shown, either |
|
4132 // all there, or all omitted, with exactly one at each position |
|
4133 // if they are present. From checking against JDK 1.6 |
|
4134 // |
|
4135 // This code should be removed when ICU properties support the Java compatibility names |
|
4136 // (ICU 4.0?) |
|
4137 // |
|
4138 UnicodeString mPropName = propName; |
|
4139 if (mPropName.caseCompare(UNICODE_STRING_SIMPLE("InGreek"), 0) == 0) { |
|
4140 mPropName = UNICODE_STRING_SIMPLE("InGreek and Coptic"); |
|
4141 } |
|
4142 if (mPropName.caseCompare(UNICODE_STRING_SIMPLE("InCombining Marks for Symbols"), 0) == 0 || |
|
4143 mPropName.caseCompare(UNICODE_STRING_SIMPLE("InCombiningMarksforSymbols"), 0) == 0) { |
|
4144 mPropName = UNICODE_STRING_SIMPLE("InCombining Diacritical Marks for Symbols"); |
|
4145 } |
|
4146 else if (mPropName.compare(UNICODE_STRING_SIMPLE("all")) == 0) { |
|
4147 mPropName = UNICODE_STRING_SIMPLE("javaValidCodePoint"); |
|
4148 } |
|
4149 |
|
4150 // See if the property looks like a Java "InBlockName", which |
|
4151 // we will recast as "Block=BlockName" |
|
4152 // |
|
4153 static const UChar IN[] = {0x49, 0x6E, 0}; // "In" |
|
4154 static const UChar BLOCK[] = {0x42, 0x6C, 0x6f, 0x63, 0x6b, 0x3d, 00}; // "Block=" |
|
4155 if (mPropName.startsWith(IN, 2) && propName.length()>=3) { |
|
4156 setExpr.truncate(4); // Leaves "[\p{", or "[\P{" |
|
4157 setExpr.append(BLOCK, -1); |
|
4158 setExpr.append(UnicodeString(mPropName, 2)); // Property with the leading "In" removed. |
|
4159 setExpr.append(chRBrace); |
|
4160 setExpr.append(chRBracket); |
|
4161 *fStatus = U_ZERO_ERROR; |
|
4162 set = new UnicodeSet(setExpr, usetFlags, NULL, *fStatus); |
|
4163 if (U_SUCCESS(*fStatus)) { |
|
4164 return set; |
|
4165 } |
|
4166 delete set; |
|
4167 set = NULL; |
|
4168 } |
|
4169 |
|
4170 if (propName.startsWith(UNICODE_STRING_SIMPLE("java")) || |
|
4171 propName.compare(UNICODE_STRING_SIMPLE("all")) == 0) |
|
4172 { |
|
4173 UErrorCode localStatus = U_ZERO_ERROR; |
|
4174 //setExpr.remove(); |
|
4175 set = new UnicodeSet(); |
|
4176 // |
|
4177 // Try the various Java specific properties. |
|
4178 // These all begin with "java" |
|
4179 // |
|
4180 if (mPropName.compare(UNICODE_STRING_SIMPLE("javaDefined")) == 0) { |
|
4181 addCategory(set, U_GC_CN_MASK, localStatus); |
|
4182 set->complement(); |
|
4183 } |
|
4184 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaDigit")) == 0) { |
|
4185 addCategory(set, U_GC_ND_MASK, localStatus); |
|
4186 } |
|
4187 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaIdentifierIgnorable")) == 0) { |
|
4188 addIdentifierIgnorable(set, localStatus); |
|
4189 } |
|
4190 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaISOControl")) == 0) { |
|
4191 set->add(0, 0x1F).add(0x7F, 0x9F); |
|
4192 } |
|
4193 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaJavaIdentifierPart")) == 0) { |
|
4194 addCategory(set, U_GC_L_MASK, localStatus); |
|
4195 addCategory(set, U_GC_SC_MASK, localStatus); |
|
4196 addCategory(set, U_GC_PC_MASK, localStatus); |
|
4197 addCategory(set, U_GC_ND_MASK, localStatus); |
|
4198 addCategory(set, U_GC_NL_MASK, localStatus); |
|
4199 addCategory(set, U_GC_MC_MASK, localStatus); |
|
4200 addCategory(set, U_GC_MN_MASK, localStatus); |
|
4201 addIdentifierIgnorable(set, localStatus); |
|
4202 } |
|
4203 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaJavaIdentifierStart")) == 0) { |
|
4204 addCategory(set, U_GC_L_MASK, localStatus); |
|
4205 addCategory(set, U_GC_NL_MASK, localStatus); |
|
4206 addCategory(set, U_GC_SC_MASK, localStatus); |
|
4207 addCategory(set, U_GC_PC_MASK, localStatus); |
|
4208 } |
|
4209 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaLetter")) == 0) { |
|
4210 addCategory(set, U_GC_L_MASK, localStatus); |
|
4211 } |
|
4212 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaLetterOrDigit")) == 0) { |
|
4213 addCategory(set, U_GC_L_MASK, localStatus); |
|
4214 addCategory(set, U_GC_ND_MASK, localStatus); |
|
4215 } |
|
4216 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaLowerCase")) == 0) { |
|
4217 addCategory(set, U_GC_LL_MASK, localStatus); |
|
4218 } |
|
4219 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaMirrored")) == 0) { |
|
4220 set->applyIntPropertyValue(UCHAR_BIDI_MIRRORED, 1, localStatus); |
|
4221 } |
|
4222 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaSpaceChar")) == 0) { |
