|
1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
|
2 /* vim: set ts=2 et sw=2 tw=80: */ |
|
3 |
|
4 /* This Source Code is subject to the terms of the Mozilla Public License |
|
5 * version 2.0 (the "License"). You can obtain a copy of the License at |
|
6 * http://mozilla.org/MPL/2.0/. */ |
|
7 |
|
8 /* rendering object for CSS "display: flex" */ |
|
9 |
|
10 #include "nsFlexContainerFrame.h" |
|
11 #include "nsContentUtils.h" |
|
12 #include "nsCSSAnonBoxes.h" |
|
13 #include "nsDisplayList.h" |
|
14 #include "nsIFrameInlines.h" |
|
15 #include "nsLayoutUtils.h" |
|
16 #include "nsPlaceholderFrame.h" |
|
17 #include "nsPresContext.h" |
|
18 #include "nsStyleContext.h" |
|
19 #include "prlog.h" |
|
20 #include <algorithm> |
|
21 #include "mozilla/LinkedList.h" |
|
22 |
|
23 using namespace mozilla; |
|
24 using namespace mozilla::css; |
|
25 using namespace mozilla::layout; |
|
26 |
|
27 // Convenience typedefs for helper classes that we forward-declare in .h file |
|
28 // (so that nsFlexContainerFrame methods can use them as parameters): |
|
29 typedef nsFlexContainerFrame::FlexItem FlexItem; |
|
30 typedef nsFlexContainerFrame::FlexLine FlexLine; |
|
31 typedef nsFlexContainerFrame::FlexboxAxisTracker FlexboxAxisTracker; |
|
32 typedef nsFlexContainerFrame::StrutInfo StrutInfo; |
|
33 |
|
34 #ifdef PR_LOGGING |
|
35 static PRLogModuleInfo* |
|
36 GetFlexContainerLog() |
|
37 { |
|
38 static PRLogModuleInfo *sLog; |
|
39 if (!sLog) |
|
40 sLog = PR_NewLogModule("nsFlexContainerFrame"); |
|
41 return sLog; |
|
42 } |
|
43 #endif /* PR_LOGGING */ |
|
44 |
|
45 // XXXdholbert Some of this helper-stuff should be separated out into a general |
|
46 // "LogicalAxisUtils.h" helper. Should that be a class, or a namespace (under |
|
47 // what super-namespace?), or what? |
|
48 |
|
49 // Helper enums |
|
50 // ============ |
|
51 |
|
52 // Represents a physical orientation for an axis. |
|
53 // The directional suffix indicates the direction in which the axis *grows*. |
|
54 // So e.g. eAxis_LR means a horizontal left-to-right axis, whereas eAxis_BT |
|
55 // means a vertical bottom-to-top axis. |
|
56 // NOTE: The order here is important -- these values are used as indices into |
|
57 // the static array 'kAxisOrientationToSidesMap', defined below. |
|
58 enum AxisOrientationType { |
|
59 eAxis_LR, |
|
60 eAxis_RL, |
|
61 eAxis_TB, |
|
62 eAxis_BT, |
|
63 eNumAxisOrientationTypes // For sizing arrays that use these values as indices |
|
64 }; |
|
65 |
|
66 // Represents one or the other extreme of an axis (e.g. for the main axis, the |
|
67 // main-start vs. main-end edge. |
|
68 // NOTE: The order here is important -- these values are used as indices into |
|
69 // the sub-arrays in 'kAxisOrientationToSidesMap', defined below. |
|
70 enum AxisEdgeType { |
|
71 eAxisEdge_Start, |
|
72 eAxisEdge_End, |
|
73 eNumAxisEdges // For sizing arrays that use these values as indices |
|
74 }; |
|
75 |
|
76 // This array maps each axis orientation to a pair of corresponding |
|
77 // [start, end] physical mozilla::css::Side values. |
|
78 static const Side |
|
79 kAxisOrientationToSidesMap[eNumAxisOrientationTypes][eNumAxisEdges] = { |
|
80 { eSideLeft, eSideRight }, // eAxis_LR |
|
81 { eSideRight, eSideLeft }, // eAxis_RL |
|
82 { eSideTop, eSideBottom }, // eAxis_TB |
|
83 { eSideBottom, eSideTop } // eAxis_BT |
|
84 }; |
|
85 |
|
86 // Helper structs / classes / methods |
|
87 // ================================== |
|
88 |
|
89 // Indicates whether advancing along the given axis is equivalent to |
|
90 // increasing our X or Y position (as opposed to decreasing it). |
|
91 static inline bool |
|
92 AxisGrowsInPositiveDirection(AxisOrientationType aAxis) |
|
93 { |
|
94 return eAxis_LR == aAxis || eAxis_TB == aAxis; |
|
95 } |
|
96 |
|
97 // Indicates whether the given axis is horizontal. |
|
98 static inline bool |
|
99 IsAxisHorizontal(AxisOrientationType aAxis) |
|
100 { |
|
101 return eAxis_LR == aAxis || eAxis_RL == aAxis; |
|
102 } |
|
103 |
|
104 // Given an AxisOrientationType, returns the "reverse" AxisOrientationType |
|
105 // (in the same dimension, but the opposite direction) |
|
106 static inline AxisOrientationType |
|
107 GetReverseAxis(AxisOrientationType aAxis) |
|
108 { |
|
109 AxisOrientationType reversedAxis; |
|
110 |
|
111 if (aAxis % 2 == 0) { |
|
112 // even enum value. Add 1 to reverse. |
|
113 reversedAxis = AxisOrientationType(aAxis + 1); |
|
114 } else { |
|
115 // odd enum value. Subtract 1 to reverse. |
|
116 reversedAxis = AxisOrientationType(aAxis - 1); |
|
117 } |
|
118 |
|
119 // Check that we're still in the enum's valid range |
|
120 MOZ_ASSERT(reversedAxis >= eAxis_LR && |
|
121 reversedAxis <= eAxis_BT); |
|
122 |
|
123 return reversedAxis; |
|
124 } |
|
125 |
|
126 // Returns aFrame's computed value for 'height' or 'width' -- whichever is in |
|
127 // the same dimension as aAxis. |
|
128 static inline const nsStyleCoord& |
|
129 GetSizePropertyForAxis(const nsIFrame* aFrame, AxisOrientationType aAxis) |
|
130 { |
|
131 const nsStylePosition* stylePos = aFrame->StylePosition(); |
|
132 |
|
133 return IsAxisHorizontal(aAxis) ? |
|
134 stylePos->mWidth : |
|
135 stylePos->mHeight; |
|
136 } |
|
137 |
|
138 /** |
|
139 * Converts a logical position in a given axis into a position in the |
|
140 * corresponding physical (x or y) axis. If the logical axis already maps |
|
141 * directly onto one of our physical axes (i.e. LTR or TTB), then the logical |
|
142 * and physical positions are equal; otherwise, we subtract the logical |
|
143 * position from the container-size in that axis, to flip the polarity. |
|
144 * (so e.g. a logical position of 2px in a RTL 20px-wide container |
|
145 * would correspond to a physical position of 18px.) |
|
146 */ |
|
147 static nscoord |
|
148 PhysicalPosFromLogicalPos(nscoord aLogicalPosn, |
|
149 nscoord aLogicalContainerSize, |
|
150 AxisOrientationType aAxis) { |
|
151 if (AxisGrowsInPositiveDirection(aAxis)) { |
|
152 return aLogicalPosn; |
|
153 } |
|
154 return aLogicalContainerSize - aLogicalPosn; |
|
155 } |
|
156 |
|
157 static nscoord |
|
158 MarginComponentForSide(const nsMargin& aMargin, Side aSide) |
|
159 { |
|
160 switch (aSide) { |
|
161 case eSideLeft: |
|
162 return aMargin.left; |
|
163 case eSideRight: |
|
164 return aMargin.right; |
|
165 case eSideTop: |
|
166 return aMargin.top; |
|
167 case eSideBottom: |
|
168 return aMargin.bottom; |
|
169 } |
|
170 |
|
171 NS_NOTREACHED("unexpected Side enum"); |
|
172 return aMargin.left; // have to return something |
|
173 // (but something's busted if we got here) |
|
174 } |
|
175 |
|
176 static nscoord& |
|
177 MarginComponentForSide(nsMargin& aMargin, Side aSide) |
|
178 { |
|
179 switch (aSide) { |
|
180 case eSideLeft: |
|
181 return aMargin.left; |
|
182 case eSideRight: |
|
183 return aMargin.right; |
|
184 case eSideTop: |
|
185 return aMargin.top; |
|
186 case eSideBottom: |
|
187 return aMargin.bottom; |
|
188 } |
|
189 |
|
190 NS_NOTREACHED("unexpected Side enum"); |
|
191 return aMargin.left; // have to return something |
|
192 // (but something's busted if we got here) |
|
193 } |
|
194 |
|
195 // Helper-macro to let us pick one of two expressions to evaluate |
|
196 // (a width expression vs. a height expression), to get a main-axis or |
|
197 // cross-axis component. |
|
198 // For code that has e.g. a nsSize object, FlexboxAxisTracker::GetMainComponent |
|
199 // and GetCrossComponent are cleaner; but in cases where we simply have |
|
200 // two separate expressions for width and height (which may be expensive to |
|
201 // evaluate), these macros will ensure that only the expression for the correct |
|
202 // axis gets evaluated. |
|
203 #define GET_MAIN_COMPONENT(axisTracker_, width_, height_) \ |
|
204 IsAxisHorizontal((axisTracker_).GetMainAxis()) ? (width_) : (height_) |
|
205 |
|
206 #define GET_CROSS_COMPONENT(axisTracker_, width_, height_) \ |
|
207 IsAxisHorizontal((axisTracker_).GetCrossAxis()) ? (width_) : (height_) |
|
208 |
|
209 // Encapsulates our flex container's main & cross axes. |
|
210 class MOZ_STACK_CLASS nsFlexContainerFrame::FlexboxAxisTracker { |
|
211 public: |
|
212 FlexboxAxisTracker(nsFlexContainerFrame* aFlexContainerFrame); |
|
213 |
|
214 // Accessors: |
|
215 AxisOrientationType GetMainAxis() const { return mMainAxis; } |
|
216 AxisOrientationType GetCrossAxis() const { return mCrossAxis; } |
|
217 |
|
218 nscoord GetMainComponent(const nsSize& aSize) const { |
|
219 return GET_MAIN_COMPONENT(*this, aSize.width, aSize.height); |
|
220 } |
|
221 int32_t GetMainComponent(const nsIntSize& aIntSize) const { |
|
222 return GET_MAIN_COMPONENT(*this, aIntSize.width, aIntSize.height); |
|
223 } |
|
224 |
|
225 nscoord GetCrossComponent(const nsSize& aSize) const { |
|
226 return GET_CROSS_COMPONENT(*this, aSize.width, aSize.height); |
|
227 } |
|
228 int32_t GetCrossComponent(const nsIntSize& aIntSize) const { |
|
229 return GET_CROSS_COMPONENT(*this, aIntSize.width, aIntSize.height); |
|
230 } |
|
231 |
|
232 nscoord GetMarginSizeInMainAxis(const nsMargin& aMargin) const { |
|
233 return IsAxisHorizontal(mMainAxis) ? |
|
234 aMargin.LeftRight() : |
|
235 aMargin.TopBottom(); |
|
236 } |
|
237 nscoord GetMarginSizeInCrossAxis(const nsMargin& aMargin) const { |
|
238 return IsAxisHorizontal(mCrossAxis) ? |
|
239 aMargin.LeftRight() : |
|
240 aMargin.TopBottom(); |
|
241 } |
|
242 |
|
243 /** |
|
244 * Converts a logical point into a "physical" x,y point. |
|
245 * |
|
246 * In the simplest case where the main-axis is left-to-right and the |
|
247 * cross-axis is top-to-bottom, this just returns |
|
248 * nsPoint(aMainPosn, aCrossPosn). |
|
249 * |
|
250 * @arg aMainPosn The main-axis position -- i.e an offset from the |
|
251 * main-start edge of the container's content box. |
|
252 * @arg aCrossPosn The cross-axis position -- i.e an offset from the |
|
253 * cross-start edge of the container's content box. |
|
254 * @return A nsPoint representing the same position (in coordinates |
|
255 * relative to the container's content box). |
|
256 */ |
|
257 nsPoint PhysicalPointFromLogicalPoint(nscoord aMainPosn, |
|
258 nscoord aCrossPosn, |
|
259 nscoord aContainerMainSize, |
|
260 nscoord aContainerCrossSize) const { |
|
261 nscoord physicalPosnInMainAxis = |
|
262 PhysicalPosFromLogicalPos(aMainPosn, aContainerMainSize, mMainAxis); |
|
263 nscoord physicalPosnInCrossAxis = |
|
264 PhysicalPosFromLogicalPos(aCrossPosn, aContainerCrossSize, mCrossAxis); |
|
265 |
|
266 return IsAxisHorizontal(mMainAxis) ? |
|
267 nsPoint(physicalPosnInMainAxis, physicalPosnInCrossAxis) : |
|
268 nsPoint(physicalPosnInCrossAxis, physicalPosnInMainAxis); |
|
269 } |
|
270 nsSize PhysicalSizeFromLogicalSizes(nscoord aMainSize, |
|
271 nscoord aCrossSize) const { |
|
272 return IsAxisHorizontal(mMainAxis) ? |
|
273 nsSize(aMainSize, aCrossSize) : |
|
274 nsSize(aCrossSize, aMainSize); |
|
275 } |
|
276 |
|
277 // Are my axes reversed with respect to what the author asked for? |
|
278 // (We may reverse the axes in the FlexboxAxisTracker constructor and set |
|
279 // this flag, to avoid reflowing our children in bottom-to-top order.) |
|
280 bool AreAxesInternallyReversed() const |
|
281 { |
|
282 return mAreAxesInternallyReversed; |
|
283 } |
|
284 |
|
285 private: |
|
286 AxisOrientationType mMainAxis; |
|
287 AxisOrientationType mCrossAxis; |
|
288 bool mAreAxesInternallyReversed; |
|
289 }; |
|
290 |
|
291 /** |
|
292 * Represents a flex item. |
|
293 * Includes the various pieces of input that the Flexbox Layout Algorithm uses |
|
294 * to resolve a flexible width. |
|
295 */ |
|
296 class nsFlexContainerFrame::FlexItem : public LinkedListElement<FlexItem> |
|
297 { |
|
298 public: |
|
299 // Normal constructor: |
|
300 FlexItem(nsIFrame* aChildFrame, |
|
301 float aFlexGrow, float aFlexShrink, nscoord aMainBaseSize, |
|
302 nscoord aMainMinSize, nscoord aMainMaxSize, |
|
303 nscoord aCrossMinSize, nscoord aCrossMaxSize, |
|
304 nsMargin aMargin, nsMargin aBorderPadding, |
|
305 const FlexboxAxisTracker& aAxisTracker); |
|
306 |
|
307 // Simplified constructor, to be used only for generating "struts": |
|
308 FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize); |
|
309 |
|
310 // Accessors |
|
311 nsIFrame* Frame() const { return mFrame; } |
|
312 nscoord GetFlexBaseSize() const { return mFlexBaseSize; } |
|
313 |
|
314 nscoord GetMainMinSize() const { return mMainMinSize; } |
|
315 nscoord GetMainMaxSize() const { return mMainMaxSize; } |
|
316 |
|
317 // Note: These return the main-axis position and size of our *content box*. |
|
318 nscoord GetMainSize() const { return mMainSize; } |
|
319 nscoord GetMainPosition() const { return mMainPosn; } |
|
320 |
|
321 nscoord GetCrossMinSize() const { return mCrossMinSize; } |
|
322 nscoord GetCrossMaxSize() const { return mCrossMaxSize; } |
|
323 |
|
324 // Note: These return the cross-axis position and size of our *content box*. |
|
325 nscoord GetCrossSize() const { return mCrossSize; } |
|
326 nscoord GetCrossPosition() const { return mCrossPosn; } |
|
327 |
|
328 // Convenience methods to compute the main & cross size of our *margin-box*. |
|
329 // The caller is responsible for telling us the right axis, so that we can |
|
330 // pull out the appropriate components of our margin/border/padding structs. |
|
331 nscoord GetOuterMainSize(AxisOrientationType aMainAxis) const |
|
332 { |
|
333 return mMainSize + GetMarginBorderPaddingSizeInAxis(aMainAxis); |
|
334 } |
|
335 |
|
336 nscoord GetOuterCrossSize(AxisOrientationType aCrossAxis) const |
|
337 { |
|
338 return mCrossSize + GetMarginBorderPaddingSizeInAxis(aCrossAxis); |
|
339 } |
|
340 |
|
341 // Returns the distance between this FlexItem's baseline and the cross-start |
|
342 // edge of its margin-box. Used in baseline alignment. |
|
343 // (This function needs to be told what cross axis is & which edge we're |
|
344 // measuring the baseline from, so that it can look up the appropriate |
|
345 // components from mMargin.) |
|
346 nscoord GetBaselineOffsetFromOuterCrossEdge(AxisOrientationType aCrossAxis, |
|
347 AxisEdgeType aEdge) const; |
|
348 |
|
349 float GetShareOfFlexWeightSoFar() const { return mShareOfFlexWeightSoFar; } |
|
350 |
|
351 bool IsFrozen() const { return mIsFrozen; } |
|
352 |
|
353 bool HadMinViolation() const { return mHadMinViolation; } |
|
354 bool HadMaxViolation() const { return mHadMaxViolation; } |
|
355 |
|
356 // Indicates whether this item received a preliminary "measuring" reflow |
|
357 // before its actual reflow. |
|
358 bool HadMeasuringReflow() const { return mHadMeasuringReflow; } |
|
359 |
|
360 // Indicates whether this item's cross-size has been stretched (from having |
|
361 // "align-self: stretch" with an auto cross-size and no auto margins in the |
