|
1 /* |
|
2 ******************************************************************************* |
|
3 * |
|
4 * Copyright (C) 2000-2013, International Business Machines |
|
5 * Corporation and others. All Rights Reserved. |
|
6 * |
|
7 ******************************************************************************* |
|
8 * file name: genmbcs.cpp |
|
9 * encoding: US-ASCII |
|
10 * tab size: 8 (not used) |
|
11 * indentation:4 |
|
12 * |
|
13 * created on: 2000jul06 |
|
14 * created by: Markus W. Scherer |
|
15 */ |
|
16 |
|
17 #include <stdio.h> |
|
18 #include "unicode/utypes.h" |
|
19 #include "cstring.h" |
|
20 #include "cmemory.h" |
|
21 #include "unewdata.h" |
|
22 #include "ucnv_cnv.h" |
|
23 #include "ucnvmbcs.h" |
|
24 #include "ucm.h" |
|
25 #include "makeconv.h" |
|
26 #include "genmbcs.h" |
|
27 |
|
28 /* |
|
29 * TODO: Split this file into toUnicode, SBCSFromUnicode and MBCSFromUnicode files. |
|
30 * Reduce tests for maxCharLength. |
|
31 */ |
|
32 |
|
33 struct MBCSData { |
|
34 NewConverter newConverter; |
|
35 |
|
36 UCMFile *ucm; |
|
37 |
|
38 /* toUnicode (state table in ucm->states) */ |
|
39 _MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT]; |
|
40 int32_t countToUFallbacks; |
|
41 uint16_t *unicodeCodeUnits; |
|
42 |
|
43 /* fromUnicode */ |
|
44 uint16_t stage1[MBCS_STAGE_1_SIZE]; |
|
45 uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */ |
|
46 uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */ |
|
47 uint8_t *fromUBytes; |
|
48 uint32_t stage2Top, stage3Top; |
|
49 |
|
50 /* fromUTF8 */ |
|
51 uint16_t stageUTF8[0x10000>>MBCS_UTF8_STAGE_SHIFT]; /* allow for utf8Max=0xffff */ |
|
52 |
|
53 /* |
|
54 * Maximum UTF-8-friendly code point. |
|
55 * 0 if !utf8Friendly, otherwise 0x01ff..0xffff in steps of 0x100. |
|
56 * If utf8Friendly, utf8Max is normally either MBCS_UTF8_MAX or 0xffff. |
|
57 */ |
|
58 uint16_t utf8Max; |
|
59 |
|
60 UBool utf8Friendly; |
|
61 UBool omitFromU; |
|
62 }; |
|
63 |
|
64 /* prototypes */ |
|
65 static void |
|
66 MBCSClose(NewConverter *cnvData); |
|
67 |
|
68 static UBool |
|
69 MBCSStartMappings(MBCSData *mbcsData); |
|
70 |
|
71 static UBool |
|
72 MBCSAddToUnicode(MBCSData *mbcsData, |
|
73 const uint8_t *bytes, int32_t length, |
|
74 UChar32 c, |
|
75 int8_t flag); |
|
76 |
|
77 static UBool |
|
78 MBCSIsValid(NewConverter *cnvData, |
|
79 const uint8_t *bytes, int32_t length); |
|
80 |
|
81 static UBool |
|
82 MBCSSingleAddFromUnicode(MBCSData *mbcsData, |
|
83 const uint8_t *bytes, int32_t length, |
|
84 UChar32 c, |
|
85 int8_t flag); |
|
86 |
|
87 static UBool |
|
88 MBCSAddFromUnicode(MBCSData *mbcsData, |
|
89 const uint8_t *bytes, int32_t length, |
|
90 UChar32 c, |
|
91 int8_t flag); |
|
92 |
|
93 static void |
|
94 MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData); |
|
95 |
|
96 static UBool |
|
97 MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData); |
|
98 |
|
99 static uint32_t |
|
100 MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, |
|
101 UNewDataMemory *pData, int32_t tableType); |
|
102 |
|
103 /* helper ------------------------------------------------------------------- */ |
|
104 |
|
105 static inline char |
|
106 hexDigit(uint8_t digit) { |
|
107 return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit); |
|
108 } |
|
109 |
|
110 static inline char * |
|
111 printBytes(char *buffer, const uint8_t *bytes, int32_t length) { |
|
112 char *s=buffer; |
|
113 while(length>0) { |
|
114 *s++=hexDigit((uint8_t)(*bytes>>4)); |
|
115 *s++=hexDigit((uint8_t)(*bytes&0xf)); |
|
116 ++bytes; |
|
117 --length; |
|
118 } |
|
119 |
|
120 *s=0; |
|
121 return buffer; |
|
122 } |
|
123 |
|
124 /* implementation ----------------------------------------------------------- */ |
|
125 |
|
126 static MBCSData gDummy; |
|
127 |
|
128 U_CFUNC const MBCSData * |
|
129 MBCSGetDummy() { |
|
130 uprv_memset(&gDummy, 0, sizeof(MBCSData)); |
|
131 |
|
132 /* |
|
133 * Set "pessimistic" values which may sometimes move too many |
|
134 * mappings to the extension table (but never too few). |
|
135 * These values cause MBCSOkForBaseFromUnicode() to return FALSE for the |
|
136 * largest set of mappings. |
|
137 * Assume maxCharLength>1. |
|
138 */ |
|
139 gDummy.utf8Friendly=TRUE; |
|
140 if(SMALL) { |
|
141 gDummy.utf8Max=0xffff; |
|
142 gDummy.omitFromU=TRUE; |
|
143 } else { |
|
144 gDummy.utf8Max=MBCS_UTF8_MAX; |
|
145 } |
|
146 return &gDummy; |
|
147 } |
|
148 |
|
149 static void |
|
150 MBCSInit(MBCSData *mbcsData, UCMFile *ucm) { |
|
151 uprv_memset(mbcsData, 0, sizeof(MBCSData)); |
|
152 |
|
153 mbcsData->ucm=ucm; /* aliased, not owned */ |
|
154 |
|
155 mbcsData->newConverter.close=MBCSClose; |
|
156 mbcsData->newConverter.isValid=MBCSIsValid; |
|
157 mbcsData->newConverter.addTable=MBCSAddTable; |
|
158 mbcsData->newConverter.write=MBCSWrite; |
|
159 } |
|
160 |
|
161 NewConverter * |
|
162 MBCSOpen(UCMFile *ucm) { |
|
163 MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData)); |
|
164 if(mbcsData==NULL) { |
|
165 printf("out of memory\n"); |
|
166 exit(U_MEMORY_ALLOCATION_ERROR); |
|
167 } |
|
168 |
|
169 MBCSInit(mbcsData, ucm); |
|
170 return &mbcsData->newConverter; |
|
171 } |
|
172 |
|
173 static void |
|
174 MBCSDestruct(MBCSData *mbcsData) { |
|
175 uprv_free(mbcsData->unicodeCodeUnits); |
|
176 uprv_free(mbcsData->fromUBytes); |
|
177 } |
|
178 |
|
179 static void |
|
180 MBCSClose(NewConverter *cnvData) { |
|
181 MBCSData *mbcsData=(MBCSData *)cnvData; |
|
182 if(mbcsData!=NULL) { |
|
183 MBCSDestruct(mbcsData); |
|
184 uprv_free(mbcsData); |
|
185 } |
|
186 } |
|
187 |
|
188 static UBool |
|
189 MBCSStartMappings(MBCSData *mbcsData) { |
|
190 int32_t i, sum, maxCharLength, |
|
191 stage2NullLength, stage2AllocLength, |
|
192 stage3NullLength, stage3AllocLength; |
|
193 |
|
194 /* toUnicode */ |
|
195 |
|
196 /* allocate the code unit array and prefill it with "unassigned" values */ |
|
197 sum=mbcsData->ucm->states.countToUCodeUnits; |
|
198 if(VERBOSE) { |
|
199 printf("the total number of offsets is 0x%lx=%ld\n", (long)sum, (long)sum); |
|
200 } |
|
201 |
|
202 if(sum>0) { |
|
203 mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t)); |
|
204 if(mbcsData->unicodeCodeUnits==NULL) { |
|
205 fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n", |
|
206 (long)sum); |
|
207 return FALSE; |
|
208 } |
|
209 for(i=0; i<sum; ++i) { |
|
210 mbcsData->unicodeCodeUnits[i]=0xfffe; |
|
211 } |
|
212 } |
|
213 |
|
214 /* fromUnicode */ |
|
215 maxCharLength=mbcsData->ucm->states.maxCharLength; |
|
216 |
|
217 /* allocate the codepage mappings and preset the first 16 characters to 0 */ |
|
218 if(maxCharLength==1) { |
|
219 /* allocate 64k 16-bit results for single-byte codepages */ |
|
220 sum=0x20000; |
|
221 } else { |
|
222 /* allocate 1M * maxCharLength bytes for at most 1M mappings */ |
|
223 sum=0x100000*maxCharLength; |
|
224 } |
|
225 mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum); |
|
226 if(mbcsData->fromUBytes==NULL) { |
|
227 fprintf(stderr, "error: out of memory allocating %ld B for target mappings\n", (long)sum); |
|
228 return FALSE; |
|