|
4223 addCategory(set, U_GC_Z_MASK, localStatus); |
|
4224 } |
|
4225 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaSupplementaryCodePoint")) == 0) { |
|
4226 set->add(0x10000, UnicodeSet::MAX_VALUE); |
|
4227 } |
|
4228 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaTitleCase")) == 0) { |
|
4229 addCategory(set, U_GC_LT_MASK, localStatus); |
|
4230 } |
|
4231 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaUnicodeIdentifierStart")) == 0) { |
|
4232 addCategory(set, U_GC_L_MASK, localStatus); |
|
4233 addCategory(set, U_GC_NL_MASK, localStatus); |
|
4234 } |
|
4235 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaUnicodeIdentifierPart")) == 0) { |
|
4236 addCategory(set, U_GC_L_MASK, localStatus); |
|
4237 addCategory(set, U_GC_PC_MASK, localStatus); |
|
4238 addCategory(set, U_GC_ND_MASK, localStatus); |
|
4239 addCategory(set, U_GC_NL_MASK, localStatus); |
|
4240 addCategory(set, U_GC_MC_MASK, localStatus); |
|
4241 addCategory(set, U_GC_MN_MASK, localStatus); |
|
4242 addIdentifierIgnorable(set, localStatus); |
|
4243 } |
|
4244 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaUpperCase")) == 0) { |
|
4245 addCategory(set, U_GC_LU_MASK, localStatus); |
|
4246 } |
|
4247 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaValidCodePoint")) == 0) { |
|
4248 set->add(0, UnicodeSet::MAX_VALUE); |
|
4249 } |
|
4250 else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaWhitespace")) == 0) { |
|
4251 addCategory(set, U_GC_Z_MASK, localStatus); |
|
4252 set->removeAll(UnicodeSet().add(0xa0).add(0x2007).add(0x202f)); |
|
4253 set->add(9, 0x0d).add(0x1c, 0x1f); |
|
4254 } |
|
4255 else if (mPropName.compare(UNICODE_STRING_SIMPLE("all")) == 0) { |
|
4256 set->add(0, UnicodeSet::MAX_VALUE); |
|
4257 } |
|
4258 |
|
4259 if (U_SUCCESS(localStatus) && !set->isEmpty()) { |
|
4260 *fStatus = U_ZERO_ERROR; |
|
4261 if (usetFlags & USET_CASE_INSENSITIVE) { |
|
4262 set->closeOver(USET_CASE_INSENSITIVE); |
|
4263 } |
|
4264 if (negated) { |
|
4265 set->complement(); |
|
4266 } |
|
4267 return set; |
|
4268 } |
|
4269 delete set; |
|
4270 set = NULL; |
|
4271 } |
|
4272 error(*fStatus); |
|
4273 return NULL; |
|
4274 } |
|
4275 |
|
4276 |
|
4277 |
|
4278 // |
|
4279 // SetEval Part of the evaluation of [set expressions]. |
|
4280 // Perform any pending (stacked) operations with precedence |
|
4281 // equal or greater to that of the next operator encountered |
|
4282 // in the expression. |
|
4283 // |
|
4284 void RegexCompile::setEval(int32_t nextOp) { |
|
4285 UnicodeSet *rightOperand = NULL; |
|
4286 UnicodeSet *leftOperand = NULL; |
|
4287 for (;;) { |
|
4288 U_ASSERT(fSetOpStack.empty()==FALSE); |
|
4289 int32_t pendingSetOperation = fSetOpStack.peeki(); |
|
4290 if ((pendingSetOperation&0xffff0000) < (nextOp&0xffff0000)) { |
|
4291 break; |
|
4292 } |
|
4293 fSetOpStack.popi(); |
|
4294 U_ASSERT(fSetStack.empty() == FALSE); |
|
4295 rightOperand = (UnicodeSet *)fSetStack.peek(); |
|
4296 switch (pendingSetOperation) { |
|
4297 case setNegation: |
|
4298 rightOperand->complement(); |
|
4299 break; |
|
4300 case setCaseClose: |
|
4301 // TODO: need a simple close function. Ticket 6065 |
|
4302 rightOperand->closeOver(USET_CASE_INSENSITIVE); |
|
4303 rightOperand->removeAllStrings(); |
|
4304 break; |
|
4305 case setDifference1: |
|
4306 case setDifference2: |
|
4307 fSetStack.pop(); |
|
4308 leftOperand = (UnicodeSet *)fSetStack.peek(); |
|
4309 leftOperand->removeAll(*rightOperand); |
|
4310 delete rightOperand; |
|
4311 break; |
|
4312 case setIntersection1: |
|
4313 case setIntersection2: |
|
4314 fSetStack.pop(); |
|
4315 leftOperand = (UnicodeSet *)fSetStack.peek(); |
|
4316 leftOperand->retainAll(*rightOperand); |
|
4317 delete rightOperand; |
|
4318 break; |
|
4319 case setUnion: |
|
4320 fSetStack.pop(); |
|
4321 leftOperand = (UnicodeSet *)fSetStack.peek(); |
|
4322 leftOperand->addAll(*rightOperand); |
|
4323 delete rightOperand; |
|
4324 break; |
|
4325 default: |
|
4326 U_ASSERT(FALSE); |
|
4327 break; |
|
4328 } |
|
4329 } |
|
4330 } |
|
4331 |
|
4332 void RegexCompile::setPushOp(int32_t op) { |
|
4333 setEval(op); |
|
4334 fSetOpStack.push(op, *fStatus); |
|
4335 fSetStack.push(new UnicodeSet(), *fStatus); |
|
4336 } |
|
4337 |
|
4338 U_NAMESPACE_END |
|
4339 #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS |
|
4340 |