|
362 // cross axis). |
|
363 bool IsStretched() const { return mIsStretched; } |
|
364 |
|
365 // Indicates whether this item is a "strut" left behind by an element with |
|
366 // visibility:collapse. |
|
367 bool IsStrut() const { return mIsStrut; } |
|
368 |
|
369 uint8_t GetAlignSelf() const { return mAlignSelf; } |
|
370 |
|
371 // Returns the flex weight that we should use in the "resolving flexible |
|
372 // lengths" algorithm. If we're using flex grow, we just return that; |
|
373 // otherwise, we use the "scaled flex shrink weight" (scaled by our flex |
|
374 // base size, so that when both large and small items are shrinking, |
|
375 // the large items shrink more). |
|
376 float GetFlexWeightToUse(bool aIsUsingFlexGrow) |
|
377 { |
|
378 if (IsFrozen()) { |
|
379 return 0.0f; |
|
380 } |
|
381 |
|
382 if (aIsUsingFlexGrow) { |
|
383 return mFlexGrow; |
|
384 } |
|
385 |
|
386 // We're using flex-shrink --> return mFlexShrink * mFlexBaseSize |
|
387 if (mFlexBaseSize == 0) { |
|
388 // Special-case for mFlexBaseSize == 0 -- we have no room to shrink, so |
|
389 // regardless of mFlexShrink, we should just return 0. |
|
390 // (This is really a special-case for when mFlexShrink is infinity, to |
|
391 // avoid performing mFlexShrink * mFlexBaseSize = inf * 0 = undefined.) |
|
392 return 0.0f; |
|
393 } |
|
394 return mFlexShrink * mFlexBaseSize; |
|
395 } |
|
396 |
|
397 // Getters for margin: |
|
398 // =================== |
|
399 const nsMargin& GetMargin() const { return mMargin; } |
|
400 |
|
401 // Returns the margin component for a given mozilla::css::Side |
|
402 nscoord GetMarginComponentForSide(Side aSide) const |
|
403 { return MarginComponentForSide(mMargin, aSide); } |
|
404 |
|
405 // Returns the total space occupied by this item's margins in the given axis |
|
406 nscoord GetMarginSizeInAxis(AxisOrientationType aAxis) const |
|
407 { |
|
408 Side startSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start]; |
|
409 Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End]; |
|
410 return GetMarginComponentForSide(startSide) + |
|
411 GetMarginComponentForSide(endSide); |
|
412 } |
|
413 |
|
414 // Getters for border/padding |
|
415 // ========================== |
|
416 const nsMargin& GetBorderPadding() const { return mBorderPadding; } |
|
417 |
|
418 // Returns the border+padding component for a given mozilla::css::Side |
|
419 nscoord GetBorderPaddingComponentForSide(Side aSide) const |
|
420 { return MarginComponentForSide(mBorderPadding, aSide); } |
|
421 |
|
422 // Returns the total space occupied by this item's borders and padding in |
|
423 // the given axis |
|
424 nscoord GetBorderPaddingSizeInAxis(AxisOrientationType aAxis) const |
|
425 { |
|
426 Side startSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start]; |
|
427 Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End]; |
|
428 return GetBorderPaddingComponentForSide(startSide) + |
|
429 GetBorderPaddingComponentForSide(endSide); |
|
430 } |
|
431 |
|
432 // Getter for combined margin/border/padding |
|
433 // ========================================= |
|
434 // Returns the total space occupied by this item's margins, borders and |
|
435 // padding in the given axis |
|
436 nscoord GetMarginBorderPaddingSizeInAxis(AxisOrientationType aAxis) const |
|
437 { |
|
438 return GetMarginSizeInAxis(aAxis) + GetBorderPaddingSizeInAxis(aAxis); |
|
439 } |
|
440 |
|
441 // Setters |
|
442 // ======= |
|
443 |
|
444 // This sets our flex base size, and then updates the main size to the |
|
445 // base size clamped to our main-axis [min,max] constraints. |
|
446 void SetFlexBaseSizeAndMainSize(nscoord aNewFlexBaseSize) |
|
447 { |
|
448 MOZ_ASSERT(!mIsFrozen || mFlexBaseSize == NS_INTRINSICSIZE, |
|
449 "flex base size shouldn't change after we're frozen " |
|
450 "(unless we're just resolving an intrinsic size)"); |
|
451 mFlexBaseSize = aNewFlexBaseSize; |
|
452 |
|
453 // Before we've resolved flexible lengths, we keep mMainSize set to |
|
454 // the 'hypothetical main size', which is the flex base size, clamped |
|
455 // to the [min,max] range: |
|
456 mMainSize = NS_CSS_MINMAX(mFlexBaseSize, mMainMinSize, mMainMaxSize); |
|
457 } |
|
458 |
|
459 // Setters used while we're resolving flexible lengths |
|
460 // --------------------------------------------------- |
|
461 |
|
462 // Sets the main-size of our flex item's content-box. |
|
463 void SetMainSize(nscoord aNewMainSize) |
|
464 { |
|
465 MOZ_ASSERT(!mIsFrozen, "main size shouldn't change after we're frozen"); |
|
466 mMainSize = aNewMainSize; |
|
467 } |
|
468 |
|
469 void SetShareOfFlexWeightSoFar(float aNewShare) |
|
470 { |
|
471 MOZ_ASSERT(!mIsFrozen || aNewShare == 0.0f, |
|
472 "shouldn't be giving this item any share of the weight " |
|
473 "after it's frozen"); |
|
474 mShareOfFlexWeightSoFar = aNewShare; |
|
475 } |
|
476 |
|
477 void Freeze() { mIsFrozen = true; } |
|
478 |
|
479 void SetHadMinViolation() |
|
480 { |
|
481 MOZ_ASSERT(!mIsFrozen, |
|
482 "shouldn't be changing main size & having violations " |
|
483 "after we're frozen"); |
|
484 mHadMinViolation = true; |
|
485 } |
|
486 void SetHadMaxViolation() |
|
487 { |
|
488 MOZ_ASSERT(!mIsFrozen, |
|
489 "shouldn't be changing main size & having violations " |
|
490 "after we're frozen"); |
|
491 mHadMaxViolation = true; |
|
492 } |
|
493 void ClearViolationFlags() |
|
494 { mHadMinViolation = mHadMaxViolation = false; } |
|
495 |
|
496 // Setters for values that are determined after we've resolved our main size |
|
497 // ------------------------------------------------------------------------- |
|
498 |
|
499 // Sets the main-axis position of our flex item's content-box. |
|
500 // (This is the distance between the main-start edge of the flex container |
|
501 // and the main-start edge of the flex item's content-box.) |
|
502 void SetMainPosition(nscoord aPosn) { |
|
503 MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); |
|
504 mMainPosn = aPosn; |
|
505 } |
|
506 |
|
507 // Sets the cross-size of our flex item's content-box. |
|
508 void SetCrossSize(nscoord aCrossSize) { |
|
509 MOZ_ASSERT(!mIsStretched, |
|
510 "Cross size shouldn't be modified after it's been stretched"); |
|
511 mCrossSize = aCrossSize; |
|
512 } |
|
513 |
|
514 // Sets the cross-axis position of our flex item's content-box. |
|
515 // (This is the distance between the cross-start edge of the flex container |
|
516 // and the cross-start edge of the flex item.) |
|
517 void SetCrossPosition(nscoord aPosn) { |
|
518 MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); |
|
519 mCrossPosn = aPosn; |
|
520 } |
|
521 |
|
522 void SetAscent(nscoord aAscent) { |
|
523 mAscent = aAscent; |
|
524 } |
|
525 |
|
526 void SetHadMeasuringReflow() { |
|
527 mHadMeasuringReflow = true; |
|
528 } |
|
529 |
|
530 void SetIsStretched() { |
|
531 MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); |
|
532 mIsStretched = true; |
|
533 } |
|
534 |
|
535 // Setter for margin components (for resolving "auto" margins) |
|
536 void SetMarginComponentForSide(Side aSide, nscoord aLength) |
|
537 { |
|
538 MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); |
|
539 MarginComponentForSide(mMargin, aSide) = aLength; |
|
540 } |
|
541 |
|
542 void ResolveStretchedCrossSize(nscoord aLineCrossSize, |
|
543 const FlexboxAxisTracker& aAxisTracker); |
|
544 |
|
545 uint32_t GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const; |
|
546 |
|
547 protected: |
|
548 // Our frame: |
|
549 nsIFrame* const mFrame; |
|
550 |
|
551 // Values that we already know in constructor: (and are hence mostly 'const') |
|
552 const float mFlexGrow; |
|
553 const float mFlexShrink; |
|
554 |
|
555 const nsMargin mBorderPadding; |
|
556 nsMargin mMargin; // non-const because we need to resolve auto margins |
|
557 |
|
558 nscoord mFlexBaseSize; |
|
559 |
|
560 const nscoord mMainMinSize; |
|
561 const nscoord mMainMaxSize; |
|
562 const nscoord mCrossMinSize; |
|
563 const nscoord mCrossMaxSize; |
|
564 |
|
565 // Values that we compute after constructor: |
|
566 nscoord mMainSize; |
|
567 nscoord mMainPosn; |
|
568 nscoord mCrossSize; |
|
569 nscoord mCrossPosn; |
|
570 nscoord mAscent; |
|
571 |
|
572 // Temporary state, while we're resolving flexible widths (for our main size) |
|
573 // XXXdholbert To save space, we could use a union to make these variables |
|
574 // overlay the same memory as some other member vars that aren't touched |
|
575 // until after main-size has been resolved. In particular, these could share |
|
576 // memory with mMainPosn through mAscent, and mIsStretched. |
|
577 float mShareOfFlexWeightSoFar; |
|
578 bool mIsFrozen; |
|
579 bool mHadMinViolation; |
|
580 bool mHadMaxViolation; |
|
581 |
|
582 // Misc: |
|
583 bool mHadMeasuringReflow; // Did this item get a preliminary reflow, |
|
584 // to measure its desired height? |
|
585 bool mIsStretched; // See IsStretched() documentation |
|
586 bool mIsStrut; // Is this item a "strut" left behind by an element |
|
587 // with visibility:collapse? |
|
588 uint8_t mAlignSelf; // My "align-self" computed value (with "auto" |
|
589 // swapped out for parent"s "align-items" value, |
|
590 // in our constructor). |
|
591 }; |
|
592 |
|
593 /** |
|
594 * Represents a single flex line in a flex container. |
|
595 * Manages a linked list of the FlexItems that are in the line. |
|
596 */ |
|
597 class nsFlexContainerFrame::FlexLine : public LinkedListElement<FlexLine> |
|
598 { |
|
599 public: |
|
600 FlexLine() |
|
601 : mNumItems(0), |
|
602 mTotalInnerHypotheticalMainSize(0), |
|
603 mTotalOuterHypotheticalMainSize(0), |
|
604 mLineCrossSize(0), |
|
605 mBaselineOffset(nscoord_MIN) |
|
606 {} |
|
607 |
|
608 // Returns the sum of our FlexItems' outer hypothetical main sizes. |
|
609 // ("outer" = margin-box, and "hypothetical" = before flexing) |
|
610 nscoord GetTotalOuterHypotheticalMainSize() const { |
|
611 return mTotalOuterHypotheticalMainSize; |
|
612 } |
|
613 |
|
614 // Accessors for our FlexItems & information about them: |
|
615 FlexItem* GetFirstItem() |
|
616 { |
|
617 MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0), |
|
618 "mNumItems bookkeeping is off"); |
|
619 return mItems.getFirst(); |
|
620 } |
|
621 |
|
622 const FlexItem* GetFirstItem() const |
|
623 { |
|
624 MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0), |
|
625 "mNumItems bookkeeping is off"); |
|
626 return mItems.getFirst(); |
|
627 } |
|
628 |
|
629 bool IsEmpty() const |
|
630 { |
|
631 MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0), |
|
632 "mNumItems bookkeeping is off"); |
|
633 return mItems.isEmpty(); |
|
634 } |
|
635 |
|
636 uint32_t NumItems() const |
|
637 { |
|
638 MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0), |
|
639 "mNumItems bookkeeping is off"); |
|
640 return mNumItems; |
|
641 } |
|
642 |
|
643 // Adds the given FlexItem to our list of items (at the front or back |
|
644 // depending on aShouldInsertAtFront), and adds its hypothetical |
|
645 // outer & inner main sizes to our totals. Use this method instead of |
|
646 // directly modifying the item list, so that our bookkeeping remains correct. |
|
647 void AddItem(FlexItem* aItem, |
|
648 bool aShouldInsertAtFront, |
|
649 nscoord aItemInnerHypotheticalMainSize, |
|
650 nscoord aItemOuterHypotheticalMainSize) |
|
651 { |
|
652 if (aShouldInsertAtFront) { |
|
653 mItems.insertFront(aItem); |
|
654 } else { |
|
655 mItems.insertBack(aItem); |
|
656 } |
|
657 mNumItems++; |
|
658 mTotalInnerHypotheticalMainSize += aItemInnerHypotheticalMainSize; |
|
659 mTotalOuterHypotheticalMainSize += aItemOuterHypotheticalMainSize; |
|
660 } |
|
661 |
|
662 // Computes the cross-size and baseline position of this FlexLine, based on |
|
663 // its FlexItems. |
|
664 void ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker); |
|
665 |
|
666 // Returns the cross-size of this line. |
|
667 nscoord GetLineCrossSize() const { return mLineCrossSize; } |
|
668 |
|
669 // Setter for line cross-size -- needed for cases where the flex container |
|
670 // imposes a cross-size on the line. (e.g. for single-line flexbox, or for |
|
671 // multi-line flexbox with 'align-content: stretch') |
|
672 void SetLineCrossSize(nscoord aLineCrossSize) { |
|
673 mLineCrossSize = aLineCrossSize; |
|
674 } |
|
675 |
|
676 /** |
|
677 * Returns the offset within this line where any baseline-aligned FlexItems |
|
678 * should place their baseline. Usually, this represents a distance from the |
|
679 * line's cross-start edge, but if we're internally reversing the axes (see |
|
680 * AreAxesInternallyReversed()), this instead represents the distance from |
|
681 * its cross-end edge. |
|
682 * |
|
683 * If there are no baseline-aligned FlexItems, returns nscoord_MIN. |
|
684 */ |
|
685 nscoord GetBaselineOffset() const { |
|
686 return mBaselineOffset; |
|
687 } |
|
688 |
|
689 // Runs the "Resolving Flexible Lengths" algorithm from section 9.7 of the |
|
690 // CSS flexbox spec to distribute aFlexContainerMainSize among our flex items. |
|
691 void ResolveFlexibleLengths(nscoord aFlexContainerMainSize); |
|
692 |
|
693 void PositionItemsInMainAxis(uint8_t aJustifyContent, |
|
694 nscoord aContentBoxMainSize, |
|
695 const FlexboxAxisTracker& aAxisTracker); |
|
696 |
|
697 void PositionItemsInCrossAxis(nscoord aLineStartPosition, |
|
698 const FlexboxAxisTracker& aAxisTracker); |
|
699 |
|
700 friend class AutoFlexLineListClearer; // (needs access to mItems) |
|
701 |
|
702 private: |
|
703 // Helper for ResolveFlexibleLengths(): |
|
704 void FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation, |
|
705 bool aIsFinalIteration); |
|
706 |
|
707 LinkedList<FlexItem> mItems; // Linked list of this line's flex items. |
|
708 |
|
709 uint32_t mNumItems; // Number of FlexItems in this line (in |mItems|). |
|
710 // (Shouldn't change after GenerateFlexLines finishes |
|
711 // with this line -- at least, not until we add support |
|
712 // for splitting lines across continuations. Then we can |
|
713 // update this count carefully.) |
|
714 |
|
715 nscoord mTotalInnerHypotheticalMainSize; |
|
716 nscoord mTotalOuterHypotheticalMainSize; |
|
717 nscoord mLineCrossSize; |
|
718 nscoord mBaselineOffset; |
|
719 }; |
|
720 |
|
721 // Information about a strut left behind by a FlexItem that's been collapsed |
|
722 // using "visibility:collapse". |
|
723 struct nsFlexContainerFrame::StrutInfo { |
|
724 StrutInfo(uint32_t aItemIdx, nscoord aStrutCrossSize) |
|
725 : mItemIdx(aItemIdx), |
|
726 mStrutCrossSize(aStrutCrossSize) |
|
727 { |
|
728 } |
|
729 |
|
730 uint32_t mItemIdx; // Index in the child list. |
|
731 nscoord mStrutCrossSize; // The cross-size of this strut. |
|
732 }; |
|
733 |
|
734 static void |
|