229 } |
|
230 uprv_memset(mbcsData->fromUBytes, 0, sum); |
|
231 |
|
232 /* |
|
233 * UTF-8-friendly fromUnicode tries: allocate multiple blocks at a time. |
|
234 * See ucnvmbcs.h for details. |
|
235 * |
|
236 * There is code, for example in ucnv_MBCSGetUnicodeSetForUnicode(), which |
|
237 * assumes that the initial stage 2/3 blocks are the all-unassigned ones. |
|
238 * Therefore, we refine the data structure while maintaining this placement |
|
239 * even though it would be convenient to allocate the ASCII block at the |
|
240 * beginning of stage 3, for example. |
|
241 * |
|
242 * UTF-8-friendly fromUnicode tries work from sorted tables and are built |
|
243 * pre-compacted, overlapping adjacent stage 2/3 blocks. |
|
244 * This is necessary because the block allocation and compaction changes |
|
245 * at SBCS_UTF8_MAX or MBCS_UTF8_MAX, and for MBCS tables the additional |
|
246 * stage table uses direct indexes into stage 3, without a multiplier and |
|
247 * thus with a smaller reach. |
|
248 * |
|
249 * Non-UTF-8-friendly fromUnicode tries work from unsorted tables |
|
250 * (because implicit precision is used), and are compacted |
|
251 * in post-processing. |
|
252 * |
|
253 * Preallocation for UTF-8-friendly fromUnicode tries: |
|
254 * |
|
255 * Stage 3: |
|
256 * 64-entry all-unassigned first block followed by ASCII (128 entries). |
|
257 * |
|
258 * Stage 2: |
|
259 * 64-entry all-unassigned first block followed by preallocated |
|
260 * 64-block for ASCII. |
|
261 */ |
|
262 |
|
263 /* Preallocate ASCII as a linear 128-entry stage 3 block. */ |
|
264 stage2NullLength=MBCS_STAGE_2_BLOCK_SIZE; |
|
265 stage2AllocLength=MBCS_STAGE_2_BLOCK_SIZE; |
|
266 |
|
267 stage3NullLength=MBCS_UTF8_STAGE_3_BLOCK_SIZE; |
|
268 stage3AllocLength=128; /* ASCII U+0000..U+007f */ |
|
269 |
|
270 /* Initialize stage 1 for the preallocated blocks. */ |
|
271 sum=stage2NullLength; |
|
272 for(i=0; i<(stage2AllocLength>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT); ++i) { |
|
273 mbcsData->stage1[i]=sum; |
|
274 sum+=MBCS_STAGE_2_BLOCK_SIZE; |
|
275 } |
|
276 mbcsData->stage2Top=stage2NullLength+stage2AllocLength; /* ==sum */ |
|
277 |
|
278 /* |
|
279 * Stage 2 indexes count 16-blocks in stage 3 as follows: |
|
280 * SBCS: directly, indexes increment by 16 |
|
281 * MBCS: indexes need to be multiplied by 16*maxCharLength, indexes increment by 1 |
|
282 * MBCS UTF-8: directly, indexes increment by 16 |
|
283 */ |
|
284 if(maxCharLength==1) { |
|
285 sum=stage3NullLength; |
|
286 for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) { |
|
287 mbcsData->stage2Single[mbcsData->stage1[0]+i]=sum; |
|
288 sum+=MBCS_STAGE_3_BLOCK_SIZE; |
|
289 } |
|
290 } else { |
|
291 sum=stage3NullLength/MBCS_STAGE_3_GRANULARITY; |
|
292 for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) { |
|
293 mbcsData->stage2[mbcsData->stage1[0]+i]=sum; |
|
294 sum+=MBCS_STAGE_3_BLOCK_SIZE/MBCS_STAGE_3_GRANULARITY; |
|
295 } |
|
296 } |
|
297 |
|
298 sum=stage3NullLength; |
|
299 for(i=0; i<(stage3AllocLength/MBCS_UTF8_STAGE_3_BLOCK_SIZE); ++i) { |
|
300 mbcsData->stageUTF8[i]=sum; |
|
301 sum+=MBCS_UTF8_STAGE_3_BLOCK_SIZE; |
|
302 } |
|
303 |
|
304 /* |
|
305 * Allocate a 64-entry all-unassigned first stage 3 block, |
|
306 * for UTF-8-friendly lookup with a trail byte, |
|
307 * plus 128 entries for ASCII. |
|
308 */ |
|
309 mbcsData->stage3Top=(stage3NullLength+stage3AllocLength)*maxCharLength; /* ==sum*maxCharLength */ |
|
310 |
|
311 return TRUE; |
|
312 } |
|
313 |
|
314 /* return TRUE for success */ |
|
315 static UBool |
|
316 setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) { |
|
317 int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset); |
|
318 if(i>=0) { |
|
319 /* if there is already a fallback for this offset, then overwrite it */ |
|
320 mbcsData->toUFallbacks[i].codePoint=c; |
|
321 return TRUE; |
|
322 } else { |
|
323 /* if there is no fallback for this offset, then add one */ |
|
324 i=mbcsData->countToUFallbacks; |
|
325 if(i>=MBCS_MAX_FALLBACK_COUNT) { |
|
326 fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%x\n", (int)c); |
|
327 return FALSE; |
|
328 } else { |
|
329 mbcsData->toUFallbacks[i].offset=offset; |
|
330 mbcsData->toUFallbacks[i].codePoint=c; |
|
331 mbcsData->countToUFallbacks=i+1; |
|
332 return TRUE; |
|
333 } |
|
334 } |
|
335 } |
|
336 |
|
337 /* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */ |
|
338 static int32_t |
|
339 removeFallback(MBCSData *mbcsData, uint32_t offset) { |
|
340 int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset); |
|
341 if(i>=0) { |
|
342 _MBCSToUFallback *toUFallbacks; |
|
343 int32_t limit, old; |
|
344 |
|
345 toUFallbacks=mbcsData->toUFallbacks; |
|
346 limit=mbcsData->countToUFallbacks; |
|
347 old=(int32_t)toUFallbacks[i].codePoint; |
|
348 |
|
349 /* copy the last fallback entry here to keep the list contiguous */ |
|
350 toUFallbacks[i].offset=toUFallbacks[limit-1].offset; |
|
351 toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint; |
|
352 mbcsData->countToUFallbacks=limit-1; |
|
353 return old; |
|
354 } else { |
|
355 return -1; |
|
356 } |
|
357 } |
|
358 |
|
359 /* |
|
360 * isFallback is almost a boolean: |
|
361 * 1 (TRUE) this is a fallback mapping |
|
362 * 0 (FALSE) this is a precise mapping |
|
363 * -1 the precision of this mapping is not specified |
|
364 */ |
|
365 static UBool |
|
366 MBCSAddToUnicode(MBCSData *mbcsData, |
|
367 const uint8_t *bytes, int32_t length, |
|
368 UChar32 c, |
|
369 int8_t flag) { |
|
370 char buffer[10]; |
|
371 uint32_t offset=0; |
|
372 int32_t i=0, entry, old; |
|
373 uint8_t state=0; |
|
374 |
|
375 if(mbcsData->ucm->states.countStates==0) { |
|
376 fprintf(stderr, "error: there is no state information!\n"); |
|
377 return FALSE; |
|
378 } |
|
379 |
|
380 /* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */ |
|
381 if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) { |
|
382 state=1; |
|
383 } |
|
384 |
|
385 /* |
|
386 * Walk down the state table like in conversion, |
|
387 * much like getNextUChar(). |
|
388 * We assume that c<=0x10ffff. |
|
389 */ |
|
390 for(i=0;;) { |
|
391 entry=mbcsData->ucm->states.stateTable[state][bytes[i++]]; |
|
392 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
|
393 if(i==length) { |
|
394 fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%s (U+%x)\n", |
|
395 (short)state, printBytes(buffer, bytes, length), (int)c); |
|
396 return FALSE; |
|
397 } |
|
398 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
|
399 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
|
400 } else { |
|
401 if(i<length) { |
|
402 fprintf(stderr, "error: byte sequence too long by %d bytes, final state %u: 0x%s (U+%x)\n", |
|
403 (int)(length-i), state, printBytes(buffer, bytes, length), (int)c); |
|
404 return FALSE; |
|
405 } |
|
406 switch(MBCS_ENTRY_FINAL_ACTION(entry)) { |
|
407 case MBCS_STATE_ILLEGAL: |
|
408 fprintf(stderr, "error: byte sequence ends in illegal state at U+%04x<->0x%s\n", |
|
409 (int)c, printBytes(buffer, bytes, length)); |
|
410 return FALSE; |
|
411 case MBCS_STATE_CHANGE_ONLY: |