735 BuildStrutInfoFromCollapsedItems(const FlexLine* aFirstLine, |
|
736 nsTArray<StrutInfo>& aStruts) |
|
737 { |
|
738 MOZ_ASSERT(aFirstLine, "null first line pointer"); |
|
739 MOZ_ASSERT(aStruts.IsEmpty(), |
|
740 "We should only build up StrutInfo once per reflow, so " |
|
741 "aStruts should be empty when this is called"); |
|
742 |
|
743 uint32_t itemIdxInContainer = 0; |
|
744 for (const FlexLine* line = aFirstLine; line; line = line->getNext()) { |
|
745 for (const FlexItem* item = line->GetFirstItem(); item; |
|
746 item = item->getNext()) { |
|
747 if (NS_STYLE_VISIBILITY_COLLAPSE == |
|
748 item->Frame()->StyleVisibility()->mVisible) { |
|
749 // Note the cross size of the line as the item's strut size. |
|
750 aStruts.AppendElement(StrutInfo(itemIdxInContainer, |
|
751 line->GetLineCrossSize())); |
|
752 } |
|
753 itemIdxInContainer++; |
|
754 } |
|
755 } |
|
756 } |
|
757 |
|
758 // Helper-function to find the first non-anonymous-box descendent of aFrame. |
|
759 static nsIFrame* |
|
760 GetFirstNonAnonBoxDescendant(nsIFrame* aFrame) |
|
761 { |
|
762 while (aFrame) { |
|
763 nsIAtom* pseudoTag = aFrame->StyleContext()->GetPseudo(); |
|
764 |
|
765 // If aFrame isn't an anonymous container, then it'll do. |
|
766 if (!pseudoTag || // No pseudotag. |
|
767 !nsCSSAnonBoxes::IsAnonBox(pseudoTag) || // Pseudotag isn't anon. |
|
768 pseudoTag == nsCSSAnonBoxes::mozNonElement) { // Text, not a container. |
|
769 break; |
|
770 } |
|
771 |
|
772 // Otherwise, descend to its first child and repeat. |
|
773 |
|
774 // SPECIAL CASE: if we're dealing with an anonymous table, then it might |
|
775 // be wrapping something non-anonymous in its caption or col-group lists |
|
776 // (instead of its principal child list), so we have to look there. |
|
777 // (Note: For anonymous tables that have a non-anon cell *and* a non-anon |
|
778 // column, we'll always return the column. This is fine; we're really just |
|
779 // looking for a handle to *anything* with a meaningful content node inside |
|
780 // the table, for use in DOM comparisons to things outside of the table.) |
|
781 if (MOZ_UNLIKELY(aFrame->GetType() == nsGkAtoms::tableOuterFrame)) { |
|
782 nsIFrame* captionDescendant = |
|
783 GetFirstNonAnonBoxDescendant(aFrame->GetFirstChild(kCaptionList)); |
|
784 if (captionDescendant) { |
|
785 return captionDescendant; |
|
786 } |
|
787 } else if (MOZ_UNLIKELY(aFrame->GetType() == nsGkAtoms::tableFrame)) { |
|
788 nsIFrame* colgroupDescendant = |
|
789 GetFirstNonAnonBoxDescendant(aFrame->GetFirstChild(kColGroupList)); |
|
790 if (colgroupDescendant) { |
|
791 return colgroupDescendant; |
|
792 } |
|
793 } |
|
794 |
|
795 // USUAL CASE: Descend to the first child in principal list. |
|
796 aFrame = aFrame->GetFirstPrincipalChild(); |
|
797 } |
|
798 return aFrame; |
|
799 } |
|
800 |
|
801 /** |
|
802 * Sorting helper-function that compares two frames' "order" property-values, |
|
803 * and if they're equal, compares the DOM positions of their corresponding |
|
804 * content nodes. Returns true if aFrame1 is "less than or equal to" aFrame2 |
|
805 * according to this comparison. |
|
806 * |
|
807 * Note: This can't be a static function, because we need to pass it as a |
|
808 * template argument. (Only functions with external linkage can be passed as |
|
809 * template arguments.) |
|
810 * |
|
811 * @return true if the computed "order" property of aFrame1 is less than that |
|
812 * of aFrame2, or if the computed "order" values are equal and aFrame1's |
|
813 * corresponding DOM node is earlier than aFrame2's in the DOM tree. |
|
814 * Otherwise, returns false. |
|
815 */ |
|
816 bool |
|
817 IsOrderLEQWithDOMFallback(nsIFrame* aFrame1, |
|
818 nsIFrame* aFrame2) |
|
819 { |
|
820 MOZ_ASSERT(aFrame1->IsFlexItem() && aFrame2->IsFlexItem(), |
|
821 "this method only intended for comparing flex items"); |
|
822 |
|
823 if (aFrame1 == aFrame2) { |
|
824 // Anything is trivially LEQ itself, so we return "true" here... but it's |
|
825 // probably bad if we end up actually needing this, so let's assert. |
|
826 NS_ERROR("Why are we checking if a frame is LEQ itself?"); |
|
827 return true; |
|
828 } |
|
829 |
|
830 // If we've got a placeholder frame, use its out-of-flow frame's 'order' val. |
|
831 { |
|
832 nsIFrame* aRealFrame1 = nsPlaceholderFrame::GetRealFrameFor(aFrame1); |
|
833 nsIFrame* aRealFrame2 = nsPlaceholderFrame::GetRealFrameFor(aFrame2); |
|
834 |
|
835 int32_t order1 = aRealFrame1->StylePosition()->mOrder; |
|
836 int32_t order2 = aRealFrame2->StylePosition()->mOrder; |
|
837 |
|
838 if (order1 != order2) { |
|
839 return order1 < order2; |
|
840 } |
|
841 } |
|
842 |
|
843 // The "order" values are equal, so we need to fall back on DOM comparison. |
|
844 // For that, we need to dig through any anonymous box wrapper frames to find |
|
845 // the actual frame that corresponds to our child content. |
|
846 aFrame1 = GetFirstNonAnonBoxDescendant(aFrame1); |
|
847 aFrame2 = GetFirstNonAnonBoxDescendant(aFrame2); |
|
848 MOZ_ASSERT(aFrame1 && aFrame2, |
|
849 "why do we have an anonymous box without any " |
|
850 "non-anonymous descendants?"); |
|
851 |
|
852 |
|
853 // Special case: |
|
854 // If either frame is for generated content from ::before or ::after, then |
|
855 // we can't use nsContentUtils::PositionIsBefore(), since that method won't |
|
856 // recognize generated content as being an actual sibling of other nodes. |
|
857 // We know where ::before and ::after nodes *effectively* insert in the DOM |
|
858 // tree, though (at the beginning & end), so we can just special-case them. |
|
859 nsIAtom* pseudo1 = aFrame1->StyleContext()->GetPseudo(); |
|
860 nsIAtom* pseudo2 = aFrame2->StyleContext()->GetPseudo(); |
|
861 if (pseudo1 == nsCSSPseudoElements::before || |
|
862 pseudo2 == nsCSSPseudoElements::after) { |
|
863 // frame1 is ::before and/or frame2 is ::after => frame1 is LEQ frame2. |
|
864 return true; |
|
865 } |
|
866 if (pseudo1 == nsCSSPseudoElements::after || |
|
867 pseudo2 == nsCSSPseudoElements::before) { |
|
868 // frame1 is ::after and/or frame2 is ::before => frame1 is not LEQ frame2. |
|
869 return false; |
|
870 } |
|
871 |
|
872 // Usual case: Compare DOM position. |
|
873 nsIContent* content1 = aFrame1->GetContent(); |
|
874 nsIContent* content2 = aFrame2->GetContent(); |
|
875 MOZ_ASSERT(content1 != content2, |
|
876 "Two different flex items are using the same nsIContent node for " |
|
877 "comparison, so we may be sorting them in an arbitrary order"); |
|
878 |
|
879 return nsContentUtils::PositionIsBefore(content1, content2); |
|
880 } |
|
881 |
|
882 /** |
|
883 * Sorting helper-function that compares two frames' "order" property-values. |
|
884 * Returns true if aFrame1 is "less than or equal to" aFrame2 according to this |
|
885 * comparison. |
|
886 * |
|
887 * Note: This can't be a static function, because we need to pass it as a |
|
888 * template argument. (Only functions with external linkage can be passed as |
|
889 * template arguments.) |
|
890 * |
|
891 * @return true if the computed "order" property of aFrame1 is less than or |
|
892 * equal to that of aFrame2. Otherwise, returns false. |
|
893 */ |
|
894 bool |
|
895 IsOrderLEQ(nsIFrame* aFrame1, |
|
896 nsIFrame* aFrame2) |
|
897 { |
|
898 MOZ_ASSERT(aFrame1->IsFlexItem() && aFrame2->IsFlexItem(), |
|
899 "this method only intended for comparing flex items"); |
|
900 |
|
901 // If we've got a placeholder frame, use its out-of-flow frame's 'order' val. |
|
902 nsIFrame* aRealFrame1 = nsPlaceholderFrame::GetRealFrameFor(aFrame1); |
|
903 nsIFrame* aRealFrame2 = nsPlaceholderFrame::GetRealFrameFor(aFrame2); |
|
904 |
|
905 int32_t order1 = aRealFrame1->StylePosition()->mOrder; |
|
906 int32_t order2 = aRealFrame2->StylePosition()->mOrder; |
|
907 |
|
908 return order1 <= order2; |
|
909 } |
|
910 |
|
911 bool |
|
912 nsFlexContainerFrame::IsHorizontal() |
|
913 { |
|
914 const FlexboxAxisTracker axisTracker(this); |
|
915 return IsAxisHorizontal(axisTracker.GetMainAxis()); |
|
916 } |
|
917 |
|
918 FlexItem* |
|
919 nsFlexContainerFrame::GenerateFlexItemForChild( |
|
920 nsPresContext* aPresContext, |
|
921 nsIFrame* aChildFrame, |
|
922 const nsHTMLReflowState& aParentReflowState, |
|
923 const FlexboxAxisTracker& aAxisTracker) |
|
924 { |
|
925 // Create temporary reflow state just for sizing -- to get hypothetical |
|
926 // main-size and the computed values of min / max main-size property. |
|
927 // (This reflow state will _not_ be used for reflow.) |
|
928 nsHTMLReflowState childRS(aPresContext, aParentReflowState, aChildFrame, |
|
929 nsSize(aParentReflowState.ComputedWidth(), |
|
930 aParentReflowState.ComputedHeight())); |
|
931 |
|
932 // FLEX GROW & SHRINK WEIGHTS |
|
933 // -------------------------- |
|
934 const nsStylePosition* stylePos = aChildFrame->StylePosition(); |
|
935 float flexGrow = stylePos->mFlexGrow; |
|
936 float flexShrink = stylePos->mFlexShrink; |
|
937 |
|
938 // MAIN SIZES (flex base size, min/max size) |
|
939 // ----------------------------------------- |
|
940 nscoord flexBaseSize = GET_MAIN_COMPONENT(aAxisTracker, |
|
941 childRS.ComputedWidth(), |
|
942 childRS.ComputedHeight()); |
|
943 nscoord mainMinSize = GET_MAIN_COMPONENT(aAxisTracker, |
|
944 childRS.ComputedMinWidth(), |
|
945 childRS.ComputedMinHeight()); |
|
946 nscoord mainMaxSize = GET_MAIN_COMPONENT(aAxisTracker, |
|
947 childRS.ComputedMaxWidth(), |
|
948 childRS.ComputedMaxHeight()); |
|
949 // This is enforced by the nsHTMLReflowState where these values come from: |
|
950 MOZ_ASSERT(mainMinSize <= mainMaxSize, "min size is larger than max size"); |
|
951 |
|
952 // CROSS MIN/MAX SIZE |
|
953 // ------------------ |
|
954 |
|
955 nscoord crossMinSize = GET_CROSS_COMPONENT(aAxisTracker, |
|
956 childRS.ComputedMinWidth(), |
|
957 childRS.ComputedMinHeight()); |
|
958 nscoord crossMaxSize = GET_CROSS_COMPONENT(aAxisTracker, |
|
959 childRS.ComputedMaxWidth(), |
|
960 childRS.ComputedMaxHeight()); |
|
961 |
|
962 // SPECIAL-CASE FOR WIDGET-IMPOSED SIZES |
|
963 // Check if we're a themed widget, in which case we might have a minimum |
|
964 // main & cross size imposed by our widget (which we can't go below), or |
|
965 // (more severe) our widget might have only a single valid size. |
|
966 bool isFixedSizeWidget = false; |
|
967 const nsStyleDisplay* disp = aChildFrame->StyleDisplay(); |
|
968 if (aChildFrame->IsThemed(disp)) { |
|
969 nsIntSize widgetMinSize(0, 0); |
|
970 bool canOverride = true; |
|
971 aPresContext->GetTheme()-> |
|
972 GetMinimumWidgetSize(childRS.rendContext, aChildFrame, |
|
973 disp->mAppearance, |
|
974 &widgetMinSize, &canOverride); |
|
975 |
|
976 nscoord widgetMainMinSize = |
|
977 aPresContext->DevPixelsToAppUnits( |
|
978 aAxisTracker.GetMainComponent(widgetMinSize)); |
|
979 nscoord widgetCrossMinSize = |
|
980 aPresContext->DevPixelsToAppUnits( |
|
981 aAxisTracker.GetCrossComponent(widgetMinSize)); |
|
982 |
|
983 // GMWS() returns border-box. We need content-box, so subtract |
|
984 // borderPadding (but don't let that push our min sizes below 0). |
|
985 nsMargin& bp = childRS.ComputedPhysicalBorderPadding(); |
|
986 widgetMainMinSize = std::max(widgetMainMinSize - |
|
987 aAxisTracker.GetMarginSizeInMainAxis(bp), 0); |
|
988 widgetCrossMinSize = std::max(widgetCrossMinSize - |
|
989 aAxisTracker.GetMarginSizeInCrossAxis(bp), 0); |
|
990 |
|
991 if (!canOverride) { |
|
992 // Fixed-size widget: freeze our main-size at the widget's mandated size. |
|
993 // (Set min and max main-sizes to that size, too, to keep us from |
|
994 // clamping to any other size later on.) |
|
995 flexBaseSize = mainMinSize = mainMaxSize = widgetMainMinSize; |
|
996 crossMinSize = crossMaxSize = widgetCrossMinSize; |
|
997 isFixedSizeWidget = true; |
|
998 } else { |
|
999 // Variable-size widget: ensure our min/max sizes are at least as large |
|
1000 // as the widget's mandated minimum size, so we don't flex below that. |
|
1001 mainMinSize = std::max(mainMinSize, widgetMainMinSize); |
|
1002 mainMaxSize = std::max(mainMaxSize, widgetMainMinSize); |
|
1003 |
|
1004 crossMinSize = std::max(crossMinSize, widgetCrossMinSize); |
|
1005 crossMaxSize = std::max(crossMaxSize, widgetCrossMinSize); |
|
1006 } |
|
1007 } |
|
1008 |
|
1009 // Construct the flex item! |
|
1010 FlexItem* item = new FlexItem(aChildFrame, |
|
1011 flexGrow, flexShrink, flexBaseSize, |
|
1012 mainMinSize, mainMaxSize, |
|
1013 crossMinSize, crossMaxSize, |
|
1014 childRS.ComputedPhysicalMargin(), |
|
1015 childRS.ComputedPhysicalBorderPadding(), |
|
1016 aAxisTracker); |
|
1017 |
|
1018 // If we're inflexible, we can just freeze to our hypothetical main-size |
|
1019 // up-front. Similarly, if we're a fixed-size widget, we only have one |
|
1020 // valid size, so we freeze to keep ourselves from flexing. |
|
1021 if (isFixedSizeWidget || (flexGrow == 0.0f && flexShrink == 0.0f)) { |
|
1022 item->Freeze(); |
|
1023 } |
|
1024 |
|
1025 return item; |
|
1026 } |
|
1027 |
|
1028 nsresult |
|
1029 nsFlexContainerFrame:: |
|
1030 ResolveFlexItemMaxContentSizing(nsPresContext* aPresContext, |
|
1031 FlexItem& aFlexItem, |
|
1032 const nsHTMLReflowState& aParentReflowState, |
|
1033 const FlexboxAxisTracker& aAxisTracker) |
|
1034 { |
|
1035 if (IsAxisHorizontal(aAxisTracker.GetMainAxis())) { |
|
1036 // Nothing to do -- this function is only for measuring flex items |
|
1037 // in a vertical flex container. |
|
1038 return NS_OK; |
|
1039 } |
|
1040 |
|
1041 if (NS_AUTOHEIGHT != aFlexItem.GetFlexBaseSize()) { |
|
1042 // Nothing to do; this function's only relevant for flex items |
|
1043 // with a base size of "auto" (or equivalent). |
|
1044 // XXXdholbert If & when we handle "min-height: min-content" for flex items, |
|
1045 // we'll want to resolve that in this function, too. |
|
1046 return NS_OK; |
|
1047 } |
|
1048 |
|
1049 // If we get here, we're vertical and our main size ended up being |
|
1050 // unconstrained. We need to use our "max-content" height, which is what we |
|
1051 // get from reflowing into our available width. |
|
1052 // Note: This has to come *after* we construct the FlexItem, since we |
|
1053 // invoke at least one convenience method (ResolveStretchedCrossSize) which |
|
1054 // requires a FlexItem. |
|
1055 |
|
1056 // Give the item a special reflow with "mIsFlexContainerMeasuringHeight" |
|
1057 // set. This tells it to behave as if it had "height: auto", regardless |
|
1058 // of what the "height" property is actually set to. |
|
1059 nsHTMLReflowState |
|
1060 childRSForMeasuringHeight(aPresContext, aParentReflowState, |
|
1061 aFlexItem.Frame(), |
|
1062 nsSize(aParentReflowState.ComputedWidth(), |
|
1063 NS_UNCONSTRAINEDSIZE), |
|
1064 -1, -1, nsHTMLReflowState::CALLER_WILL_INIT); |
|
1065 childRSForMeasuringHeight.mFlags.mIsFlexContainerMeasuringHeight = true; |
|
1066 childRSForMeasuringHeight.Init(aPresContext); |
|
1067 |
|
1068 aFlexItem.ResolveStretchedCrossSize(aParentReflowState.ComputedWidth(), |
|
1069 aAxisTracker); |
|
1070 if (aFlexItem.IsStretched()) { |
|
1071 childRSForMeasuringHeight.SetComputedWidth(aFlexItem.GetCrossSize()); |
|
1072 childRSForMeasuringHeight.mFlags.mHResize = true; |
|
1073 } |
|
1074 |
|
1075 // If this item is flexible (vertically), then we assume that the |
|
1076 // computed-height we're reflowing with now could be different |
|
1077 // from the one we'll use for this flex item's "actual" reflow later on. |
|
1078 // In that case, we need to be sure the flex item treats this as a |
|
1079 // vertical resize, even though none of its ancestors are necessarily |
|
1080 // being vertically resized. |
|
1081 // (Note: We don't have to do this for width, because InitResizeFlags |
|
1082 // will always turn on mHResize on when it sees that the computed width |
|
1083 // is different from current width, and that's all we need.) |
|
1084 if (!aFlexItem.IsFrozen()) { // Are we flexible? |
|
1085 childRSForMeasuringHeight.mFlags.mVResize = true; |
|
1086 } |
|
1087 |
|
1088 nsHTMLReflowMetrics childDesiredSize(childRSForMeasuringHeight); |
|
1089 nsReflowStatus childReflowStatus; |
|
1090 const uint32_t flags = NS_FRAME_NO_MOVE_FRAME; |
|
1091 nsresult rv = ReflowChild(aFlexItem.Frame(), aPresContext, |
|
1092 childDesiredSize, childRSForMeasuringHeight, |
|
1093 0, 0, flags, childReflowStatus); |
|
1094 NS_ENSURE_SUCCESS(rv, rv); |
|
1095 |
|
1096 MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus), |
|
1097 "We gave flex item unconstrained available height, so it " |
|
1098 "should be complete"); |
|
1099 |
|
1100 rv = FinishReflowChild(aFlexItem.Frame(), aPresContext, |
|
1101 childDesiredSize, &childRSForMeasuringHeight, |
|
1102 0, 0, flags); |
|
1103 NS_ENSURE_SUCCESS(rv, rv); |
|
1104 |
|
1105 // Subtract border/padding in vertical axis, to get _just_ |
|
1106 // the effective computed value of the "height" property. |
|
1107 nscoord childDesiredHeight = childDesiredSize.Height() - |
|
1108 childRSForMeasuringHeight.ComputedPhysicalBorderPadding().TopBottom(); |
|
1109 childDesiredHeight = std::max(0, childDesiredHeight); |
|
1110 |
|
1111 aFlexItem.SetFlexBaseSizeAndMainSize(childDesiredHeight); |
|
1112 aFlexItem.SetHadMeasuringReflow(); |
|
1113 |
|
1114 return NS_OK; |
|
1115 } |
|
1116 |
|
1117 FlexItem::FlexItem(nsIFrame* aChildFrame, |
|
1118 float aFlexGrow, float aFlexShrink, nscoord aFlexBaseSize, |
|
1119 nscoord aMainMinSize, nscoord aMainMaxSize, |
|
1120 nscoord aCrossMinSize, nscoord aCrossMaxSize, |
|
1121 nsMargin aMargin, nsMargin aBorderPadding, |
|
1122 const FlexboxAxisTracker& aAxisTracker) |
|
1123 : mFrame(aChildFrame), |
|
1124 mFlexGrow(aFlexGrow), |
|
1125 mFlexShrink(aFlexShrink), |
|
1126 mBorderPadding(aBorderPadding), |
|
1127 mMargin(aMargin), |
|
1128 mMainMinSize(aMainMinSize), |
|
1129 mMainMaxSize(aMainMaxSize), |
|
1130 mCrossMinSize(aCrossMinSize), |
|
1131 mCrossMaxSize(aCrossMaxSize), |
|
1132 mMainPosn(0), |
|
1133 mCrossSize(0), |
|
1134 mCrossPosn(0), |
|
1135 mAscent(0), |
|
1136 mShareOfFlexWeightSoFar(0.0f), |
|
1137 mIsFrozen(false), |
|
1138 mHadMinViolation(false), |
|
1139 mHadMaxViolation(false), |
|
1140 mHadMeasuringReflow(false), |
|
1141 mIsStretched(false), |
|
1142 mIsStrut(false), |
|
1143 mAlignSelf(aChildFrame->StylePosition()->mAlignSelf) |
|
1144 { |
|
1145 MOZ_ASSERT(mFrame, "expecting a non-null child frame"); |
|
1146 MOZ_ASSERT(mFrame->GetType() != nsGkAtoms::placeholderFrame, |
|
1147 "placeholder frames should not be treated as flex items"); |
|
1148 MOZ_ASSERT(!(mFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW), |
|
1149 "out-of-flow frames should not be treated as flex items"); |
|
1150 |
|
1151 SetFlexBaseSizeAndMainSize(aFlexBaseSize); |
|
1152 |
|
1153 // Assert that any "auto" margin components are set to 0. |
|
1154 // (We'll resolve them later; until then, we want to treat them as 0-sized.) |
|
1155 #ifdef DEBUG |
|
1156 { |
|
1157 const nsStyleSides& styleMargin = mFrame->StyleMargin()->mMargin; |
|
1158 NS_FOR_CSS_SIDES(side) { |
|
1159 if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { |
|
1160 MOZ_ASSERT(GetMarginComponentForSide(side) == 0, |
|
1161 "Someone else tried to resolve our auto margin"); |
|
1162 } |
|
1163 } |
|
1164 } |
|
1165 #endif // DEBUG |
|
1166 |
|
1167 // Resolve "align-self: auto" to parent's "align-items" value. |
|
1168 if (mAlignSelf == NS_STYLE_ALIGN_SELF_AUTO) { |
|
1169 mAlignSelf = |
|
1170 mFrame->StyleContext()->GetParent()->StylePosition()->mAlignItems; |
|
1171 } |
|
1172 |
|
1173 // If the flex item's inline axis is the same as the cross axis, then |
|
1174 // 'align-self:baseline' is identical to 'flex-start'. If that's the case, we |
|
1175 // just directly convert our align-self value here, so that we don't have to |
|
1176 // handle this with special cases elsewhere. |
|
1177 // Moreover: for the time being (until we support writing-modes), |
|
1178 // all inline axes are horizontal -- so we can just check if the cross axis |
|
1179 // is horizontal. |
|
1180 // FIXME: Once we support writing-mode (vertical text), this IsAxisHorizontal |
|
1181 // check won't be sufficient anymore -- we'll actually need to compare our |
|
1182 // inline axis vs. the cross axis. |
|
1183 if (mAlignSelf == NS_STYLE_ALIGN_ITEMS_BASELINE && |
|
1184 IsAxisHorizontal(aAxisTracker.GetCrossAxis())) { |
|
1185 mAlignSelf = NS_STYLE_ALIGN_ITEMS_FLEX_START; |
|
1186 } |
|
1187 } |
|
1188 |
|
1189 // Simplified constructor for creating a special "strut" FlexItem, for a child |
|
1190 // with visibility:collapse. The strut has 0 main-size, and it only exists to |
|
1191 // impose a minimum cross size on whichever FlexLine it ends up in. |
|
1192 FlexItem::FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize) |
|
1193 : mFrame(aChildFrame), |
|
1194 mFlexGrow(0.0f), |
|
1195 mFlexShrink(0.0f), |
|
1196 // mBorderPadding uses default constructor, |
|
1197 // mMargin uses default constructor, |
|
1198 mFlexBaseSize(0), |
|
1199 mMainMinSize(0), |
|
1200 mMainMaxSize(0), |
|
1201 mCrossMinSize(0), |
|
1202 mCrossMaxSize(0), |
|
1203 mMainSize(0), |
|
1204 mMainPosn(0), |
|
1205 mCrossSize(aCrossSize), |
|
1206 mCrossPosn(0), |
|
1207 mAscent(0), |
|
1208 mShareOfFlexWeightSoFar(0.0f), |
|
1209 mIsFrozen(true), |
|
1210 mHadMinViolation(false), |
|
1211 mHadMaxViolation(false), |
|
1212 mHadMeasuringReflow(false), |
|
1213 mIsStretched(false), |
|
1214 mIsStrut(true), // (this is the constructor for making struts, after all) |
|
1215 mAlignSelf(NS_STYLE_ALIGN_ITEMS_FLEX_START) |
|
1216 { |
|
1217 MOZ_ASSERT(mFrame, "expecting a non-null child frame"); |
|
1218 MOZ_ASSERT(NS_STYLE_VISIBILITY_COLLAPSE == |
|
1219 mFrame->StyleVisibility()->mVisible, |
|
1220 "Should only make struts for children with 'visibility:collapse'"); |
|
1221 MOZ_ASSERT(mFrame->GetType() != nsGkAtoms::placeholderFrame, |
|
1222 "placeholder frames should not be treated as flex items"); |
|
1223 MOZ_ASSERT(!(mFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW), |
|
1224 "out-of-flow frames should not be treated as flex items"); |
|
1225 } |
|
1226 |
|
1227 nscoord |
|
1228 FlexItem::GetBaselineOffsetFromOuterCrossEdge(AxisOrientationType aCrossAxis, |
|
1229 AxisEdgeType aEdge) const |
|
1230 { |
|
1231 // NOTE: Currently, 'mAscent' (taken from reflow) is an inherently vertical |
|
1232 // measurement -- it's the distance from the border-top edge of this FlexItem |
|
1233 // to its baseline. So, we can really only do baseline alignment when the |
|
1234 // cross axis is vertical. (The FlexItem constructor enforces this when |
|
1235 // resolving the item's "mAlignSelf" value). |
|
1236 MOZ_ASSERT(!IsAxisHorizontal(aCrossAxis), |
|
1237 "Only expecting to be doing baseline computations when the " |
|
1238 "cross axis is vertical"); |
|
1239 |
|
1240 Side sideToMeasureFrom = kAxisOrientationToSidesMap[aCrossAxis][aEdge]; |
|
1241 |
|
1242 nscoord marginTopToBaseline = mAscent + mMargin.top; |
|
1243 |
|
1244 if (sideToMeasureFrom == eSideTop) { |
|
1245 // Measuring from top (normal case): the distance from the margin-box top |
|
1246 // edge to the baseline is just ascent + margin-top. |
|
1247 return marginTopToBaseline; |
|
1248 } |
|
1249 |
|
1250 MOZ_ASSERT(sideToMeasureFrom == eSideBottom, |
|
1251 "We already checked that we're dealing with a vertical axis, and " |
|
1252 "we're not using the top side, so that only leaves the bottom..."); |
|
1253 |
|
1254 // Measuring from bottom: The distance from the margin-box bottom edge to the |
|
1255 // baseline is just the margin-box cross size (i.e. outer cross size), minus |
|
1256 // the already-computed distance from margin-top to baseline. |
|
1257 return GetOuterCrossSize(aCrossAxis) - marginTopToBaseline; |
|
1258 } |
|
1259 |
|
1260 uint32_t |
|
1261 FlexItem::GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const |
|
1262 { |
|
1263 uint32_t numAutoMargins = 0; |
|
1264 const nsStyleSides& styleMargin = mFrame->StyleMargin()->mMargin; |
|
1265 for (uint32_t i = 0; i < eNumAxisEdges; i++) { |
|
1266 Side side = kAxisOrientationToSidesMap[aAxis][i]; |
|
1267 if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { |
|
1268 numAutoMargins++; |
|
1269 } |
|
1270 } |
|
1271 |
|
1272 // Mostly for clarity: |
|
1273 MOZ_ASSERT(numAutoMargins <= 2, |
|
1274 "We're just looking at one item along one dimension, so we " |
|
1275 "should only have examined 2 margins"); |
|
1276 |
|
1277 return numAutoMargins; |
|
1278 } |
|
1279 |
|
1280 // Keeps track of our position along a particular axis (where a '0' position |
|
1281 // corresponds to the 'start' edge of that axis). |
|
1282 // This class shouldn't be instantiated directly -- rather, it should only be |
|
1283 // instantiated via its subclasses defined below. |
|
1284 class MOZ_STACK_CLASS PositionTracker { |
|
1285 public: |
|
1286 // Accessor for the current value of the position that we're tracking. |
|
1287 inline nscoord GetPosition() const { return mPosition; } |
|
1288 inline AxisOrientationType GetAxis() const { return mAxis; } |
|
1289 |
|
1290 // Advances our position across the start edge of the given margin, in the |
|
1291 // axis we're tracking. |
|
1292 void EnterMargin(const nsMargin& aMargin) |
|
1293 { |
|
1294 Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_Start]; |
|
1295 mPosition += MarginComponentForSide(aMargin, side); |
|
1296 } |
|
1297 |
|
1298 // Advances our position across the end edge of the given margin, in the axis |
|
1299 // we're tracking. |
|
1300 void ExitMargin(const nsMargin& aMargin) |
|
1301 { |
|
1302 Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_End]; |
|
1303 mPosition += MarginComponentForSide(aMargin, side); |
|
1304 } |
|
1305 |
|
1306 // Advances our current position from the start side of a child frame's |
|
1307 // border-box to the frame's upper or left edge (depending on our axis). |
|
1308 // (Note that this is a no-op if our axis grows in positive direction.) |
|
1309 void EnterChildFrame(nscoord aChildFrameSize) |
|
1310 { |
|
1311 if (!AxisGrowsInPositiveDirection(mAxis)) |
|
1312 mPosition += aChildFrameSize; |
|
1313 } |
|
1314 |
|
1315 // Advances our current position from a frame's upper or left border-box edge |
|
1316 // (whichever is in the axis we're tracking) to the 'end' side of the frame |
|
1317 // in the axis that we're tracking. (Note that this is a no-op if our axis |
|
1318 // grows in the negative direction.) |
|
1319 void ExitChildFrame(nscoord aChildFrameSize) |
|
1320 { |
|
1321 if (AxisGrowsInPositiveDirection(mAxis)) |
|
1322 mPosition += aChildFrameSize; |
|
1323 } |
|
1324 |
|
1325 protected: |
|
1326 // Protected constructor, to be sure we're only instantiated via a subclass. |
|
1327 PositionTracker(AxisOrientationType aAxis) |
|
1328 : mPosition(0), |
|
1329 mAxis(aAxis) |
|
1330 {} |
|
1331 |
|
1332 private: |
|
1333 // Private copy-constructor, since we don't want any instances of our |
|
1334 // subclasses to be accidentally copied. |
|
1335 PositionTracker(const PositionTracker& aOther) |
|
1336 : mPosition(aOther.mPosition), |
|
1337 mAxis(aOther.mAxis) |
|
1338 {} |
|
1339 |
|
1340 protected: |
|
1341 // Member data: |
|
1342 nscoord mPosition; // The position we're tracking |
|
1343 const AxisOrientationType mAxis; // The axis along which we're moving |
|
1344 }; |
|
1345 |
|
1346 // Tracks our position in the main axis, when we're laying out flex items. |
|
1347 // The "0" position represents the main-start edge of the flex container's |
|
1348 // content-box. |
|
1349 class MOZ_STACK_CLASS MainAxisPositionTracker : public PositionTracker { |
|
1350 public: |
|
1351 MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker, |
|
1352 const FlexLine* aLine, |
|
1353 uint8_t aJustifyContent, |
|
1354 nscoord aContentBoxMainSize); |
|
1355 |
|
1356 ~MainAxisPositionTracker() { |
|
1357 MOZ_ASSERT(mNumPackingSpacesRemaining == 0, |
|
1358 "miscounted the number of packing spaces"); |
|
1359 MOZ_ASSERT(mNumAutoMarginsInMainAxis == 0, |
|
1360 "miscounted the number of auto margins"); |
|
1361 } |
|
1362 |
|
1363 // Advances past the packing space (if any) between two flex items |
|
1364 void TraversePackingSpace(); |
|
1365 |
|
1366 // If aItem has any 'auto' margins in the main axis, this method updates the |
|
1367 // corresponding values in its margin. |
|
1368 void ResolveAutoMarginsInMainAxis(FlexItem& aItem); |
|
1369 |
|
1370 private: |
|
1371 nscoord mPackingSpaceRemaining; |
|
1372 uint32_t mNumAutoMarginsInMainAxis; |
|
1373 uint32_t mNumPackingSpacesRemaining; |
|
1374 uint8_t mJustifyContent; |
|
1375 }; |
|
1376 |
|
1377 // Utility class for managing our position along the cross axis along |
|
1378 // the whole flex container (at a higher level than a single line). |
|
1379 // The "0" position represents the cross-start edge of the flex container's |
|
1380 // content-box. |
|
1381 class MOZ_STACK_CLASS CrossAxisPositionTracker : public PositionTracker { |
|
1382 public: |
|
1383 CrossAxisPositionTracker(FlexLine* aFirstLine, |
|
1384 uint8_t aAlignContent, |
|
1385 nscoord aContentBoxCrossSize, |
|
1386 bool aIsCrossSizeDefinite, |
|
1387 const FlexboxAxisTracker& aAxisTracker); |
|
1388 |
|
1389 // Advances past the packing space (if any) between two flex lines |
|
1390 void TraversePackingSpace(); |
|
1391 |
|
1392 // Advances past the given FlexLine |
|
1393 void TraverseLine(FlexLine& aLine) { mPosition += aLine.GetLineCrossSize(); } |
|
1394 |
|
1395 private: |
|
1396 // Redeclare the frame-related methods from PositionTracker as private with |
|
1397 // MOZ_DELETE, to be sure (at compile time) that no client code can invoke |