|
412 fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04x<->0x%s\n", |
|
413 (int)c, printBytes(buffer, bytes, length)); |
|
414 return FALSE; |
|
415 case MBCS_STATE_UNASSIGNED: |
|
416 fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04x<->0x%s\n", |
|
417 (int)c, printBytes(buffer, bytes, length)); |
|
418 return FALSE; |
|
419 case MBCS_STATE_FALLBACK_DIRECT_16: |
|
420 case MBCS_STATE_VALID_DIRECT_16: |
|
421 case MBCS_STATE_FALLBACK_DIRECT_20: |
|
422 case MBCS_STATE_VALID_DIRECT_20: |
|
423 if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) { |
|
424 /* the "direct" action's value is not "valid-direct-16-unassigned" any more */ |
|
425 if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) { |
|
426 old=MBCS_ENTRY_FINAL_VALUE(entry); |
|
427 } else { |
|
428 old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
|
429 } |
|
430 if(flag>=0) { |
|
431 fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", |
|
432 (int)c, printBytes(buffer, bytes, length), (int)old); |
|
433 return FALSE; |
|
434 } else if(VERBOSE) { |
|
435 fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", |
|
436 (int)c, printBytes(buffer, bytes, length), (int)old); |
|
437 } |
|
438 /* |
|
439 * Continue after the above warning |
|
440 * if the precision of the mapping is unspecified. |
|
441 */ |
|
442 } |
|
443 /* reassign the correct action code */ |
|
444 entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0))); |
|
445 |
|
446 /* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */ |
|
447 if(c<=0xffff) { |
|
448 entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c); |
|
449 } else { |
|
450 entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000); |
|
451 } |
|
452 mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry; |
|
453 break; |
|
454 case MBCS_STATE_VALID_16: |
|
455 /* bits 26..16 are not used, 0 */ |
|
456 /* bits 15..7 contain the final offset delta to one 16-bit code unit */ |
|
457 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
458 /* check that this byte sequence is still unassigned */ |
|
459 if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) { |
|
460 if(flag>=0) { |
|
461 fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", |
|
462 (int)c, printBytes(buffer, bytes, length), (int)old); |
|
463 return FALSE; |
|
464 } else if(VERBOSE) { |
|
465 fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", |
|
466 (int)c, printBytes(buffer, bytes, length), (int)old); |
|
467 } |
|
468 } |
|
469 if(c>=0x10000) { |
|
470 fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04x<->0x%s\n", |
|
471 (int)c, printBytes(buffer, bytes, length)); |
|
472 return FALSE; |
|
473 } |
|
474 if(flag>0) { |
|
475 /* assign only if there is no precise mapping */ |
|
476 if(mbcsData->unicodeCodeUnits[offset]==0xfffe) { |
|
477 return setFallback(mbcsData, offset, c); |
|
478 } |
|
479 } else { |
|
480 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; |
|
481 } |
|
482 break; |
|
483 case MBCS_STATE_VALID_16_PAIR: |
|
484 /* bits 26..16 are not used, 0 */ |
|
485 /* bits 15..7 contain the final offset delta to two 16-bit code units */ |
|
486 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
|
487 /* check that this byte sequence is still unassigned */ |
|
488 old=mbcsData->unicodeCodeUnits[offset]; |
|
489 if(old<0xfffe) { |
|
490 int32_t real; |
|
491 if(old<0xd800) { |
|
492 real=old; |
|
493 } else if(old<=0xdfff) { |
|
494 real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff); |
|
495 } else /* old<=0xe001 */ { |
|
496 real=mbcsData->unicodeCodeUnits[offset+1]; |
|
497 } |
|
498 if(flag>=0) { |
|
499 fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", |
|
500 (int)c, printBytes(buffer, bytes, length), (int)real); |
|
501 return FALSE; |
|
502 } else if(VERBOSE) { |
|
503 fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", |
|
504 (int)c, printBytes(buffer, bytes, length), (int)real); |
|
505 } |
|
506 } |
|
507 if(flag>0) { |
|
508 /* assign only if there is no precise mapping */ |
|
509 if(old<=0xdbff || old==0xe000) { |
|
510 /* do nothing */ |
|
511 } else if(c<=0xffff) { |
|
512 /* set a BMP fallback code point as a pair with 0xe001 */ |
|
513 mbcsData->unicodeCodeUnits[offset++]=0xe001; |
|
514 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; |
|
515 } else { |
|
516 /* set a fallback surrogate pair with two second surrogates */ |
|
517 mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10)); |
|
518 mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff)); |
|
519 } |
|
520 } else { |
|
521 if(c<0xd800) { |
|
522 /* set a BMP code point */ |
|
523 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; |
|
524 } else if(c<=0xffff) { |
|
525 /* set a BMP code point above 0xd800 as a pair with 0xe000 */ |
|
526 mbcsData->unicodeCodeUnits[offset++]=0xe000; |
|
527 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; |
|
528 } else { |
|
529 /* set a surrogate pair */ |
|
530 mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10)); |
|
531 mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff)); |
|
532 } |
|
533 } |
|
534 break; |
|
535 default: |
|
536 /* reserved, must never occur */ |
|
537 fprintf(stderr, "internal error: byte sequence reached reserved action code, entry 0x%02x: 0x%s (U+%x)\n", |
|
538 (int)entry, printBytes(buffer, bytes, length), (int)c); |
|
539 return FALSE; |
|
540 } |
|
541 |
|
542 return TRUE; |
|
543 } |
|
544 } |
|
545 } |
|
546 |
|
547 /* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */ |
|
548 static UBool |
|
549 MBCSIsValid(NewConverter *cnvData, |
|
550 const uint8_t *bytes, int32_t length) { |
|
551 MBCSData *mbcsData=(MBCSData *)cnvData; |
|
552 |
|
553 return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length)); |
|
554 } |
|
555 |
|
556 static UBool |
|
557 MBCSSingleAddFromUnicode(MBCSData *mbcsData, |
|
558 const uint8_t *bytes, int32_t /*length*/, |
|
559 UChar32 c, |
|
560 int8_t flag) { |
|
561 uint16_t *stage3, *p; |
|
562 uint32_t idx; |
|
563 uint16_t old; |
|
564 uint8_t b; |
|
565 |
|
566 uint32_t blockSize, newTop, i, nextOffset, newBlock, min; |
|
567 |
|
568 /* ignore |2 SUB mappings */ |
|
569 if(flag==2) { |
|
570 return TRUE; |
|
571 } |
|
572 |
|
573 /* |
|
574 * Walk down the triple-stage compact array ("trie") and |
|
575 * allocate parts as necessary. |
|
576 * Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings. |
|
577 * We assume that length<=maxCharLength and that c<=0x10ffff. |
|
578 */ |
|
579 stage3=(uint16_t *)mbcsData->fromUBytes; |
|
580 b=*bytes; |
|
581 |
|
582 /* inspect stage 1 */ |
|
583 idx=c>>MBCS_STAGE_1_SHIFT; |
|
584 if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) { |
|
585 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1); |
|
586 } else { |
|
587 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK; |
|
588 } |
|
589 if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) { |
|
590 /* allocate another block in stage 2 */ |
|
591 newBlock=mbcsData->stage2Top; |
|
592 if(mbcsData->utf8Friendly) { |
|
593 min=newBlock-nextOffset; /* minimum block start with overlap */ |