|
1398 // them. (Unlike the other PositionTracker derived classes, this class here |
|
1399 // deals with FlexLines, not with individual FlexItems or frames.) |
|
1400 void EnterMargin(const nsMargin& aMargin) MOZ_DELETE; |
|
1401 void ExitMargin(const nsMargin& aMargin) MOZ_DELETE; |
|
1402 void EnterChildFrame(nscoord aChildFrameSize) MOZ_DELETE; |
|
1403 void ExitChildFrame(nscoord aChildFrameSize) MOZ_DELETE; |
|
1404 |
|
1405 nscoord mPackingSpaceRemaining; |
|
1406 uint32_t mNumPackingSpacesRemaining; |
|
1407 uint8_t mAlignContent; |
|
1408 }; |
|
1409 |
|
1410 // Utility class for managing our position along the cross axis, *within* a |
|
1411 // single flex line. |
|
1412 class MOZ_STACK_CLASS SingleLineCrossAxisPositionTracker : public PositionTracker { |
|
1413 public: |
|
1414 SingleLineCrossAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker); |
|
1415 |
|
1416 void ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, |
|
1417 FlexItem& aItem); |
|
1418 |
|
1419 void EnterAlignPackingSpace(const FlexLine& aLine, |
|
1420 const FlexItem& aItem, |
|
1421 const FlexboxAxisTracker& aAxisTracker); |
|
1422 |
|
1423 // Resets our position to the cross-start edge of this line. |
|
1424 inline void ResetPosition() { mPosition = 0; } |
|
1425 }; |
|
1426 |
|
1427 //---------------------------------------------------------------------- |
|
1428 |
|
1429 // Frame class boilerplate |
|
1430 // ======================= |
|
1431 |
|
1432 NS_QUERYFRAME_HEAD(nsFlexContainerFrame) |
|
1433 NS_QUERYFRAME_ENTRY(nsFlexContainerFrame) |
|
1434 NS_QUERYFRAME_TAIL_INHERITING(nsFlexContainerFrameSuper) |
|
1435 |
|
1436 NS_IMPL_FRAMEARENA_HELPERS(nsFlexContainerFrame) |
|
1437 |
|
1438 nsIFrame* |
|
1439 NS_NewFlexContainerFrame(nsIPresShell* aPresShell, |
|
1440 nsStyleContext* aContext) |
|
1441 { |
|
1442 return new (aPresShell) nsFlexContainerFrame(aContext); |
|
1443 } |
|
1444 |
|
1445 //---------------------------------------------------------------------- |
|
1446 |
|
1447 // nsFlexContainerFrame Method Implementations |
|
1448 // =========================================== |
|
1449 |
|
1450 /* virtual */ |
|
1451 nsFlexContainerFrame::~nsFlexContainerFrame() |
|
1452 { |
|
1453 } |
|
1454 |
|
1455 template<bool IsLessThanOrEqual(nsIFrame*, nsIFrame*)> |
|
1456 /* static */ bool |
|
1457 nsFlexContainerFrame::SortChildrenIfNeeded() |
|
1458 { |
|
1459 if (nsIFrame::IsFrameListSorted<IsLessThanOrEqual>(mFrames)) { |
|
1460 return false; |
|
1461 } |
|
1462 |
|
1463 nsIFrame::SortFrameList<IsLessThanOrEqual>(mFrames); |
|
1464 return true; |
|
1465 } |
|
1466 |
|
1467 /* virtual */ |
|
1468 nsIAtom* |
|
1469 nsFlexContainerFrame::GetType() const |
|
1470 { |
|
1471 return nsGkAtoms::flexContainerFrame; |
|
1472 } |
|
1473 |
|
1474 #ifdef DEBUG_FRAME_DUMP |
|
1475 nsresult |
|
1476 nsFlexContainerFrame::GetFrameName(nsAString& aResult) const |
|
1477 { |
|
1478 return MakeFrameName(NS_LITERAL_STRING("FlexContainer"), aResult); |
|
1479 } |
|
1480 #endif |
|
1481 |
|
1482 // Helper for BuildDisplayList, to implement this special-case for flex items |
|
1483 // from the spec: |
|
1484 // Flex items paint exactly the same as block-level elements in the |
|
1485 // normal flow, except that 'z-index' values other than 'auto' create |
|
1486 // a stacking context even if 'position' is 'static'. |
|
1487 // http://www.w3.org/TR/2012/CR-css3-flexbox-20120918/#painting |
|
1488 uint32_t |
|
1489 GetDisplayFlagsForFlexItem(nsIFrame* aFrame) |
|
1490 { |
|
1491 MOZ_ASSERT(aFrame->IsFlexItem(), "Should only be called on flex items"); |
|
1492 |
|
1493 const nsStylePosition* pos = aFrame->StylePosition(); |
|
1494 if (pos->mZIndex.GetUnit() == eStyleUnit_Integer) { |
|
1495 return nsIFrame::DISPLAY_CHILD_FORCE_STACKING_CONTEXT; |
|
1496 } |
|
1497 return nsIFrame::DISPLAY_CHILD_FORCE_PSEUDO_STACKING_CONTEXT; |
|
1498 } |
|
1499 |
|
1500 void |
|
1501 nsFlexContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder, |
|
1502 const nsRect& aDirtyRect, |
|
1503 const nsDisplayListSet& aLists) |
|
1504 { |
|
1505 NS_ASSERTION( |
|
1506 nsIFrame::IsFrameListSorted<IsOrderLEQWithDOMFallback>(mFrames), |
|
1507 "Child frames aren't sorted correctly"); |
|
1508 |
|
1509 DisplayBorderBackgroundOutline(aBuilder, aLists); |
|
1510 |
|
1511 // Our children are all block-level, so their borders/backgrounds all go on |
|
1512 // the BlockBorderBackgrounds list. |
|
1513 nsDisplayListSet childLists(aLists, aLists.BlockBorderBackgrounds()); |
|
1514 for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { |
|
1515 BuildDisplayListForChild(aBuilder, e.get(), aDirtyRect, childLists, |
|
1516 GetDisplayFlagsForFlexItem(e.get())); |
|
1517 } |
|
1518 } |
|
1519 |
|
1520 #ifdef DEBUG |
|
1521 // helper for the debugging method below |
|
1522 bool |
|
1523 FrameWantsToBeInAnonymousFlexItem(nsIFrame* aFrame) |
|
1524 { |
|
1525 // Note: This needs to match the logic in |
|
1526 // nsCSSFrameConstructor::FrameConstructionItem::NeedsAnonFlexItem() |
|
1527 return (aFrame->IsFrameOfType(nsIFrame::eLineParticipant) || |
|
1528 nsGkAtoms::placeholderFrame == aFrame->GetType()); |
|
1529 } |
|
1530 |
|
1531 // Debugging method, to let us assert that our anonymous flex items are |
|
1532 // set up correctly -- in particular, we assert: |
|
1533 // (1) we don't have any inline non-replaced children |
|
1534 // (2) we don't have any consecutive anonymous flex items |
|
1535 // (3) we don't have any empty anonymous flex items |
|
1536 // |
|
1537 // XXXdholbert This matches what nsCSSFrameConstructor currently does, and what |
|
1538 // the spec used to say. However, the spec has now changed regarding what |
|
1539 // types of content get wrapped in an anonymous flexbox item. The patch that |
|
1540 // implements those changes (in nsCSSFrameConstructor) will need to change |
|
1541 // this method as well. |
|
1542 void |
|
1543 nsFlexContainerFrame::SanityCheckAnonymousFlexItems() const |
|
1544 { |
|
1545 bool prevChildWasAnonFlexItem = false; |
|
1546 for (nsIFrame* child = mFrames.FirstChild(); child; |
|
1547 child = child->GetNextSibling()) { |
|
1548 MOZ_ASSERT(!FrameWantsToBeInAnonymousFlexItem(child), |
|
1549 "frame wants to be inside an anonymous flex item, " |
|
1550 "but it isn't"); |
|
1551 if (child->StyleContext()->GetPseudo() == |
|
1552 nsCSSAnonBoxes::anonymousFlexItem) { |
|
1553 MOZ_ASSERT(!prevChildWasAnonFlexItem || |
|
1554 HasAnyStateBits(NS_STATE_FLEX_CHILDREN_REORDERED), |
|
1555 "two anon flex items in a row (shouldn't happen, unless our " |
|
1556 "children have been reordered with the 'order' property)"); |
|
1557 |
|
1558 nsIFrame* firstWrappedChild = child->GetFirstPrincipalChild(); |
|
1559 MOZ_ASSERT(firstWrappedChild, |
|
1560 "anonymous flex item is empty (shouldn't happen)"); |
|
1561 prevChildWasAnonFlexItem = true; |
|
1562 } else { |
|
1563 prevChildWasAnonFlexItem = false; |
|
1564 } |
|
1565 } |
|
1566 } |
|
1567 #endif // DEBUG |
|
1568 |
|
1569 // Based on the sign of aTotalViolation, this function freezes a subset of our |
|
1570 // flexible sizes, and restores the remaining ones to their initial pref sizes. |
|
1571 void |
|
1572 FlexLine::FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation, |
|
1573 bool aIsFinalIteration) |
|
1574 { |
|
1575 enum FreezeType { |
|
1576 eFreezeEverything, |
|
1577 eFreezeMinViolations, |
|
1578 eFreezeMaxViolations |
|
1579 }; |
|
1580 |
|
1581 FreezeType freezeType; |
|
1582 if (aTotalViolation == 0) { |
|
1583 freezeType = eFreezeEverything; |
|
1584 } else if (aTotalViolation > 0) { |
|
1585 freezeType = eFreezeMinViolations; |
|
1586 } else { // aTotalViolation < 0 |
|
1587 freezeType = eFreezeMaxViolations; |
|
1588 } |
|
1589 |
|
1590 for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { |
|
1591 MOZ_ASSERT(!item->HadMinViolation() || !item->HadMaxViolation(), |
|
1592 "Can have either min or max violation, but not both"); |
|
1593 |
|
1594 if (!item->IsFrozen()) { |
|
1595 if (eFreezeEverything == freezeType || |
|
1596 (eFreezeMinViolations == freezeType && item->HadMinViolation()) || |
|
1597 (eFreezeMaxViolations == freezeType && item->HadMaxViolation())) { |
|
1598 |
|
1599 MOZ_ASSERT(item->GetMainSize() >= item->GetMainMinSize(), |
|
1600 "Freezing item at a size below its minimum"); |
|
1601 MOZ_ASSERT(item->GetMainSize() <= item->GetMainMaxSize(), |
|
1602 "Freezing item at a size above its maximum"); |
|
1603 |
|
1604 item->Freeze(); |
|
1605 } else if (MOZ_UNLIKELY(aIsFinalIteration)) { |
|
1606 // XXXdholbert If & when bug 765861 is fixed, we should upgrade this |
|
1607 // assertion to be fatal except in documents with enormous lengths. |
|
1608 NS_ERROR("Final iteration still has unfrozen items, this shouldn't" |
|
1609 " happen unless there was nscoord under/overflow."); |
|
1610 item->Freeze(); |
|
1611 } // else, we'll reset this item's main size to its flex base size on the |
|
1612 // next iteration of this algorithm. |
|
1613 |
|
1614 // Clear this item's violation(s), now that we've dealt with them |
|
1615 item->ClearViolationFlags(); |
|
1616 } |
|
1617 } |
|
1618 } |
|
1619 |
|
1620 void |
|
1621 FlexLine::ResolveFlexibleLengths(nscoord aFlexContainerMainSize) |
|
1622 { |
|
1623 PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, ("ResolveFlexibleLengths\n")); |
|
1624 if (IsEmpty()) { |
|
1625 return; |
|
1626 } |
|
1627 |
|
1628 // Subtract space occupied by our items' margins/borders/padding, so we can |
|
1629 // just be dealing with the space available for our flex items' content |
|
1630 // boxes. |
|
1631 nscoord spaceReservedForMarginBorderPadding = |
|
1632 mTotalOuterHypotheticalMainSize - mTotalInnerHypotheticalMainSize; |
|
1633 |
|
1634 nscoord spaceAvailableForFlexItemsContentBoxes = |
|
1635 aFlexContainerMainSize - spaceReservedForMarginBorderPadding; |
|
1636 |
|
1637 // Determine whether we're going to be growing or shrinking items. |
|
1638 const bool isUsingFlexGrow = |
|
1639 (mTotalOuterHypotheticalMainSize < aFlexContainerMainSize); |
|
1640 |
|
1641 // NOTE: I claim that this chunk of the algorithm (the looping part) needs to |
|
1642 // run the loop at MOST mNumItems times. This claim should hold up |
|
1643 // because we'll freeze at least one item on each loop iteration, and once |
|
1644 // we've run out of items to freeze, there's nothing left to do. However, |
|
1645 // in most cases, we'll break out of this loop long before we hit that many |
|
1646 // iterations. |
|
1647 for (uint32_t iterationCounter = 0; |
|
1648 iterationCounter < mNumItems; iterationCounter++) { |
|
1649 // Set every not-yet-frozen item's used main size to its |
|
1650 // flex base size, and subtract all the used main sizes from our |
|
1651 // total amount of space to determine the 'available free space' |
|
1652 // (positive or negative) to be distributed among our flexible items. |
|
1653 nscoord availableFreeSpace = spaceAvailableForFlexItemsContentBoxes; |
|
1654 for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { |
|
1655 if (!item->IsFrozen()) { |
|
1656 item->SetMainSize(item->GetFlexBaseSize()); |
|
1657 } |
|
1658 availableFreeSpace -= item->GetMainSize(); |
|
1659 } |
|
1660 |
|
1661 PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, |
|
1662 (" available free space = %d\n", availableFreeSpace)); |
|
1663 |
|
1664 // If sign of free space matches the type of flexing that we're doing, give |
|
1665 // each flexible item a portion of availableFreeSpace. |
|
1666 if ((availableFreeSpace > 0 && isUsingFlexGrow) || |
|
1667 (availableFreeSpace < 0 && !isUsingFlexGrow)) { |
|
1668 |
|
1669 // STRATEGY: On each item, we compute & store its "share" of the total |
|
1670 // flex weight that we've seen so far: |
|
1671 // curFlexWeight / runningFlexWeightSum |
|
1672 // |
|
1673 // Then, when we go to actually distribute the space (in the next loop), |
|
1674 // we can simply walk backwards through the elements and give each item |
|
1675 // its "share" multiplied by the remaining available space. |
|
1676 // |
|
1677 // SPECIAL CASE: If the sum of the flex weights is larger than the |
|
1678 // maximum representable float (overflowing to infinity), then we can't |
|
1679 // sensibly divide out proportional shares anymore. In that case, we |
|
1680 // simply treat the flex item(s) with the largest flex weights as if |
|
1681 // their weights were infinite (dwarfing all the others), and we |
|
1682 // distribute all of the available space among them. |
|
1683 float runningFlexWeightSum = 0.0f; |
|
1684 float largestFlexWeight = 0.0f; |
|
1685 uint32_t numItemsWithLargestFlexWeight = 0; |
|
1686 for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { |
|
1687 float curFlexWeight = item->GetFlexWeightToUse(isUsingFlexGrow); |
|
1688 MOZ_ASSERT(curFlexWeight >= 0.0f, "weights are non-negative"); |
|
1689 |
|
1690 runningFlexWeightSum += curFlexWeight; |
|
1691 if (NS_finite(runningFlexWeightSum)) { |
|
1692 if (curFlexWeight == 0.0f) { |
|
1693 item->SetShareOfFlexWeightSoFar(0.0f); |
|
1694 } else { |
|
1695 item->SetShareOfFlexWeightSoFar(curFlexWeight / |
|
1696 runningFlexWeightSum); |
|
1697 } |
|
1698 } // else, the sum of weights overflows to infinity, in which |
|
1699 // case we don't bother with "SetShareOfFlexWeightSoFar" since |
|
1700 // we know we won't use it. (instead, we'll just give every |
|
1701 // item with the largest flex weight an equal share of space.) |
|
1702 |
|
1703 // Update our largest-flex-weight tracking vars |
|
1704 if (curFlexWeight > largestFlexWeight) { |
|
1705 largestFlexWeight = curFlexWeight; |
|
1706 numItemsWithLargestFlexWeight = 1; |
|
1707 } else if (curFlexWeight == largestFlexWeight) { |
|
1708 numItemsWithLargestFlexWeight++; |
|
1709 } |
|
1710 } |
|
1711 |
|
1712 if (runningFlexWeightSum != 0.0f) { // no distribution if no flexibility |
|
1713 PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, |
|
1714 (" Distributing available space:")); |
|
1715 // NOTE: It's important that we traverse our items in *reverse* order |
|
1716 // here, for correct width distribution according to the items' |
|
1717 // "ShareOfFlexWeightSoFar" progressively-calculated values. |
|
1718 for (FlexItem* item = mItems.getLast(); item; |
|
1719 item = item->getPrevious()) { |
|
1720 |
|
1721 if (!item->IsFrozen()) { |
|
1722 // To avoid rounding issues, we compute the change in size for this |
|
1723 // item, and then subtract it from the remaining available space. |
|
1724 nscoord sizeDelta = 0; |
|
1725 if (NS_finite(runningFlexWeightSum)) { |
|
1726 float myShareOfRemainingSpace = |
|
1727 item->GetShareOfFlexWeightSoFar(); |
|
1728 |
|
1729 MOZ_ASSERT(myShareOfRemainingSpace >= 0.0f && |
|
1730 myShareOfRemainingSpace <= 1.0f, |
|
1731 "my share should be nonnegative fractional amount"); |
|
1732 |
|
1733 if (myShareOfRemainingSpace == 1.0f) { |
|
1734 // (We special-case 1.0f to avoid float error from converting |
|
1735 // availableFreeSpace from integer*1.0f --> float --> integer) |
|
1736 sizeDelta = availableFreeSpace; |
|
1737 } else if (myShareOfRemainingSpace > 0.0f) { |
|
1738 sizeDelta = NSToCoordRound(availableFreeSpace * |
|
1739 myShareOfRemainingSpace); |
|
1740 } |
|
1741 } else if (item->GetFlexWeightToUse(isUsingFlexGrow) == |
|
1742 largestFlexWeight) { |
|
1743 // Total flexibility is infinite, so we're just distributing |
|
1744 // the available space equally among the items that are tied for |
|
1745 // having the largest weight (and this is one of those items). |
|
1746 sizeDelta = |
|
1747 NSToCoordRound(availableFreeSpace / |
|
1748 float(numItemsWithLargestFlexWeight)); |
|
1749 numItemsWithLargestFlexWeight--; |
|
1750 } |
|
1751 |
|
1752 availableFreeSpace -= sizeDelta; |
|
1753 |
|
1754 item->SetMainSize(item->GetMainSize() + sizeDelta); |
|
1755 PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, |
|
1756 (" child %p receives %d, for a total of %d\n", |
|
1757 item, sizeDelta, item->GetMainSize())); |
|
1758 } |
|
1759 } |
|
1760 } |
|
1761 } |
|
1762 |
|
1763 // Fix min/max violations: |
|
1764 nscoord totalViolation = 0; // keeps track of adjustments for min/max |
|
1765 PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, |
|
1766 (" Checking for violations:")); |
|
1767 |
|
1768 for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { |
|
1769 if (!item->IsFrozen()) { |
|
1770 if (item->GetMainSize() < item->GetMainMinSize()) { |
|
1771 // min violation |
|
1772 totalViolation += item->GetMainMinSize() - item->GetMainSize(); |
|
1773 item->SetMainSize(item->GetMainMinSize()); |
|
1774 item->SetHadMinViolation(); |
|
1775 } else if (item->GetMainSize() > item->GetMainMaxSize()) { |
|
1776 // max violation |
|
1777 totalViolation += item->GetMainMaxSize() - item->GetMainSize(); |
|
1778 item->SetMainSize(item->GetMainMaxSize()); |
|
1779 item->SetHadMaxViolation(); |
|
1780 } |
|
1781 } |
|
1782 } |
|
1783 |
|
1784 FreezeOrRestoreEachFlexibleSize(totalViolation, |
|
1785 iterationCounter + 1 == mNumItems); |
|
1786 |
|
1787 PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, |
|
1788 (" Total violation: %d\n", totalViolation)); |
|
1789 |
|
1790 if (totalViolation == 0) { |
|
1791 break; |
|
1792 } |
|
1793 } |
|
1794 |
|
1795 // Post-condition: all lengths should've been frozen. |
|
1796 #ifdef DEBUG |
|
1797 for (const FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { |
|
1798 MOZ_ASSERT(item->IsFrozen(), |
|
1799 "All flexible lengths should've been resolved"); |
|
1800 } |
|
1801 #endif // DEBUG |
|
1802 } |
|
1803 |
|
1804 MainAxisPositionTracker:: |
|
1805 MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker, |
|
1806 const FlexLine* aLine, |
|
1807 uint8_t aJustifyContent, |
|
1808 nscoord aContentBoxMainSize) |
|
1809 : PositionTracker(aAxisTracker.GetMainAxis()), |
|
1810 mPackingSpaceRemaining(aContentBoxMainSize), // we chip away at this below |
|
1811 mNumAutoMarginsInMainAxis(0), |
|
1812 mNumPackingSpacesRemaining(0), |
|
1813 mJustifyContent(aJustifyContent) |
|
1814 { |
|
1815 // mPackingSpaceRemaining is initialized to the container's main size. Now |
|
1816 // we'll subtract out the main sizes of our flex items, so that it ends up |
|
1817 // with the *actual* amount of packing space. |
|
1818 for (const FlexItem* item = aLine->GetFirstItem(); item; |
|
1819 item = item->getNext()) { |
|
1820 mPackingSpaceRemaining -= item->GetOuterMainSize(mAxis); |
|
1821 mNumAutoMarginsInMainAxis += item->GetNumAutoMarginsInAxis(mAxis); |
|
1822 } |
|
1823 |
|
1824 if (mPackingSpaceRemaining <= 0) { |
|
1825 // No available packing space to use for resolving auto margins. |
|
1826 mNumAutoMarginsInMainAxis = 0; |
|
1827 } |
|
1828 |
|
1829 // If packing space is negative, 'space-between' behaves like 'flex-start', |
|
1830 // and 'space-around' behaves like 'center'. In those cases, it's simplest to |
|
1831 // just pretend we have a different 'justify-content' value and share code. |
|
1832 if (mPackingSpaceRemaining < 0) { |
|
1833 if (mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN) { |
|
1834 mJustifyContent = NS_STYLE_JUSTIFY_CONTENT_FLEX_START; |
|
1835 } else if (mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND) { |
|
1836 mJustifyContent = NS_STYLE_JUSTIFY_CONTENT_CENTER; |
|
1837 } |
|
1838 } |
|
1839 |
|
1840 // If our main axis is (internally) reversed, swap the justify-content |
|
1841 // "flex-start" and "flex-end" behaviors: |
|
1842 if (aAxisTracker.AreAxesInternallyReversed()) { |
|
1843 if (mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_FLEX_START) { |
|
1844 mJustifyContent = NS_STYLE_JUSTIFY_CONTENT_FLEX_END; |
|
1845 } else if (mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_FLEX_END) { |
|
1846 mJustifyContent = NS_STYLE_JUSTIFY_CONTENT_FLEX_START; |
|
1847 } |
|
1848 } |
|
1849 |
|
1850 // Figure out how much space we'll set aside for auto margins or |
|
1851 // packing spaces, and advance past any leading packing-space. |
|
1852 if (mNumAutoMarginsInMainAxis == 0 && |
|
1853 mPackingSpaceRemaining != 0 && |
|
1854 !aLine->IsEmpty()) { |
|
1855 switch (mJustifyContent) { |
|
1856 case NS_STYLE_JUSTIFY_CONTENT_FLEX_START: |
|
1857 // All packing space should go at the end --> nothing to do here. |
|
1858 break; |
|
1859 case NS_STYLE_JUSTIFY_CONTENT_FLEX_END: |
|
1860 // All packing space goes at the beginning |
|
1861 mPosition += mPackingSpaceRemaining; |
|
1862 break; |
|
1863 case NS_STYLE_JUSTIFY_CONTENT_CENTER: |
|
1864 // Half the packing space goes at the beginning |
|
1865 mPosition += mPackingSpaceRemaining / 2; |
|
1866 break; |
|
1867 case NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN: |
|
1868 MOZ_ASSERT(mPackingSpaceRemaining >= 0, |
|
1869 "negative packing space should make us use 'flex-start' " |
|
1870 "instead of 'space-between'"); |
|
1871 // 1 packing space between each flex item, no packing space at ends. |
|
1872 mNumPackingSpacesRemaining = aLine->NumItems() - 1; |
|
1873 break; |
|
1874 case NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND: |
|
1875 MOZ_ASSERT(mPackingSpaceRemaining >= 0, |
|
1876 "negative packing space should make us use 'center' " |
|
1877 "instead of 'space-around'"); |
|
1878 // 1 packing space between each flex item, plus half a packing space |
|
1879 // at beginning & end. So our number of full packing-spaces is equal |
|
1880 // to the number of flex items. |
|
1881 mNumPackingSpacesRemaining = aLine->NumItems(); |
|
1882 if (mNumPackingSpacesRemaining > 0) { |
|
1883 // The edges (start/end) share one full packing space |
|
1884 nscoord totalEdgePackingSpace = |
|
1885 mPackingSpaceRemaining / mNumPackingSpacesRemaining; |
|
1886 |
|
1887 // ...and we'll use half of that right now, at the start |
|
1888 mPosition += totalEdgePackingSpace / 2; |
|
1889 // ...but we need to subtract all of it right away, so that we won't |
|
1890 // hand out any of it to intermediate packing spaces. |
|
1891 mPackingSpaceRemaining -= totalEdgePackingSpace; |
|
1892 mNumPackingSpacesRemaining--; |
|
1893 } |
|
1894 break; |
|
1895 default: |
|
1896 MOZ_CRASH("Unexpected justify-content value"); |
|
1897 } |
|
1898 } |
|
1899 |
|
1900 MOZ_ASSERT(mNumPackingSpacesRemaining == 0 || |
|
1901 mNumAutoMarginsInMainAxis == 0, |
|
1902 "extra space should either go to packing space or to " |
|
1903 "auto margins, but not to both"); |
|
1904 } |
|
1905 |
|
1906 void |
|
1907 MainAxisPositionTracker::ResolveAutoMarginsInMainAxis(FlexItem& aItem) |
|
1908 { |
|
1909 if (mNumAutoMarginsInMainAxis) { |
|
1910 const nsStyleSides& styleMargin = aItem.Frame()->StyleMargin()->mMargin; |
|
1911 for (uint32_t i = 0; i < eNumAxisEdges; i++) { |
|
1912 Side side = kAxisOrientationToSidesMap[mAxis][i]; |
|
1913 if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { |
|
1914 // NOTE: This integer math will skew the distribution of remainder |
|
1915 // app-units towards the end, which is fine. |
|
1916 nscoord curAutoMarginSize = |
|
1917 mPackingSpaceRemaining / mNumAutoMarginsInMainAxis; |
|
1918 |
|
1919 MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0, |
|
1920 "Expecting auto margins to have value '0' before we " |
|
1921 "resolve them"); |
|
1922 aItem.SetMarginComponentForSide(side, curAutoMarginSize); |
|
1923 |
|
1924 mNumAutoMarginsInMainAxis--; |
|
1925 mPackingSpaceRemaining -= curAutoMarginSize; |
|
1926 } |
|
1927 } |
|
1928 } |
|
1929 } |
|
1930 |
|
1931 void |
|
1932 MainAxisPositionTracker::TraversePackingSpace() |
|
1933 { |
|
1934 if (mNumPackingSpacesRemaining) { |
|
1935 MOZ_ASSERT(mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN || |
|
1936 mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND, |
|
1937 "mNumPackingSpacesRemaining only applies for " |
|
1938 "space-between/space-around"); |
|
1939 |
|
1940 MOZ_ASSERT(mPackingSpaceRemaining >= 0, |
|
1941 "ran out of packing space earlier than we expected"); |
|
1942 |
|
1943 // NOTE: This integer math will skew the distribution of remainder |
|
1944 // app-units towards the end, which is fine. |
|
1945 nscoord curPackingSpace = |
|
1946 mPackingSpaceRemaining / mNumPackingSpacesRemaining; |
|
1947 |
|
1948 mPosition += curPackingSpace; |
|
1949 mNumPackingSpacesRemaining--; |
|
1950 mPackingSpaceRemaining -= curPackingSpace; |
|
1951 } |
|
1952 } |
|
1953 |
|
1954 CrossAxisPositionTracker:: |
|
1955 CrossAxisPositionTracker(FlexLine* aFirstLine, |
|
1956 uint8_t aAlignContent, |
|
1957 nscoord aContentBoxCrossSize, |
|
1958 bool aIsCrossSizeDefinite, |
|
1959 const FlexboxAxisTracker& aAxisTracker) |
|
1960 : PositionTracker(aAxisTracker.GetCrossAxis()), |
|
1961 mPackingSpaceRemaining(0), |
|
1962 mNumPackingSpacesRemaining(0), |
|
1963 mAlignContent(aAlignContent) |
|
1964 { |
|
1965 MOZ_ASSERT(aFirstLine, "null first line pointer"); |
|
1966 |
|
1967 if (aIsCrossSizeDefinite && !aFirstLine->getNext()) { |
|
1968 // "If the flex container has only a single line (even if it's a |
|
1969 // multi-line flex container) and has a definite cross size, the cross |
|
1970 // size of the flex line is the flex container's inner cross size." |
|
1971 // SOURCE: http://dev.w3.org/csswg/css-flexbox/#algo-line-break |
|
1972 // NOTE: This means (by definition) that there's no packing space, which |
|
1973 // means we don't need to be concerned with "align-conent" at all and we |
|
1974 // can return early. This is handy, because this is the usual case (for |
|
1975 // single-line flexbox). |
|
1976 aFirstLine->SetLineCrossSize(aContentBoxCrossSize); |
|
1977 return; |
|
1978 } |
|
1979 |
|
1980 // NOTE: The rest of this function should essentially match |
|
1981 // MainAxisPositionTracker's constructor, though with FlexLines instead of |
|
1982 // FlexItems, and with the additional value "stretch" (and of course with |
|
1983 // cross sizes instead of main sizes.) |
|
1984 |
|
1985 // Figure out how much packing space we have (container's cross size minus |
|
1986 // all the lines' cross sizes). Also, share this loop to count how many |
|
1987 // lines we have. (We need that count in some cases below.) |
|
1988 mPackingSpaceRemaining = aContentBoxCrossSize; |
|
1989 uint32_t numLines = 0; |
|
1990 for (FlexLine* line = aFirstLine; line; line = line->getNext()) { |
|
1991 mPackingSpaceRemaining -= line->GetLineCrossSize(); |
|
1992 numLines++; |
|
1993 } |
|
1994 |
|
1995 // If packing space is negative, 'space-between' and 'stretch' behave like |
|
1996 // 'flex-start', and 'space-around' behaves like 'center'. In those cases, |
|
1997 // it's simplest to just pretend we have a different 'align-content' value |
|
1998 // and share code. |
|
1999 if (mPackingSpaceRemaining < 0) { |
|
2000 if (mAlignContent == NS_STYLE_ALIGN_CONTENT_SPACE_BETWEEN || |
|
2001 mAlignContent == NS_STYLE_ALIGN_CONTENT_STRETCH) { |
|
2002 mAlignContent = NS_STYLE_ALIGN_CONTENT_FLEX_START; |
|
2003 } else if (mAlignContent == NS_STYLE_ALIGN_CONTENT_SPACE_AROUND) { |
|
2004 mAlignContent = NS_STYLE_ALIGN_CONTENT_CENTER; |
|
2005 } |
|
2006 } |
|
2007 |
|
2008 // If our cross axis is (internally) reversed, swap the align-content |
|
2009 // "flex-start" and "flex-end" behaviors: |
|
2010 if (aAxisTracker.AreAxesInternallyReversed()) { |
|
2011 if (mAlignContent == NS_STYLE_ALIGN_CONTENT_FLEX_START) { |
|
2012 mAlignContent = NS_STYLE_ALIGN_CONTENT_FLEX_END; |
|
2013 } else if (mAlignContent == NS_STYLE_ALIGN_CONTENT_FLEX_END) { |
|
2014 mAlignContent = NS_STYLE_ALIGN_CONTENT_FLEX_START; |
|
2015 } |
|
2016 } |
|
2017 |
|
2018 // Figure out how much space we'll set aside for packing spaces, and advance |
|
2019 // past any leading packing-space. |
|
2020 if (mPackingSpaceRemaining != 0) { |
|
2021 switch (mAlignContent) { |
|
2022 case NS_STYLE_ALIGN_CONTENT_FLEX_START: |
|
2023 // All packing space should go at the end --> nothing to do here. |
|
2024 break; |
|
2025 case NS_STYLE_ALIGN_CONTENT_FLEX_END: |
|
2026 // All packing space goes at the beginning |
|
2027 mPosition += mPackingSpaceRemaining; |
|
2028 break; |
|
2029 case NS_STYLE_ALIGN_CONTENT_CENTER: |
|
2030 // Half the packing space goes at the beginning |
|
2031 mPosition += mPackingSpaceRemaining / 2; |
|
2032 break; |
|
2033 case NS_STYLE_ALIGN_CONTENT_SPACE_BETWEEN: |
|
2034 MOZ_ASSERT(mPackingSpaceRemaining >= 0, |
|
2035 "negative packing space should make us use 'flex-start' " |
|
2036 "instead of 'space-between'"); |
|
2037 // 1 packing space between each flex line, no packing space at ends. |
|
2038 mNumPackingSpacesRemaining = numLines - 1; |
|
2039 break; |
|
2040 case NS_STYLE_ALIGN_CONTENT_SPACE_AROUND: { |
|
2041 MOZ_ASSERT(mPackingSpaceRemaining >= 0, |
|
2042 "negative packing space should make us use 'center' " |
|
2043 "instead of 'space-around'"); |
|
2044 // 1 packing space between each flex line, plus half a packing space |
|
2045 // at beginning & end. So our number of full packing-spaces is equal |
|
2046 // to the number of flex lines. |
|
2047 mNumPackingSpacesRemaining = numLines; |
|
2048 // The edges (start/end) share one full packing space |
|
2049 nscoord totalEdgePackingSpace = |
|
2050 mPackingSpaceRemaining / mNumPackingSpacesRemaining; |
|
2051 |
|
2052 // ...and we'll use half of that right now, at the start |
|
2053 mPosition += totalEdgePackingSpace / 2; |
|
2054 // ...but we need to subtract all of it right away, so that we won't |
|
2055 // hand out any of it to intermediate packing spaces. |
|
2056 mPackingSpaceRemaining -= totalEdgePackingSpace; |
|
2057 mNumPackingSpacesRemaining--; |
|
2058 break; |
|
2059 } |
|
2060 case NS_STYLE_ALIGN_CONTENT_STRETCH: { |
|
2061 // Split space equally between the lines: |
|
2062 MOZ_ASSERT(mPackingSpaceRemaining > 0, |