|
594 while(min<newBlock && mbcsData->stage2Single[newBlock-1]==0) { |
|
595 --newBlock; |
|
596 } |
|
597 } |
|
598 newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE; |
|
599 |
|
600 if(newTop>MBCS_MAX_STAGE_2_TOP) { |
|
601 fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\n", (int)c, b); |
|
602 return FALSE; |
|
603 } |
|
604 |
|
605 /* |
|
606 * each stage 2 block contains 64 16-bit words: |
|
607 * 6 code point bits 9..4 with 1 stage 3 index |
|
608 */ |
|
609 mbcsData->stage1[idx]=(uint16_t)newBlock; |
|
610 mbcsData->stage2Top=newTop; |
|
611 } |
|
612 |
|
613 /* inspect stage 2 */ |
|
614 idx=mbcsData->stage1[idx]+nextOffset; |
|
615 if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) { |
|
616 /* allocate 64-entry blocks for UTF-8-friendly lookup */ |
|
617 blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE; |
|
618 nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK; |
|
619 } else { |
|
620 blockSize=MBCS_STAGE_3_BLOCK_SIZE; |
|
621 nextOffset=c&MBCS_STAGE_3_BLOCK_MASK; |
|
622 } |
|
623 if(mbcsData->stage2Single[idx]==0) { |
|
624 /* allocate another block in stage 3 */ |
|
625 newBlock=mbcsData->stage3Top; |
|
626 if(mbcsData->utf8Friendly) { |
|
627 min=newBlock-nextOffset; /* minimum block start with overlap */ |
|
628 while(min<newBlock && stage3[newBlock-1]==0) { |
|
629 --newBlock; |
|
630 } |
|
631 } |
|
632 newTop=newBlock+blockSize; |
|
633 |
|
634 if(newTop>MBCS_STAGE_3_SBCS_SIZE) { |
|
635 fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n", (int)c, b); |
|
636 return FALSE; |
|
637 } |
|
638 /* each block has 16 uint16_t entries */ |
|
639 i=idx; |
|
640 while(newBlock<newTop) { |
|
641 mbcsData->stage2Single[i++]=(uint16_t)newBlock; |
|
642 newBlock+=MBCS_STAGE_3_BLOCK_SIZE; |
|
643 } |
|
644 mbcsData->stage3Top=newTop; /* ==newBlock */ |
|
645 } |
|
646 |
|
647 /* write the codepage entry into stage 3 and get the previous entry */ |
|
648 p=stage3+mbcsData->stage2Single[idx]+nextOffset; |
|
649 old=*p; |
|
650 if(flag<=0) { |
|
651 *p=(uint16_t)(0xf00|b); |
|
652 } else if(IS_PRIVATE_USE(c)) { |
|
653 *p=(uint16_t)(0xc00|b); |
|
654 } else { |
|
655 *p=(uint16_t)(0x800|b); |
|
656 } |
|
657 |
|
658 /* check that this Unicode code point was still unassigned */ |
|
659 if(old>=0x100) { |
|
660 if(flag>=0) { |
|
661 fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n", |
|
662 (int)c, b, old&0xff); |
|
663 return FALSE; |
|
664 } else if(VERBOSE) { |
|
665 fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n", |
|
666 (int)c, b, old&0xff); |
|
667 } |
|
668 /* continue after the above warning if the precision of the mapping is unspecified */ |
|
669 } |
|
670 |
|
671 return TRUE; |
|
672 } |
|
673 |
|
674 static UBool |
|
675 MBCSAddFromUnicode(MBCSData *mbcsData, |
|
676 const uint8_t *bytes, int32_t length, |
|
677 UChar32 c, |
|
678 int8_t flag) { |
|
679 char buffer[10]; |
|
680 const uint8_t *pb; |
|
681 uint8_t *stage3, *p; |
|
682 uint32_t idx, b, old, stage3Index; |
|
683 int32_t maxCharLength; |
|
684 |
|
685 uint32_t blockSize, newTop, i, nextOffset, newBlock, min, overlap, maxOverlap; |
|
686 |
|
687 maxCharLength=mbcsData->ucm->states.maxCharLength; |
|
688 |
|
689 if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO && |
|
690 (!IGNORE_SISO_CHECK && (*bytes==0xe || *bytes==0xf)) |
|
691 ) { |
|
692 fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04x<->0x%s\n", |
|
693 (int)c, printBytes(buffer, bytes, length)); |
|
694 return FALSE; |
|
695 } |
|
696 |
|
697 if(flag==1 && length==1 && *bytes==0) { |
|
698 fprintf(stderr, "error: unable to encode a |1 fallback from U+%04x to 0x%02x\n", |
|
699 (int)c, *bytes); |
|
700 return FALSE; |
|
701 } |
|
702 |
|
703 /* |
|
704 * Walk down the triple-stage compact array ("trie") and |
|
705 * allocate parts as necessary. |
|
706 * Note that the first stage 2 and 3 blocks are reserved for |
|
707 * all-unassigned mappings. |
|
708 * We assume that length<=maxCharLength and that c<=0x10ffff. |
|
709 */ |
|
710 stage3=mbcsData->fromUBytes; |
|
711 |
|
712 /* inspect stage 1 */ |
|
713 idx=c>>MBCS_STAGE_1_SHIFT; |
|
714 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { |
|
715 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1); |
|
716 } else { |
|
717 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK; |
|
718 } |
|
719 if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) { |
|
720 /* allocate another block in stage 2 */ |
|
721 newBlock=mbcsData->stage2Top; |
|
722 if(mbcsData->utf8Friendly) { |
|
723 min=newBlock-nextOffset; /* minimum block start with overlap */ |
|
724 while(min<newBlock && mbcsData->stage2[newBlock-1]==0) { |
|
725 --newBlock; |
|
726 } |
|
727 } |
|
728 newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE; |
|
729 |
|
730 if(newTop>MBCS_MAX_STAGE_2_TOP) { |
|
731 fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n", |
|
732 (int)c, printBytes(buffer, bytes, length)); |
|
733 return FALSE; |
|
734 } |
|
735 |
|
736 /* |
|
737 * each stage 2 block contains 64 32-bit words: |
|
738 * 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index |
|
739 */ |
|
740 i=idx; |
|
741 while(newBlock<newTop) { |
|
742 mbcsData->stage1[i++]=(uint16_t)newBlock; |
|
743 newBlock+=MBCS_STAGE_2_BLOCK_SIZE; |
|
744 } |
|
745 mbcsData->stage2Top=newTop; /* ==newBlock */ |
|
746 } |
|
747 |
|
748 /* inspect stage 2 */ |
|
749 idx=mbcsData->stage1[idx]+nextOffset; |
|
750 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { |
|
751 /* allocate 64-entry blocks for UTF-8-friendly lookup */ |
|
752 blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE*maxCharLength; |
|
753 nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK; |
|
754 } else { |
|
755 blockSize=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength; |
|
756 nextOffset=c&MBCS_STAGE_3_BLOCK_MASK; |
|
757 } |
|
758 if(mbcsData->stage2[idx]==0) { |
|
759 /* allocate another block in stage 3 */ |
|
760 newBlock=mbcsData->stage3Top; |
|
761 if(mbcsData->utf8Friendly && nextOffset>=MBCS_STAGE_3_GRANULARITY) { |
|
762 /* |
|
763 * Overlap stage 3 blocks only in multiples of 16-entry blocks |
|
764 * because of the indexing granularity in stage 2. |
|
765 */ |
|
766 maxOverlap=(nextOffset&~(MBCS_STAGE_3_GRANULARITY-1))*maxCharLength; |
|
767 for(overlap=0; |
|
768 overlap<maxOverlap && stage3[newBlock-overlap-1]==0; |
|
769 ++overlap) {} |
|
770 |
|
771 overlap=(overlap/MBCS_STAGE_3_GRANULARITY)/maxCharLength; |
|
772 overlap=(overlap*MBCS_STAGE_3_GRANULARITY)*maxCharLength; |
|
773 |
|
774 newBlock-=overlap; |
|
775 } |
|
776 newTop=newBlock+blockSize; |
|
777 |
|
778 if(newTop>MBCS_STAGE_3_MBCS_SIZE*(uint32_t)maxCharLength) { |
|
779 fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n", |
|
780 (int)c, printBytes(buffer, bytes, length)); |
|
781 return FALSE; |
|
782 } |
|
783 /* each block has 16*maxCharLength bytes */ |
|
784 i=idx; |
|
785 while(newBlock<newTop) { |
|
786 mbcsData->stage2[i++]=(newBlock/MBCS_STAGE_3_GRANULARITY)/maxCharLength; |
|
787 newBlock+=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength; |
|
788 } |
|