|
2063 "negative packing space should make us use 'flex-start' " |
|
2064 "instead of 'stretch' (and we shouldn't bother with this " |
|
2065 "code if we have 0 packing space)"); |
|
2066 |
|
2067 uint32_t numLinesLeft = numLines; |
|
2068 for (FlexLine* line = aFirstLine; line; line = line->getNext()) { |
|
2069 // Our share is the amount of space remaining, divided by the number |
|
2070 // of lines remainig. |
|
2071 MOZ_ASSERT(numLinesLeft > 0, "miscalculated num lines"); |
|
2072 nscoord shareOfExtraSpace = mPackingSpaceRemaining / numLinesLeft; |
|
2073 nscoord newSize = line->GetLineCrossSize() + shareOfExtraSpace; |
|
2074 line->SetLineCrossSize(newSize); |
|
2075 |
|
2076 mPackingSpaceRemaining -= shareOfExtraSpace; |
|
2077 numLinesLeft--; |
|
2078 } |
|
2079 MOZ_ASSERT(numLinesLeft == 0, "miscalculated num lines"); |
|
2080 break; |
|
2081 } |
|
2082 default: |
|
2083 MOZ_CRASH("Unexpected align-content value"); |
|
2084 } |
|
2085 } |
|
2086 } |
|
2087 |
|
2088 void |
|
2089 CrossAxisPositionTracker::TraversePackingSpace() |
|
2090 { |
|
2091 if (mNumPackingSpacesRemaining) { |
|
2092 MOZ_ASSERT(mAlignContent == NS_STYLE_ALIGN_CONTENT_SPACE_BETWEEN || |
|
2093 mAlignContent == NS_STYLE_ALIGN_CONTENT_SPACE_AROUND, |
|
2094 "mNumPackingSpacesRemaining only applies for " |
|
2095 "space-between/space-around"); |
|
2096 |
|
2097 MOZ_ASSERT(mPackingSpaceRemaining >= 0, |
|
2098 "ran out of packing space earlier than we expected"); |
|
2099 |
|
2100 // NOTE: This integer math will skew the distribution of remainder |
|
2101 // app-units towards the end, which is fine. |
|
2102 nscoord curPackingSpace = |
|
2103 mPackingSpaceRemaining / mNumPackingSpacesRemaining; |
|
2104 |
|
2105 mPosition += curPackingSpace; |
|
2106 mNumPackingSpacesRemaining--; |
|
2107 mPackingSpaceRemaining -= curPackingSpace; |
|
2108 } |
|
2109 } |
|
2110 |
|
2111 SingleLineCrossAxisPositionTracker:: |
|
2112 SingleLineCrossAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker) |
|
2113 : PositionTracker(aAxisTracker.GetCrossAxis()) |
|
2114 { |
|
2115 } |
|
2116 |
|
2117 void |
|
2118 FlexLine::ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker) |
|
2119 { |
|
2120 nscoord crossStartToFurthestBaseline = nscoord_MIN; |
|
2121 nscoord crossEndToFurthestBaseline = nscoord_MIN; |
|
2122 nscoord largestOuterCrossSize = 0; |
|
2123 for (const FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { |
|
2124 nscoord curOuterCrossSize = |
|
2125 item->GetOuterCrossSize(aAxisTracker.GetCrossAxis()); |
|
2126 |
|
2127 if (item->GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_BASELINE && |
|
2128 item->GetNumAutoMarginsInAxis(aAxisTracker.GetCrossAxis()) == 0) { |
|
2129 // FIXME: Once we support "writing-mode", we'll have to do baseline |
|
2130 // alignment in vertical flex containers here (w/ horizontal cross-axes). |
|
2131 |
|
2132 // Find distance from our item's cross-start and cross-end margin-box |
|
2133 // edges to its baseline. |
|
2134 // |
|
2135 // Here's a diagram of a flex-item that we might be doing this on. |
|
2136 // "mmm" is the margin-box, "bbb" is the border-box. The bottom of |
|
2137 // the text "BASE" is the baseline. |
|
2138 // |
|
2139 // ---(cross-start)--- |
|
2140 // ___ ___ ___ |
|
2141 // mmmmmmmmmmmm | |margin-start | |
|
2142 // m m | _|_ ___ | |
|
2143 // m bbbbbbbb m |curOuterCrossSize | |crossStartToBaseline |
|
2144 // m b b m | |ascent | |
|
2145 // m b BASE b m | _|_ _|_ |
|
2146 // m b b m | | |
|
2147 // m bbbbbbbb m | |crossEndToBaseline |
|
2148 // m m | | |
|
2149 // mmmmmmmmmmmm _|_ _|_ |
|
2150 // |
|
2151 // ---(cross-end)--- |
|
2152 // |
|
2153 // We already have the curOuterCrossSize, margin-start, and the ascent. |
|
2154 // * We can get crossStartToBaseline by adding margin-start + ascent. |
|
2155 // * If we subtract that from the curOuterCrossSize, we get |
|
2156 // crossEndToBaseline. |
|
2157 |
|
2158 nscoord crossStartToBaseline = |
|
2159 item->GetBaselineOffsetFromOuterCrossEdge(aAxisTracker.GetCrossAxis(), |
|
2160 eAxisEdge_Start); |
|
2161 nscoord crossEndToBaseline = curOuterCrossSize - crossStartToBaseline; |
|
2162 |
|
2163 // Now, update our "largest" values for these (across all the flex items |
|
2164 // in this flex line), so we can use them in computing the line's cross |
|
2165 // size below: |
|
2166 crossStartToFurthestBaseline = std::max(crossStartToFurthestBaseline, |
|
2167 crossStartToBaseline); |
|
2168 crossEndToFurthestBaseline = std::max(crossEndToFurthestBaseline, |
|
2169 crossEndToBaseline); |
|
2170 } else { |
|
2171 largestOuterCrossSize = std::max(largestOuterCrossSize, curOuterCrossSize); |
|
2172 } |
|
2173 } |
|
2174 |
|
2175 // The line's baseline offset is the distance from the line's edge (start or |
|
2176 // end, depending on whether we've flipped the axes) to the furthest |
|
2177 // item-baseline. The item(s) with that baseline will be exactly aligned with |
|
2178 // the line's edge. |
|
2179 mBaselineOffset = aAxisTracker.AreAxesInternallyReversed() ? |
|
2180 crossEndToFurthestBaseline : crossStartToFurthestBaseline; |
|
2181 |
|
2182 // The line's cross-size is the larger of: |
|
2183 // (a) [largest cross-start-to-baseline + largest baseline-to-cross-end] of |
|
2184 // all baseline-aligned items with no cross-axis auto margins... |
|
2185 // and |
|
2186 // (b) largest cross-size of all other children. |
|
2187 mLineCrossSize = std::max(crossStartToFurthestBaseline + |
|
2188 crossEndToFurthestBaseline, |
|
2189 largestOuterCrossSize); |
|
2190 } |
|
2191 |
|
2192 void |
|
2193 FlexItem::ResolveStretchedCrossSize(nscoord aLineCrossSize, |
|
2194 const FlexboxAxisTracker& aAxisTracker) |
|
2195 { |
|
2196 AxisOrientationType crossAxis = aAxisTracker.GetCrossAxis(); |
|
2197 // We stretch IFF we are align-self:stretch, have no auto margins in |
|
2198 // cross axis, and have cross-axis size property == "auto". If any of those |
|
2199 // conditions don't hold up, we won't stretch. |
|
2200 if (mAlignSelf != NS_STYLE_ALIGN_ITEMS_STRETCH || |
|
2201 GetNumAutoMarginsInAxis(crossAxis) != 0 || |
|
2202 eStyleUnit_Auto != GetSizePropertyForAxis(mFrame, crossAxis).GetUnit()) { |
|
2203 return; |
|
2204 } |
|
2205 |
|
2206 // If we've already been stretched, we can bail out early, too. |
|
2207 // No need to redo the calculation. |
|
2208 if (mIsStretched) { |
|
2209 return; |
|
2210 } |
|
2211 |
|
2212 // Reserve space for margins & border & padding, and then use whatever |
|
2213 // remains as our item's cross-size (clamped to its min/max range). |
|
2214 nscoord stretchedSize = aLineCrossSize - |
|
2215 GetMarginBorderPaddingSizeInAxis(crossAxis); |
|
2216 |
|
2217 stretchedSize = NS_CSS_MINMAX(stretchedSize, mCrossMinSize, mCrossMaxSize); |
|
2218 |
|
2219 // Update the cross-size & make a note that it's stretched, so we know to |
|
2220 // override the reflow state's computed cross-size in our final reflow. |
|
2221 SetCrossSize(stretchedSize); |
|
2222 mIsStretched = true; |
|
2223 } |
|
2224 |
|
2225 void |
|
2226 SingleLineCrossAxisPositionTracker:: |
|
2227 ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, |
|
2228 FlexItem& aItem) |
|
2229 { |
|
2230 // Subtract the space that our item is already occupying, to see how much |
|
2231 // space (if any) is available for its auto margins. |
|
2232 nscoord spaceForAutoMargins = aLine.GetLineCrossSize() - |
|
2233 aItem.GetOuterCrossSize(mAxis); |
|
2234 |
|
2235 if (spaceForAutoMargins <= 0) { |
|
2236 return; // No available space --> nothing to do |
|
2237 } |
|
2238 |
|
2239 uint32_t numAutoMargins = aItem.GetNumAutoMarginsInAxis(mAxis); |
|
2240 if (numAutoMargins == 0) { |
|
2241 return; // No auto margins --> nothing to do. |
|
2242 } |
|
2243 |
|
2244 // OK, we have at least one auto margin and we have some available space. |
|
2245 // Give each auto margin a share of the space. |
|
2246 const nsStyleSides& styleMargin = aItem.Frame()->StyleMargin()->mMargin; |
|
2247 for (uint32_t i = 0; i < eNumAxisEdges; i++) { |
|
2248 Side side = kAxisOrientationToSidesMap[mAxis][i]; |
|
2249 if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { |
|
2250 MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0, |
|
2251 "Expecting auto margins to have value '0' before we " |
|
2252 "update them"); |
|
2253 |
|
2254 // NOTE: integer divison is fine here; numAutoMargins is either 1 or 2. |
|
2255 // If it's 2 & spaceForAutoMargins is odd, 1st margin gets smaller half. |
|
2256 nscoord curAutoMarginSize = spaceForAutoMargins / numAutoMargins; |
|
2257 aItem.SetMarginComponentForSide(side, curAutoMarginSize); |
|
2258 numAutoMargins--; |
|
2259 spaceForAutoMargins -= curAutoMarginSize; |
|
2260 } |
|
2261 } |
|
2262 } |
|
2263 |
|
2264 void |
|
2265 SingleLineCrossAxisPositionTracker:: |
|
2266 EnterAlignPackingSpace(const FlexLine& aLine, |
|
2267 const FlexItem& aItem, |
|
2268 const FlexboxAxisTracker& aAxisTracker) |
|
2269 { |
|
2270 // We don't do align-self alignment on items that have auto margins |
|
2271 // in the cross axis. |
|
2272 if (aItem.GetNumAutoMarginsInAxis(mAxis)) { |
|
2273 return; |
|
2274 } |
|
2275 |
|
2276 uint8_t alignSelf = aItem.GetAlignSelf(); |
|
2277 // NOTE: 'stretch' behaves like 'flex-start' once we've stretched any |
|
2278 // auto-sized items (which we've already done). |
|
2279 if (alignSelf == NS_STYLE_ALIGN_ITEMS_STRETCH) { |
|
2280 alignSelf = NS_STYLE_ALIGN_ITEMS_FLEX_START; |
|
2281 } |
|
2282 |
|
2283 // If our cross axis is (internally) reversed, swap the align-self |
|
2284 // "flex-start" and "flex-end" behaviors: |
|
2285 if (aAxisTracker.AreAxesInternallyReversed()) { |
|
2286 if (alignSelf == NS_STYLE_ALIGN_ITEMS_FLEX_START) { |
|
2287 alignSelf = NS_STYLE_ALIGN_ITEMS_FLEX_END; |
|
2288 } else if (alignSelf == NS_STYLE_ALIGN_ITEMS_FLEX_END) { |
|
2289 alignSelf = NS_STYLE_ALIGN_ITEMS_FLEX_START; |
|
2290 } |
|
2291 } |
|
2292 |
|
2293 switch (alignSelf) { |
|
2294 case NS_STYLE_ALIGN_ITEMS_FLEX_START: |
|
2295 // No space to skip over -- we're done. |
|
2296 break; |
|
2297 case NS_STYLE_ALIGN_ITEMS_FLEX_END: |
|
2298 mPosition += aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis); |
|
2299 break; |
|
2300 case NS_STYLE_ALIGN_ITEMS_CENTER: |
|
2301 // Note: If cross-size is odd, the "after" space will get the extra unit. |
|
2302 mPosition += |
|
2303 (aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis)) / 2; |
|
2304 break; |
|
2305 case NS_STYLE_ALIGN_ITEMS_BASELINE: { |
|
2306 // Normally, baseline-aligned items are collectively aligned with the |
|
2307 // line's cross-start edge; however, if our cross axis is (internally) |
|
2308 // reversed, we instead align them with the cross-end edge. |
|
2309 nscoord itemBaselineOffset = |
|
2310 aItem.GetBaselineOffsetFromOuterCrossEdge(mAxis, |
|
2311 aAxisTracker.AreAxesInternallyReversed() ? |
|
2312 eAxisEdge_End : eAxisEdge_Start); |
|
2313 |
|
2314 nscoord lineBaselineOffset = aLine.GetBaselineOffset(); |
|
2315 |
|
2316 NS_ASSERTION(lineBaselineOffset >= itemBaselineOffset, |
|
2317 "failed at finding largest baseline offset"); |
|
2318 |
|
2319 // How much do we need to adjust our position (from the line edge), |
|
2320 // to get the item's baseline to hit the line's baseline offset: |
|
2321 nscoord baselineDiff = lineBaselineOffset - itemBaselineOffset; |
|
2322 |
|
2323 if (aAxisTracker.AreAxesInternallyReversed()) { |
|
2324 // Advance to align item w/ line's flex-end edge (as in FLEX_END case): |
|
2325 mPosition += aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis); |
|
2326 // ...and step *back* by the baseline adjustment: |
|
2327 mPosition -= baselineDiff; |
|
2328 } else { |
|
2329 // mPosition is already at line's flex-start edge. |
|
2330 // From there, we step *forward* by the baseline adjustment: |
|
2331 mPosition += baselineDiff; |
|
2332 } |
|
2333 break; |
|
2334 } |
|
2335 default: |
|
2336 NS_NOTREACHED("Unexpected align-self value"); |
|
2337 break; |
|
2338 } |
|
2339 } |
|
2340 |
|
2341 FlexboxAxisTracker::FlexboxAxisTracker( |
|
2342 nsFlexContainerFrame* aFlexContainerFrame) |
|
2343 : mAreAxesInternallyReversed(false) |
|
2344 { |
|
2345 const nsStylePosition* pos = aFlexContainerFrame->StylePosition(); |
|
2346 uint32_t flexDirection = pos->mFlexDirection; |
|
2347 uint32_t cssDirection = |
|
2348 aFlexContainerFrame->StyleVisibility()->mDirection; |
|
2349 |
|
2350 MOZ_ASSERT(cssDirection == NS_STYLE_DIRECTION_LTR || |
|
2351 cssDirection == NS_STYLE_DIRECTION_RTL, |
|
2352 "Unexpected computed value for 'direction' property"); |
|
2353 // (Not asserting for flexDirection here; it's checked by the switch below.) |
|
2354 |
|
2355 // These are defined according to writing-modes' definitions of |
|
2356 // start/end (for the inline dimension) and before/after (for the block |
|
2357 // dimension), here: |
|
2358 // http://www.w3.org/TR/css3-writing-modes/#logical-directions |
|
2359 // (NOTE: I'm intentionally not calling this "inlineAxis"/"blockAxis", since |
|
2360 // those terms have explicit definition in the writing-modes spec, which are |
|
2361 // the opposite of how I'd be using them here.) |
|
2362 // XXXdholbert Once we support the 'writing-mode' property, use its value |
|
2363 // here to further customize inlineDimension & blockDimension. |
|
2364 |
|
2365 // Inline dimension ("start-to-end"): |
|
2366 AxisOrientationType inlineDimension = |
|
2367 cssDirection == NS_STYLE_DIRECTION_RTL ? eAxis_RL : eAxis_LR; |
|
2368 |
|
2369 // Block dimension ("before-to-after"): |
|
2370 AxisOrientationType blockDimension = eAxis_TB; |
|
2371 |
|
2372 // Determine main axis: |
|
2373 switch (flexDirection) { |
|
2374 case NS_STYLE_FLEX_DIRECTION_ROW: |
|
2375 mMainAxis = inlineDimension; |
|
2376 break; |
|
2377 case NS_STYLE_FLEX_DIRECTION_ROW_REVERSE: |
|
2378 mMainAxis = GetReverseAxis(inlineDimension); |
|
2379 break; |
|
2380 case NS_STYLE_FLEX_DIRECTION_COLUMN: |
|
2381 mMainAxis = blockDimension; |
|
2382 break; |
|
2383 case NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE: |
|
2384 mMainAxis = GetReverseAxis(blockDimension); |
|
2385 break; |
|
2386 default: |
|
2387 MOZ_CRASH("Unexpected computed value for 'flex-flow' property"); |
|
2388 } |
|
2389 |
|
2390 // Determine cross axis: |
|
2391 // (This is set up so that a bogus |flexDirection| value will |
|
2392 // give us blockDimension. |
|
2393 if (flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN || |
|
2394 flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE) { |
|
2395 mCrossAxis = inlineDimension; |
|
2396 } else { |
|
2397 mCrossAxis = blockDimension; |
|
2398 } |
|
2399 |
|
2400 // "flex-wrap: wrap-reverse" reverses our cross axis. |
|
2401 if (pos->mFlexWrap == NS_STYLE_FLEX_WRAP_WRAP_REVERSE) { |
|
2402 mCrossAxis = GetReverseAxis(mCrossAxis); |
|
2403 } |