789 mbcsData->stage3Top=newTop; /* ==newBlock */ |
|
790 } |
|
791 |
|
792 stage3Index=MBCS_STAGE_3_GRANULARITY*(uint32_t)(uint16_t)mbcsData->stage2[idx]; |
|
793 |
|
794 /* Build an alternate, UTF-8-friendly stage table as well. */ |
|
795 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { |
|
796 /* Overflow for uint16_t entries in stageUTF8? */ |
|
797 if(stage3Index>0xffff) { |
|
798 /* |
|
799 * This can occur only if the mapping table is nearly perfectly filled and if |
|
800 * utf8Max==0xffff. |
|
801 * (There is no known charset like this. GB 18030 does not map |
|
802 * surrogate code points and LMBCS does not map 256 PUA code points.) |
|
803 * |
|
804 * Otherwise, stage3Index<=MBCS_UTF8_LIMIT<0xffff |
|
805 * (stage3Index can at most reach exactly MBCS_UTF8_LIMIT) |
|
806 * because we have a sorted table and there are at most MBCS_UTF8_LIMIT |
|
807 * mappings with 0<=c<MBCS_UTF8_LIMIT, and there is only also |
|
808 * the initial all-unassigned block in stage3. |
|
809 * |
|
810 * Solution for the overflow: Reduce utf8Max to the next lower value, 0xfeff. |
|
811 * |
|
812 * (See svn revision 20866 of the markus/ucnvutf8 feature branch for |
|
813 * code that causes MBCSAddTable() to rebuild the table not utf8Friendly |
|
814 * in case of overflow. That code was not tested.) |
|
815 */ |
|
816 mbcsData->utf8Max=0xfeff; |
|
817 } else { |
|
818 /* |
|
819 * The stage 3 block has been assigned for the regular trie. |
|
820 * Just copy its index into stageUTF8[], without the granularity. |
|
821 */ |
|
822 mbcsData->stageUTF8[c>>MBCS_UTF8_STAGE_SHIFT]=(uint16_t)stage3Index; |
|
823 } |
|
824 } |
|
825 |
|
826 /* write the codepage bytes into stage 3 and get the previous bytes */ |
|
827 |
|
828 /* assemble the bytes into a single integer */ |
|
829 pb=bytes; |
|
830 b=0; |
|
831 switch(length) { |
|
832 case 4: |
|
833 b=*pb++; |
|
834 case 3: |
|
835 b=(b<<8)|*pb++; |
|
836 case 2: |
|
837 b=(b<<8)|*pb++; |
|
838 case 1: |
|
839 default: |
|
840 b=(b<<8)|*pb++; |
|
841 break; |
|
842 } |
|
843 |
|
844 old=0; |
|
845 p=stage3+(stage3Index+nextOffset)*maxCharLength; |
|
846 switch(maxCharLength) { |
|
847 case 2: |
|
848 old=*(uint16_t *)p; |
|
849 *(uint16_t *)p=(uint16_t)b; |
|
850 break; |
|
851 case 3: |
|
852 old=(uint32_t)*p<<16; |
|
853 *p++=(uint8_t)(b>>16); |
|
854 old|=(uint32_t)*p<<8; |
|
855 *p++=(uint8_t)(b>>8); |
|
856 old|=*p; |
|
857 *p=(uint8_t)b; |
|
858 break; |
|
859 case 4: |
|
860 old=*(uint32_t *)p; |
|
861 *(uint32_t *)p=b; |
|
862 break; |
|
863 default: |
|
864 /* will never occur */ |
|
865 break; |
|
866 } |
|
867 |
|
868 /* check that this Unicode code point was still unassigned */ |
|
869 if((mbcsData->stage2[idx+(nextOffset>>MBCS_STAGE_2_SHIFT)]&(1UL<<(16+(c&0xf))))!=0 || old!=0) { |
|
870 if(flag>=0) { |
|
871 fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n", |
|
872 (int)c, printBytes(buffer, bytes, length), (int)old); |
|
873 return FALSE; |
|
874 } else if(VERBOSE) { |
|
875 fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n", |
|
876 (int)c, printBytes(buffer, bytes, length), (int)old); |
|
877 } |
|
878 /* continue after the above warning if the precision of the mapping is |
|
879 unspecified */ |
|
880 } |
|
881 if(flag<=0) { |
|
882 /* set the roundtrip flag */ |
|
883 mbcsData->stage2[idx+(nextOffset>>4)]|=(1UL<<(16+(c&0xf))); |
|
884 } |
|
885 |
|
886 return TRUE; |
|
887 } |
|
888 |
|
889 U_CFUNC UBool |
|
890 MBCSOkForBaseFromUnicode(const MBCSData *mbcsData, |
|
891 const uint8_t *bytes, int32_t length, |
|
892 UChar32 c, int8_t flag) { |
|
893 /* |
|
894 * A 1:1 mapping does not fit into the MBCS base table's fromUnicode table under |
|
895 * the following conditions: |
|
896 * |
|
897 * - a |2 SUB mapping for <subchar1> (no base table data structure for them) |
|
898 * - a |1 fallback to 0x00 (result value 0, indistinguishable from unmappable entry) |
|
899 * - a multi-byte mapping with leading 0x00 bytes (no explicit length field) |
|
900 * |
|
901 * Some of these tests are redundant with ucm_mappingType(). |
|
902 */ |
|
903 if( (flag==2 && length==1) || |
|
904 (flag==1 && bytes[0]==0) || /* testing length==1 would be redundant with the next test */ |
|
905 (flag<=1 && length>1 && bytes[0]==0) |
|
906 ) { |
|
907 return FALSE; |
|
908 } |
|
909 |
|
910 /* |
|
911 * Additional restrictions for UTF-8-friendly fromUnicode tables, |
|
912 * for code points up to the maximum optimized one: |
|
913 * |
|
914 * - any mapping to 0x00 (result value 0, indistinguishable from unmappable entry) |
|
915 * - any |1 fallback (no roundtrip flags in the optimized table) |
|
916 */ |
|
917 if(mbcsData->utf8Friendly && flag<=1 && c<=mbcsData->utf8Max && (bytes[0]==0 || flag==1)) { |
|
918 return FALSE; |
|
919 } |
|
920 |
|
921 /* |
|
922 * If we omit the fromUnicode data, we can only store roundtrips there |
|
923 * because only they are recoverable from the toUnicode data. |
|
924 * Fallbacks must go into the extension table. |
|
925 */ |
|
926 if(mbcsData->omitFromU && flag!=0) { |
|
927 return FALSE; |
|
928 } |
|
929 |
|
930 /* All other mappings do fit into the base table. */ |
|
931 return TRUE; |
|
932 } |
|
933 |
|
934 /* we can assume that the table only contains 1:1 mappings with <=4 bytes each */ |
|
935 static UBool |
|
936 MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) { |
|
937 MBCSData *mbcsData; |
|
938 UCMapping *m; |
|
939 UChar32 c; |
|
940 int32_t i, maxCharLength; |
|
941 int8_t f; |
|
942 UBool isOK, utf8Friendly; |
|
943 |
|
944 staticData->unicodeMask=table->unicodeMask; |
|
945 if(staticData->unicodeMask==3) { |
|
946 fprintf(stderr, "error: contains mappings for both supplementary and surrogate code points\n"); |
|
947 return FALSE; |
|
948 } |
|
949 |
|
950 staticData->conversionType=UCNV_MBCS; |
|
951 |
|
952 mbcsData=(MBCSData *)cnvData; |
|
953 maxCharLength=mbcsData->ucm->states.maxCharLength; |
|
954 |
|
955 /* |
|
956 * Generation of UTF-8-friendly data requires |
|
957 * a sorted table, which makeconv generates when explicit precision |
|
958 * indicators are used. |
|
959 */ |
|
960 mbcsData->utf8Friendly=utf8Friendly=(UBool)((table->flagsType&UCM_FLAGS_EXPLICIT)!=0); |
|
961 if(utf8Friendly) { |
|
962 mbcsData->utf8Max=MBCS_UTF8_MAX; |
|
963 if(SMALL && maxCharLength>1) { |
|
964 mbcsData->omitFromU=TRUE; |
|
965 } |
|
966 } else { |
|
967 mbcsData->utf8Max=0; |
|
968 if(SMALL && maxCharLength>1) { |
|
969 fprintf(stderr, |
|
970 "makeconv warning: --small not available for .ucm files without |0 etc.\n"); |
|
971 } |
|
972 } |
|
973 |
|
974 if(!MBCSStartMappings(mbcsData)) { |
|
975 return FALSE; |
|
976 } |
|
977 |
|
978 staticData->hasFromUnicodeFallback=FALSE; |
|
979 staticData->hasToUnicodeFallback=FALSE; |
|
980 |
|
981 isOK=TRUE; |
|
982 |
|
983 m=table->mappings; |
|
984 for(i=0; i<table->mappingsLength; ++m, ++i) { |
|
985 c=m->u; |
|
986 f=m->f; |
|
987 |
|
988 /* |
|
989 * Small optimization for --small .cnv files: |
|
990 * |
|
991 * If there are fromUnicode mappings above MBCS_UTF8_MAX, |
|
992 * then the file size will be smaller if we make utf8Max larger |
|
993 * because the size increase in stageUTF8 will be more than balanced by |
|
994 * how much less of stage2 needs to be stored. |
|
995 * |
|
996 * There is no point in doing this incrementally because stageUTF8 |
|
997 * uses so much less space per block than stage2, |
|
998 * so we immediately increase utf8Max to 0xffff. |
|
999 * |
|
1000 * Do not increase utf8Max if it is already at 0xfeff because MBCSAddFromUnicode() |
|
1001 * sets it to that value when stageUTF8 overflows. |
|
1002 */ |
|
1003 if( mbcsData->omitFromU && f<=1 && |
|
1004 mbcsData->utf8Max<c && c<=0xffff && |
|
1005 mbcsData->utf8Max<0xfeff |
|
1006 ) { |
|
1007 mbcsData->utf8Max=0xffff; |
|
1008 } |
|
1009 |
|
1010 switch(f) { |
|
1011 case -1: |
|
1012 /* there was no precision/fallback indicator */ |
|
1013 /* fall through to set the mappings */ |
|
1014 case 0: |
|
1015 /* set roundtrip mappings */ |
|
1016 isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
|
1017 |
|
1018 if(maxCharLength==1) { |
|
1019 isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
|
1020 } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) { |
|
1021 isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
|
1022 } else { |
|
1023 m->f|=MBCS_FROM_U_EXT_FLAG; |
|
1024 m->moveFlag=UCM_MOVE_TO_EXT; |
|
1025 } |
|
1026 break; |
|
1027 case 1: |
|
1028 /* set only a fallback mapping from Unicode to codepage */ |
|
1029 if(maxCharLength==1) { |
|
1030 staticData->hasFromUnicodeFallback=TRUE; |
|
1031 isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
|
1032 } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) { |
|
1033 staticData->hasFromUnicodeFallback=TRUE; |
|
1034 isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
|
1035 } else { |
|
1036 m->f|=MBCS_FROM_U_EXT_FLAG; |
|
1037 m->moveFlag=UCM_MOVE_TO_EXT; |
|
1038 } |
|
1039 break; |
|
1040 case 2: |
|
1041 /* ignore |2 SUB mappings, except to move <subchar1> mappings to the extension table */ |
|
1042 if(maxCharLength>1 && m->bLen==1) { |
|
1043 m->f|=MBCS_FROM_U_EXT_FLAG; |
|
1044 m->moveFlag=UCM_MOVE_TO_EXT; |
|
1045 } |
|
1046 break; |
|
1047 case 3: |
|
1048 /* set only a fallback mapping from codepage to Unicode */ |
|
1049 staticData->hasToUnicodeFallback=TRUE; |
|
1050 isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
|
1051 break; |
|
1052 case 4: |
|
1053 /* move "good one-way" mappings to the extension table */ |
|
1054 m->f|=MBCS_FROM_U_EXT_FLAG; |
|
1055 m->moveFlag=UCM_MOVE_TO_EXT; |
|
1056 break; |
|
1057 default: |
|
1058 /* will not occur because the parser checked it already */ |
|
1059 fprintf(stderr, "error: illegal fallback indicator %d\n", f); |
|
1060 return FALSE; |
|
1061 } |
|
1062 } |
|
1063 |
|
1064 MBCSPostprocess(mbcsData, staticData); |
|
1065 |
|
1066 return isOK; |
|
1067 } |
|
1068 |
|
1069 static UBool |
|
1070 transformEUC(MBCSData *mbcsData) { |
|
1071 uint8_t *p8; |
|
1072 uint32_t i, value, oldLength, old3Top; |
|
1073 uint8_t b; |
|
1074 |
|
1075 oldLength=mbcsData->ucm->states.maxCharLength; |
|
1076 if(oldLength<3) { |
|
1077 return FALSE; |
|
1078 } |
|
1079 |
|
1080 old3Top=mbcsData->stage3Top; |
|
1081 |
|
1082 /* careful: 2-byte and 4-byte codes are stored in platform endianness! */ |
|
1083 |
|
1084 /* test if all first bytes are in {0, 0x8e, 0x8f} */ |
|
1085 p8=mbcsData->fromUBytes; |
|
1086 |
|
1087 #if !U_IS_BIG_ENDIAN |
|
1088 if(oldLength==4) { |
|
1089 p8+=3; |
|
1090 } |
|
1091 #endif |
|
1092 |
|
1093 for(i=0; i<old3Top; i+=oldLength) { |
|
1094 b=p8[i]; |
|
1095 if(b!=0 && b!=0x8e && b!=0x8f) { |
|
1096 /* some first byte does not fit the EUC pattern, nothing to be done */ |
|
1097 return FALSE; |
|
1098 } |
|
1099 } |
|
1100 /* restore p if it was modified above */ |
|
1101 p8=mbcsData->fromUBytes; |
|
1102 |
|
1103 /* modify outputType and adjust stage3Top */ |
|
1104 mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3); |
|
1105 mbcsData->stage3Top=(old3Top*(oldLength-1))/oldLength; |
|
1106 |
|
1107 /* |
|
1108 * EUC-encode all byte sequences; |
|
1109 * see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly, |
|
1110 * p. 161 in chapter 4 "Encoding Methods" |
|
1111 * |
|
1112 * This also must reverse the byte order if the platform is little-endian! |
|
1113 */ |
|
1114 if(oldLength==3) { |
|
1115 uint16_t *q=(uint16_t *)p8; |
|
1116 for(i=0; i<old3Top; i+=oldLength) { |
|
1117 b=*p8; |
|
1118 if(b==0) { |
|
1119 /* short sequences are stored directly */ |
|
1120 /* code set 0 or 1 */ |
|
1121 (*q++)=(uint16_t)((p8[1]<<8)|p8[2]); |
|
1122 } else if(b==0x8e) { |
|
1123 /* code set 2 */ |
|
1124 (*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]); |
|
1125 } else /* b==0x8f */ { |
|
1126 /* code set 3 */ |
|
1127 (*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f)); |
|
1128 } |
|
1129 p8+=3; |
|
1130 } |
|
1131 } else /* oldLength==4 */ { |
|
1132 uint8_t *q=p8; |
|
1133 uint32_t *p32=(uint32_t *)p8; |
|
1134 for(i=0; i<old3Top; i+=4) { |
|
1135 value=(*p32++); |
|
1136 if(value<=0xffffff) { |
|
1137 /* short sequences are stored directly */ |
|
1138 /* code set 0 or 1 */ |
|
1139 (*q++)=(uint8_t)(value>>16); |
|
1140 (*q++)=(uint8_t)(value>>8); |
|
1141 (*q++)=(uint8_t)value; |
|
1142 } else if(value<=0x8effffff) { |
|
1143 /* code set 2 */ |
|
1144 (*q++)=(uint8_t)((value>>16)&0x7f); |
|
1145 (*q++)=(uint8_t)(value>>8); |
|
1146 (*q++)=(uint8_t)value; |
|
1147 } else /* first byte is 0x8f */ { |
|
1148 /* code set 3 */ |
|
1149 (*q++)=(uint8_t)(value>>16); |
|
1150 (*q++)=(uint8_t)((value>>8)&0x7f); |
|
1151 (*q++)=(uint8_t)value; |
|
1152 } |
|
1153 } |
|
1154 } |
|
1155 |
|
1156 return TRUE; |
|
1157 } |
|
1158 |
|
1159 /* |
|
1160 * Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far |
|
1161 * as possible. Overlapping is done on unassigned head and tail |
|
1162 * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER. |
|
1163 * Stage 1 indexes need to be adjusted accordingly. |
|
1164 * This function is very similar to genprops/store.c/compactStage(). |
|
1165 */ |
|
1166 static void |
|
1167 singleCompactStage2(MBCSData *mbcsData) { |
|
1168 /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */ |
|
1169 uint16_t map[MBCS_STAGE_2_MAX_BLOCKS]; |
|
1170 uint16_t i, start, prevEnd, newStart; |
|
1171 |
|
1172 /* enter the all-unassigned first stage 2 block into the map */ |
|
1173 map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX; |
|
1174 |
|
1175 /* begin with the first block after the all-unassigned one */ |
|
1176 start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED; |
|
1177 while(start<mbcsData->stage2Top) { |
|
1178 prevEnd=(uint16_t)(newStart-1); |
|
1179 |
|
1180 /* find the size of the overlap */ |
|
1181 for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {} |
|
1182 |
|
1183 if(i>0) { |
|
1184 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i); |
|
1185 |
|
1186 /* move the non-overlapping indexes to their new positions */ |
|
1187 start+=i; |
|
1188 for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) { |
|
1189 mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++]; |
|
1190 } |
|
1191 } else if(newStart<start) { |
|
1192 /* move the indexes to their new positions */ |
|
1193 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart; |
|
1194 for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) { |
|
1195 mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++]; |
|
1196 } |
|
1197 } else /* no overlap && newStart==start */ { |
|
1198 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start; |
|
1199 start=newStart+=MBCS_STAGE_2_BLOCK_SIZE; |
|
1200 } |
|
1201 } |
|
1202 |
|
1203 /* adjust stage2Top */ |
|
1204 if(VERBOSE && newStart<mbcsData->stage2Top) { |
|
1205 printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n", |
|
1206 (unsigned long)mbcsData->stage2Top, (unsigned long)newStart, |
|
1207 (long)(mbcsData->stage2Top-newStart)*2); |
|
1208 } |
|
1209 mbcsData->stage2Top=newStart; |
|
1210 |
|
1211 /* now adjust stage 1 */ |
|
1212 for(i=0; i<MBCS_STAGE_1_SIZE; ++i) { |
|
1213 mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]; |
|
1214 } |
|
1215 } |
|
1216 |
|
1217 /* Compact stage 3 for SBCS - same algorithm as above. */ |
|
1218 static void |
|
1219 singleCompactStage3(MBCSData *mbcsData) { |
|
1220 uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes; |
|
1221 |
|
1222 /* this array maps the ordinal number of a stage 3 block to its new stage 2 index */ |
|
1223 uint16_t map[0x1000]; |
|
1224 uint16_t i, start, prevEnd, newStart; |
|
1225 |
|
1226 /* enter the all-unassigned first stage 3 block into the map */ |
|
1227 map[0]=0; |
|
1228 |
|
1229 /* begin with the first block after the all-unassigned one */ |
|
1230 start=newStart=16; |
|
1231 while(start<mbcsData->stage3Top) { |
|
1232 prevEnd=(uint16_t)(newStart-1); |
|
1233 |
|
1234 /* find the size of the overlap */ |
|
1235 for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {} |
|
1236 |
|
1237 if(i>0) { |
|
1238 map[start>>4]=(uint16_t)(newStart-i); |
|
1239 |
|
1240 /* move the non-overlapping indexes to their new positions */ |
|
1241 start+=i; |
|
1242 for(i=(uint16_t)(16-i); i>0; --i) { |
|
1243 stage3[newStart++]=stage3[start++]; |
|
1244 } |
|
1245 } else if(newStart<start) { |
|
1246 /* move the indexes to their new positions */ |
|
1247 map[start>>4]=newStart; |
|
1248 for(i=16; i>0; --i) { |
|
1249 stage3[newStart++]=stage3[start++]; |
|
1250 } |
|
1251 } else /* no overlap && newStart==start */ { |
|
1252 map[start>>4]=start; |
|
1253 start=newStart+=16; |
|
1254 } |
|
1255 } |
|
1256 |
|
1257 /* adjust stage3Top */ |
|
1258 if(VERBOSE && newStart<mbcsData->stage3Top) { |
|
1259 printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n", |
|
1260 (unsigned long)mbcsData->stage3Top, (unsigned long)newStart, |
|
1261 (long)(mbcsData->stage3Top-newStart)*2); |
|
1262 } |
|
1263 mbcsData->stage3Top=newStart; |
|
1264 |
|
1265 /* now adjust stage 2 */ |
|
1266 for(i=0; i<mbcsData->stage2Top; ++i) { |
|
1267 mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4]; |
|
1268 } |
|
1269 } |
|
1270 |
|
1271 /* |
|
1272 * Compact stage 2 by overlapping adjacent stage 2 blocks as far |
|
1273 * as possible. Overlapping is done on unassigned head and tail |
|
1274 * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER. |
|
1275 * Stage 1 indexes need to be adjusted accordingly. |
|
1276 * This function is very similar to genprops/store.c/compactStage(). |
|
1277 */ |
|
1278 static void |
|
1279 compactStage2(MBCSData *mbcsData) { |
|
1280 /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */ |
|
1281 uint16_t map[MBCS_STAGE_2_MAX_BLOCKS]; |
|
1282 uint16_t i, start, prevEnd, newStart; |
|
1283 |
|
1284 /* enter the all-unassigned first stage 2 block into the map */ |
|
1285 map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX; |
|
1286 |
|
1287 /* begin with the first block after the all-unassigned one */ |
|
1288 start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED; |
|
1289 while(start<mbcsData->stage2Top) { |
|
1290 prevEnd=(uint16_t)(newStart-1); |
|
1291 |
|
1292 /* find the size of the overlap */ |
|
1293 for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {} |
|
1294 |
|
1295 if(i>0) { |
|
1296 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i); |
|
1297 |
|
1298 /* move the non-overlapping indexes to their new positions */ |
|
1299 start+=i; |
|
1300 for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) { |
|
1301 mbcsData->stage2[newStart++]=mbcsData->stage2[start++]; |
|
1302 } |
|
1303 } else if(newStart<start) { |
|
1304 /* move the indexes to their new positions */ |
|
1305 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart; |
|
1306 for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) { |
|
1307 mbcsData->stage2[newStart++]=mbcsData->stage2[start++]; |
|
1308 } |
|
1309 } else /* no overlap && newStart==start */ { |
|
1310 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start; |
|
1311 start=newStart+=MBCS_STAGE_2_BLOCK_SIZE; |
|
1312 } |
|
1313 } |
|
1314 |
|
1315 /* adjust stage2Top */ |
|
1316 if(VERBOSE && newStart<mbcsData->stage2Top) { |
|
1317 printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n", |
|
1318 (unsigned long)mbcsData->stage2Top, (unsigned long)newStart, |
|
1319 (long)(mbcsData->stage2Top-newStart)*4); |
|
1320 } |
|
1321 mbcsData->stage2Top=newStart; |
|
1322 |
|
1323 /* now adjust stage 1 */ |
|
1324 for(i=0; i<MBCS_STAGE_1_SIZE; ++i) { |
|
1325 mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]; |
|
1326 } |
|
1327 } |
|
1328 |
|
1329 static void |
|
1330 MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData * /*staticData*/) { |
|
1331 UCMStates *states; |
|
1332 int32_t maxCharLength, stage3Width; |
|
1333 |
|
1334 states=&mbcsData->ucm->states; |
|
1335 stage3Width=maxCharLength=states->maxCharLength; |
|
1336 |
|
1337 ucm_optimizeStates(states, |
|
1338 &mbcsData->unicodeCodeUnits, |
|
1339 mbcsData->toUFallbacks, mbcsData->countToUFallbacks, |
|
1340 VERBOSE); |
|
1341 |
|
1342 /* try to compact the fromUnicode tables */ |
|
1343 if(transformEUC(mbcsData)) { |
|
1344 --stage3Width; |
|
1345 } |
|
1346 |
|
1347 /* |
|
1348 * UTF-8-friendly tries are built precompacted, to cope with variable |
|
1349 * stage 3 allocation block sizes. |
|
1350 * |
|
1351 * Tables without precision indicators cannot be built that way, |
|
1352 * because if a block was overlapped with a previous one, then a smaller |
|
1353 * code point for the same block would not fit. |
|
1354 * Therefore, such tables are not marked UTF-8-friendly and must be |
|
1355 * compacted after all mappings are entered. |
|
1356 */ |
|
1357 if(!mbcsData->utf8Friendly) { |
|
1358 if(maxCharLength==1) { |
|
1359 singleCompactStage3(mbcsData); |
|
1360 singleCompactStage2(mbcsData); |
|
1361 } else { |
|
1362 compactStage2(mbcsData); |
|
1363 } |
|
1364 } |
|
1365 |
|
1366 if(VERBOSE) { |
|
1367 /*uint32_t c, i1, i2, i2Limit, i3;*/ |
|
1368 |
|
1369 printf("fromUnicode number of uint%s_t in stage 2: 0x%lx=%lu\n", |
|
1370 maxCharLength==1 ? "16" : "32", |
|
1371 (unsigned long)mbcsData->stage2Top, |
|
1372 (unsigned long)mbcsData->stage2Top); |
|
1373 printf("fromUnicode number of %d-byte stage 3 mapping entries: 0x%lx=%lu\n", |
|
1374 (int)stage3Width, |
|
1375 (unsigned long)mbcsData->stage3Top/stage3Width, |
|
1376 (unsigned long)mbcsData->stage3Top/stage3Width); |
|
1377 #if 0 |
|
1378 c=0; |
|
1379 for(i1=0; i1<MBCS_STAGE_1_SIZE; ++i1) { |
|
1380 i2=mbcsData->stage1[i1]; |
|
1381 if(i2==0) { |
|
1382 c+=MBCS_STAGE_2_BLOCK_SIZE*MBCS_STAGE_3_BLOCK_SIZE; |
|
1383 continue; |
|
1384 } |
|
1385 for(i2Limit=i2+MBCS_STAGE_2_BLOCK_SIZE; i2<i2Limit; ++i2) { |
|
1386 if(maxCharLength==1) { |
|
1387 i3=mbcsData->stage2Single[i2]; |
|
1388 } else { |
|
1389 i3=(uint16_t)mbcsData->stage2[i2]; |
|
1390 } |
|
1391 if(i3==0) { |
|
1392 c+=MBCS_STAGE_3_BLOCK_SIZE; |
|
1393 continue; |
|
1394 } |
|
1395 printf("U+%04lx i1=0x%02lx i2=0x%04lx i3=0x%04lx\n", |
|
1396 (unsigned long)c, |
|
1397 (unsigned long)i1, |
|
1398 (unsigned long)i2, |
|
1399 (unsigned long)i3); |
|
1400 c+=MBCS_STAGE_3_BLOCK_SIZE; |
|
1401 } |
|
1402 } |
|
1403 #endif |
|
1404 } |
|
1405 } |
|
1406 |
|
1407 static uint32_t |
|
1408 MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, |
|
1409 UNewDataMemory *pData, int32_t tableType) { |
|
1410 MBCSData *mbcsData=(MBCSData *)cnvData; |
|
1411 uint32_t stage2Start, stage2Length; |
|
1412 uint32_t top, stageUTF8Length=0; |
|
1413 int32_t i, stage1Top; |
|
1414 uint32_t headerLength; |
|
1415 |
|
1416 _MBCSHeader header=UCNV_MBCS_HEADER_INITIALIZER; |
|
1417 |
|
1418 stage2Length=mbcsData->stage2Top; |
|
1419 if(mbcsData->omitFromU) { |
|
1420 /* find how much of stage2 can be omitted */ |
|
1421 int32_t utf8Limit=(int32_t)mbcsData->utf8Max+1; |
|
1422 uint32_t st2=0; /*initialized it to avoid compiler warnings */ |
|
1423 |
|
1424 i=utf8Limit>>MBCS_STAGE_1_SHIFT; |
|
1425 if((utf8Limit&((1<<MBCS_STAGE_1_SHIFT)-1))!=0 && (st2=mbcsData->stage1[i])!=0) { |
|
1426 /* utf8Limit is in the middle of an existing stage 2 block */ |
|
1427 stage2Start=st2+((utf8Limit>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK); |
|
1428 } else { |
|
1429 /* find the last stage2 block with mappings before utf8Limit */ |
|
1430 while(i>0 && (st2=mbcsData->stage1[--i])==0) {} |
|
1431 /* stage2 up to the end of this block corresponds to stageUTF8 */ |
|
1432 stage2Start=st2+MBCS_STAGE_2_BLOCK_SIZE; |
|
1433 } |
|
1434 header.options|=MBCS_OPT_NO_FROM_U; |
|
1435 header.fullStage2Length=stage2Length; |
|
1436 stage2Length-=stage2Start; |
|
1437 if(VERBOSE) { |
|
1438 printf("+ omitting %lu out of %lu stage2 entries and %lu fromUBytes\n", |
|
1439 (unsigned long)stage2Start, |
|
1440 (unsigned long)mbcsData->stage2Top, |
|
1441 (unsigned long)mbcsData->stage3Top); |
|
1442 printf("+ total size savings: %lu bytes\n", (unsigned long)stage2Start*4+mbcsData->stage3Top); |
|
1443 } |
|
1444 } else { |
|
1445 stage2Start=0; |
|
1446 } |
|
1447 |
|
1448 if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { |
|
1449 stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */ |
|
1450 } else { |
|
1451 stage1Top=0x40; /* 0x40==64 */ |
|
1452 } |
|
1453 |
|
1454 /* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */ |
|
1455 if(mbcsData->ucm->states.maxCharLength==1) { |
|
1456 for(i=0; i<stage1Top; ++i) { |
|
1457 mbcsData->stage1[i]+=(uint16_t)stage1Top; |
|
1458 } |
|
1459 |
|
1460 /* stage2Top/Length have counted 16-bit results, now we need to count bytes */ |
|
1461 /* also round up to a multiple of 4 bytes */ |
|
1462 stage2Length=(stage2Length*2+1)&~1; |
|
1463 |
|
1464 /* stage3Top has counted 16-bit results, now we need to count bytes */ |
|
1465 mbcsData->stage3Top*=2; |
|
1466 |
|
1467 if(mbcsData->utf8Friendly) { |
|
1468 header.version[2]=(uint8_t)(SBCS_UTF8_MAX>>8); /* store 0x1f for max==0x1fff */ |
|
1469 } |
|
1470 } else { |
|
1471 for(i=0; i<stage1Top; ++i) { |
|
1472 mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */ |
|
1473 } |
|
1474 |
|
1475 /* stage2Top/Length have counted 32-bit results, now we need to count bytes */ |
|
1476 stage2Length*=4; |
|
1477 /* leave stage2Start counting 32-bit units */ |
|
1478 |
|
1479 if(mbcsData->utf8Friendly) { |
|
1480 stageUTF8Length=(mbcsData->utf8Max+1)>>MBCS_UTF8_STAGE_SHIFT; |
|
1481 header.version[2]=(uint8_t)(mbcsData->utf8Max>>8); /* store 0xd7 for max==0xd7ff */ |
|
1482 } |
|
1483 |
|
1484 /* stage3Top has already counted bytes */ |
|
1485 } |
|
1486 |
|
1487 /* round up stage3Top so that the sizes of all data blocks are multiples of 4 */ |
|
1488 mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3; |
|
1489 |
|
1490 /* fill the header */ |
|
1491 if(header.options&MBCS_OPT_INCOMPATIBLE_MASK) { |
|
1492 header.version[0]=5; |
|
1493 if(header.options&MBCS_OPT_NO_FROM_U) { |
|
1494 headerLength=10; /* include fullStage2Length */ |
|
1495 } else { |
|
1496 headerLength=MBCS_HEADER_V5_MIN_LENGTH; /* 9 */ |
|
1497 } |
|
1498 } else { |
|
1499 header.version[0]=4; |
|
1500 headerLength=MBCS_HEADER_V4_LENGTH; /* 8 */ |
|
1501 } |
|
1502 header.version[1]=4; |
|
1503 /* header.version[2] set above for utf8Friendly data */ |
|
1504 |
|
1505 header.options|=(uint32_t)headerLength; |
|
1506 |
|
1507 header.countStates=mbcsData->ucm->states.countStates; |
|
1508 header.countToUFallbacks=mbcsData->countToUFallbacks; |
|
1509 |
|
1510 header.offsetToUCodeUnits= |
|
1511 headerLength*4+ |
|
1512 mbcsData->ucm->states.countStates*1024+ |
|
1513 mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback); |
|
1514 header.offsetFromUTable= |
|
1515 header.offsetToUCodeUnits+ |
|
1516 mbcsData->ucm->states.countToUCodeUnits*2; |
|
1517 header.offsetFromUBytes= |
|
1518 header.offsetFromUTable+ |
|
1519 stage1Top*2+ |
|
1520 stage2Length; |
|
1521 header.fromUBytesLength=mbcsData->stage3Top; |
|
1522 |
|
1523 top=header.offsetFromUBytes+stageUTF8Length*2; |
|
1524 if(!(header.options&MBCS_OPT_NO_FROM_U)) { |
|
1525 top+=header.fromUBytesLength; |
|
1526 } |
|
1527 |
|
1528 header.flags=(uint8_t)(mbcsData->ucm->states.outputType); |
|
1529 |
|
1530 if(tableType&TABLE_EXT) { |
|
1531 if(top>0xffffff) { |
|
1532 fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xffffff\n", (long)top); |
|
1533 return 0; |
|
1534 } |
|
1535 |
|
1536 header.flags|=top<<8; |
|
1537 } |
|
1538 |
|
1539 /* write the MBCS data */ |
|
1540 udata_writeBlock(pData, &header, headerLength*4); |
|
1541 udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates*1024); |
|
1542 udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback)); |
|
1543 udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.countToUCodeUnits*2); |
|
1544 udata_writeBlock(pData, mbcsData->stage1, stage1Top*2); |
|
1545 if(mbcsData->ucm->states.maxCharLength==1) { |
|
1546 udata_writeBlock(pData, mbcsData->stage2Single+stage2Start, stage2Length); |
|
1547 } else { |
|
1548 udata_writeBlock(pData, mbcsData->stage2+stage2Start, stage2Length); |
|
1549 } |
|
1550 if(!(header.options&MBCS_OPT_NO_FROM_U)) { |
|
1551 udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top); |
|
1552 } |
|
1553 |
|
1554 if(stageUTF8Length>0) { |
|
1555 udata_writeBlock(pData, mbcsData->stageUTF8, stageUTF8Length*2); |
|
1556 } |
|
1557 |
|
1558 /* return the number of bytes that should have been written */ |
|
1559 return top; |
|
1560 } |