|
2404 |
|
2405 // Master switch to enable/disable bug 983427's code for reversing our axes |
|
2406 // and reversing some logic, to avoid reflowing children in bottom-to-top |
|
2407 // order. (This switch can be removed eventually, but for now, it allows |
|
2408 // this special-case code path to be compared against the normal code path.) |
|
2409 static bool sPreventBottomToTopChildOrdering = true; |
|
2410 |
|
2411 if (sPreventBottomToTopChildOrdering) { |
|
2412 // If either axis is bottom-to-top, we flip both axes (and set a flag |
|
2413 // so that we can flip some logic to make the reversal transparent). |
|
2414 if (eAxis_BT == mMainAxis || eAxis_BT == mCrossAxis) { |
|
2415 mMainAxis = GetReverseAxis(mMainAxis); |
|
2416 mCrossAxis = GetReverseAxis(mCrossAxis); |
|
2417 mAreAxesInternallyReversed = true; |
|
2418 } |
|
2419 } |
|
2420 |
|
2421 MOZ_ASSERT(IsAxisHorizontal(mMainAxis) != IsAxisHorizontal(mCrossAxis), |
|
2422 "main & cross axes should be in different dimensions"); |
|
2423 } |
|
2424 |
|
2425 // Allocates a new FlexLine, adds it to the given LinkedList (at the front or |
|
2426 // back depending on aShouldInsertAtFront), and returns a pointer to it. |
|
2427 static FlexLine* |
|
2428 AddNewFlexLineToList(LinkedList<FlexLine>& aLines, |
|
2429 bool aShouldInsertAtFront) |
|
2430 { |
|
2431 FlexLine* newLine = new FlexLine(); |
|
2432 if (aShouldInsertAtFront) { |
|
2433 aLines.insertFront(newLine); |
|
2434 } else { |
|
2435 aLines.insertBack(newLine); |
|
2436 } |
|
2437 return newLine; |
|
2438 } |
|
2439 |
|
2440 nsresult |
|
2441 nsFlexContainerFrame::GenerateFlexLines( |
|
2442 nsPresContext* aPresContext, |
|
2443 const nsHTMLReflowState& aReflowState, |
|
2444 nscoord aContentBoxMainSize, |
|
2445 nscoord aAvailableHeightForContent, |
|
2446 const nsTArray<StrutInfo>& aStruts, |
|
2447 const FlexboxAxisTracker& aAxisTracker, |
|
2448 LinkedList<FlexLine>& aLines) |
|
2449 { |
|
2450 MOZ_ASSERT(aLines.isEmpty(), "Expecting outparam to start out empty"); |
|
2451 |
|
2452 const bool isSingleLine = |
|
2453 NS_STYLE_FLEX_WRAP_NOWRAP == aReflowState.mStylePosition->mFlexWrap; |
|
2454 |
|
2455 // If we're transparently reversing axes, then we'll need to link up our |
|
2456 // FlexItems and FlexLines in the reverse order, so that the rest of flex |
|
2457 // layout (with flipped axes) will still produce the correct result. |
|
2458 // Here, we declare a convenience bool that we'll pass when adding a new |
|
2459 // FlexLine or FlexItem, to make us insert it at the beginning of its list |
|
2460 // (so the list ends up reversed). |
|
2461 const bool shouldInsertAtFront = aAxisTracker.AreAxesInternallyReversed(); |
|
2462 |
|
2463 // We have at least one FlexLine. Even an empty flex container has a single |
|
2464 // (empty) flex line. |
|
2465 FlexLine* curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront); |
|
2466 |
|
2467 nscoord wrapThreshold; |
|
2468 if (isSingleLine) { |
|
2469 // Not wrapping. Set threshold to sentinel value that tells us not to wrap. |
|
2470 wrapThreshold = NS_UNCONSTRAINEDSIZE; |
|
2471 } else { |
|
2472 // Wrapping! Set wrap threshold to flex container's content-box main-size. |
|
2473 wrapThreshold = aContentBoxMainSize; |
|
2474 |
|
2475 // If the flex container doesn't have a definite content-box main-size |
|
2476 // (e.g. if we're 'height:auto'), make sure we at least wrap when we hit |
|
2477 // its max main-size. |
|
2478 if (wrapThreshold == NS_UNCONSTRAINEDSIZE) { |
|
2479 const nscoord flexContainerMaxMainSize = |
|
2480 GET_MAIN_COMPONENT(aAxisTracker, |
|
2481 aReflowState.ComputedMaxWidth(), |
|
2482 aReflowState.ComputedMaxHeight()); |
|
2483 |
|
2484 wrapThreshold = flexContainerMaxMainSize; |
|
2485 } |
|
2486 |
|
2487 // Also: if we're vertical and paginating, we may need to wrap sooner |
|
2488 // (before we run off the end of the page) |
|
2489 if (!IsAxisHorizontal(aAxisTracker.GetMainAxis()) && |
|
2490 aAvailableHeightForContent != NS_UNCONSTRAINEDSIZE) { |
|
2491 wrapThreshold = std::min(wrapThreshold, aAvailableHeightForContent); |
|
2492 } |
|
2493 } |
|
2494 |
|
2495 // Tracks the index of the next strut, in aStruts (and when this hits |
|
2496 // aStruts.Length(), that means there are no more struts): |
|
2497 uint32_t nextStrutIdx = 0; |
|
2498 |
|
2499 // Overall index of the current flex item in the flex container. (This gets |
|
2500 // checked against entries in aStruts.) |
|
2501 uint32_t itemIdxInContainer = 0; |
|
2502 |
|
2503 for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { |
|
2504 nsIFrame* childFrame = e.get(); |
|
2505 |
|
2506 // Honor "page-break-before", if we're multi-line and this line isn't empty: |
|
2507 if (!isSingleLine && !curLine->IsEmpty() && |
|
2508 childFrame->StyleDisplay()->mBreakBefore) { |
|
2509 curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront); |
|
2510 } |
|
2511 |
|
2512 nsAutoPtr<FlexItem> item; |
|
2513 if (nextStrutIdx < aStruts.Length() && |
|
2514 aStruts[nextStrutIdx].mItemIdx == itemIdxInContainer) { |
|
2515 |
|
2516 // Use the simplified "strut" FlexItem constructor: |
|
2517 item = new FlexItem(childFrame, aStruts[nextStrutIdx].mStrutCrossSize); |
|
2518 nextStrutIdx++; |
|
2519 } else { |
|
2520 item = GenerateFlexItemForChild(aPresContext, childFrame, |
|
2521 aReflowState, aAxisTracker); |
|
2522 |
|
2523 nsresult rv = ResolveFlexItemMaxContentSizing(aPresContext, *item, |
|
2524 aReflowState, aAxisTracker); |
|
2525 NS_ENSURE_SUCCESS(rv,rv); |
|
2526 } |
|
2527 |
|
2528 nscoord itemInnerHypotheticalMainSize = item->GetMainSize(); |
|
2529 nscoord itemOuterHypotheticalMainSize = |
|
2530 item->GetOuterMainSize(aAxisTracker.GetMainAxis()); |
|
2531 |
|
2532 // Check if we need to wrap |item| to a new line |
|
2533 // (i.e. check if its outer hypothetical main size pushes our line over |
|
2534 // the threshold) |
|
2535 if (wrapThreshold != NS_UNCONSTRAINEDSIZE && |
|
2536 !curLine->IsEmpty() && // No need to wrap at start of a line. |
|
2537 wrapThreshold < (curLine->GetTotalOuterHypotheticalMainSize() + |
|
2538 itemOuterHypotheticalMainSize)) { |
|
2539 curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront); |
|
2540 } |
|
2541 |
|
2542 // Add item to current flex line (and update the line's bookkeeping about |
|
2543 // how large its items collectively are). |
|
2544 curLine->AddItem(item.forget(), shouldInsertAtFront, |
|
2545 itemInnerHypotheticalMainSize, |
|
2546 itemOuterHypotheticalMainSize); |
|
2547 |
|
2548 // Honor "page-break-after", if we're multi-line and have more children: |
|
2549 if (!isSingleLine && childFrame->GetNextSibling() && |
|
2550 childFrame->StyleDisplay()->mBreakAfter) { |
|
2551 curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront); |
|
2552 } |
|
2553 itemIdxInContainer++; |
|
2554 } |
|
2555 |
|
2556 return NS_OK; |
|
2557 } |
|
2558 |
|
2559 // Retrieves the content-box main-size of our flex container from the |
|
2560 // reflow state (specifically, the main-size of *this continuation* of the |
|
2561 // flex container). |
|
2562 nscoord |
|
2563 nsFlexContainerFrame::GetMainSizeFromReflowState( |
|
2564 const nsHTMLReflowState& aReflowState, |
|
2565 const FlexboxAxisTracker& aAxisTracker) |
|
2566 { |
|
2567 if (IsAxisHorizontal(aAxisTracker.GetMainAxis())) { |
|
2568 // Horizontal case is easy -- our main size is our computed width |
|
2569 // (which is already resolved). |
|
2570 return aReflowState.ComputedWidth(); |
|
2571 } |
|
2572 |
|
2573 return GetEffectiveComputedHeight(aReflowState); |
|
2574 } |
|
2575 |
|
2576 // Returns the largest outer hypothetical main-size of any line in |aLines|. |
|
2577 // (i.e. the hypothetical main-size of the largest line) |
|
2578 static nscoord |
|
2579 GetLargestLineMainSize(const FlexLine* aFirstLine) |
|
2580 { |
|
2581 nscoord largestLineOuterSize = 0; |
|
2582 for (const FlexLine* line = aFirstLine; line; line = line->getNext()) { |
|
2583 largestLineOuterSize = std::max(largestLineOuterSize, |
|
2584 line->GetTotalOuterHypotheticalMainSize()); |
|
2585 } |
|
2586 return largestLineOuterSize; |
|
2587 } |
|
2588 |
|
2589 // Returns the content-box main-size of our flex container, based on the |
|
2590 // available height (if appropriate) and the main-sizes of the flex items. |
|
2591 static nscoord |
|
2592 ClampFlexContainerMainSize(const nsHTMLReflowState& aReflowState, |
|
2593 const FlexboxAxisTracker& aAxisTracker, |
|
2594 nscoord aUnclampedMainSize, |
|
2595 nscoord aAvailableHeightForContent, |
|
2596 const FlexLine* aFirstLine, |
|
2597 nsReflowStatus& aStatus) |
|
2598 { |
|
2599 MOZ_ASSERT(aFirstLine, "null first line pointer"); |
|
2600 |
|
2601 if (IsAxisHorizontal(aAxisTracker.GetMainAxis())) { |
|
2602 // Horizontal case is easy -- our main size should already be resolved |
|
2603 // before we get a call to Reflow. We don't have to worry about doing |
|
2604 // page-breaking or shrinkwrapping in the horizontal axis. |
|
2605 return aUnclampedMainSize; |
|
2606 } |
|
2607 |
|
2608 if (aUnclampedMainSize != NS_INTRINSICSIZE) { |
|
2609 // Vertical case, with fixed height: |
|
2610 if (aAvailableHeightForContent == NS_UNCONSTRAINEDSIZE || |
|
2611 aUnclampedMainSize < aAvailableHeightForContent) { |
|
2612 // Not in a fragmenting context, OR no need to fragment because we have |
|
2613 // more available height than we need. Either way, just use our fixed |
|
2614 // height. (Note that the reflow state has already done the appropriate |
|
2615 // min/max-height clamping.) |
|
2616 return aUnclampedMainSize; |
|
2617 } |
|
2618 |
|
2619 // Fragmenting *and* our fixed height is too tall for available height: |
|
2620 // Mark incomplete so we get a next-in-flow, and take up all of the |
|
2621 // available height (or the amount of height required by our children, if |
|
2622 // that's larger; but of course not more than our own computed height). |
|
2623 // XXXdholbert For now, we don't support pushing children to our next |
|
2624 // continuation or splitting children, so "amount of height required by |
|
2625 // our children" is just the main-size (height) of our longest flex line. |
|
2626 NS_FRAME_SET_INCOMPLETE(aStatus); |
|
2627 nscoord largestLineOuterSize = GetLargestLineMainSize(aFirstLine); |
|
2628 |
|
2629 if (largestLineOuterSize <= aAvailableHeightForContent) { |
|
2630 return aAvailableHeightForContent; |
|
2631 } |
|
2632 return std::min(aUnclampedMainSize, largestLineOuterSize); |
|
2633 } |
|
2634 |
|
2635 // Vertical case, with auto-height: |
|
2636 // Resolve auto-height to the largest FlexLine-length, clamped to our |
|
2637 // computed min/max main-size properties (min-height & max-height). |
|
2638 // XXXdholbert Handle constrained-aAvailableHeightForContent case here. |
|
2639 nscoord largestLineOuterSize = GetLargestLineMainSize(aFirstLine); |
|
2640 return NS_CSS_MINMAX(largestLineOuterSize, |
|
2641 aReflowState.ComputedMinHeight(), |
|
2642 aReflowState.ComputedMaxHeight()); |
|
2643 } |
|
2644 |
|
2645 nscoord |
|
2646 nsFlexContainerFrame::ComputeCrossSize(const nsHTMLReflowState& aReflowState, |
|
2647 const FlexboxAxisTracker& aAxisTracker, |
|
2648 nscoord aSumLineCrossSizes, |
|
2649 nscoord aAvailableHeightForContent, |
|
2650 bool* aIsDefinite, |
|
2651 nsReflowStatus& aStatus) |
|
2652 { |
|
2653 MOZ_ASSERT(aIsDefinite, "outparam pointer must be non-null"); |
|
2654 |
|
2655 if (IsAxisHorizontal(aAxisTracker.GetCrossAxis())) { |
|
2656 // Cross axis is horizontal: our cross size is our computed width |
|
2657 // (which is already resolved). |
|
2658 *aIsDefinite = true; |
|
2659 return aReflowState.ComputedWidth(); |
|
2660 } |
|
2661 |
|
2662 nscoord effectiveComputedHeight = GetEffectiveComputedHeight(aReflowState); |
|
2663 if (effectiveComputedHeight != NS_INTRINSICSIZE) { |
|
2664 // Cross-axis is vertical, and we have a fixed height: |
|
2665 *aIsDefinite = true; |
|
2666 if (aAvailableHeightForContent == NS_UNCONSTRAINEDSIZE || |
|
2667 effectiveComputedHeight < aAvailableHeightForContent) { |
|
2668 // Not in a fragmenting context, OR no need to fragment because we have |
|
2669 // more available height than we need. Either way, just use our fixed |
|
2670 // height. (Note that the reflow state has already done the appropriate |
|
2671 // min/max-height clamping.) |
|
2672 return effectiveComputedHeight; |
|
2673 } |
|
2674 |
|
2675 // Fragmenting *and* our fixed height is too tall for available height: |
|
2676 // Mark incomplete so we get a next-in-flow, and take up all of the |
|
2677 // available height (or the amount of height required by our children, if |
|
2678 // that's larger; but of course not more than our own computed height). |
|
2679 // XXXdholbert For now, we don't support pushing children to our next |
|
2680 // continuation or splitting children, so "amount of height required by |
|
2681 // our children" is just our line-height. |
|
2682 NS_FRAME_SET_INCOMPLETE(aStatus); |
|
2683 if (aSumLineCrossSizes <= aAvailableHeightForContent) { |
|
2684 return aAvailableHeightForContent; |
|
2685 } |
|
2686 return std::min(effectiveComputedHeight, aSumLineCrossSizes); |
|
2687 } |
|
2688 |
|
2689 // Cross axis is vertical and we have auto-height: shrink-wrap our line(s), |
|
2690 // subject to our min-size / max-size constraints in that (vertical) axis. |
|
2691 // XXXdholbert Handle constrained-aAvailableHeightForContent case here. |
|
2692 *aIsDefinite = false; |
|
2693 return NS_CSS_MINMAX(aSumLineCrossSizes, |
|
2694 aReflowState.ComputedMinHeight(), |
|
2695 aReflowState.ComputedMaxHeight()); |
|
2696 } |
|
2697 |
|
2698 void |
|
2699 FlexLine::PositionItemsInMainAxis(uint8_t aJustifyContent, |
|
2700 nscoord aContentBoxMainSize, |
|
2701 const FlexboxAxisTracker& aAxisTracker) |
|
2702 { |
|
2703 MainAxisPositionTracker mainAxisPosnTracker(aAxisTracker, this, |
|
2704 aJustifyContent, |
|
2705 aContentBoxMainSize); |
|
2706 for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { |
|
2707 nscoord itemMainBorderBoxSize = |
|
2708 item->GetMainSize() + |
|
2709 item->GetBorderPaddingSizeInAxis(mainAxisPosnTracker.GetAxis()); |
|
2710 |
|
2711 // Resolve any main-axis 'auto' margins on aChild to an actual value. |
|
2712 mainAxisPosnTracker.ResolveAutoMarginsInMainAxis(*item); |
|
2713 |
|
2714 // Advance our position tracker to child's upper-left content-box corner, |
|
2715 // and use that as its position in the main axis. |
|
2716 mainAxisPosnTracker.EnterMargin(item->GetMargin()); |
|
2717 mainAxisPosnTracker.EnterChildFrame(itemMainBorderBoxSize); |
|
2718 |
|
2719 item->SetMainPosition(mainAxisPosnTracker.GetPosition()); |
|
2720 |
|
2721 mainAxisPosnTracker.ExitChildFrame(itemMainBorderBoxSize); |
|
2722 mainAxisPosnTracker.ExitMargin(item->GetMargin()); |
|
2723 mainAxisPosnTracker.TraversePackingSpace(); |
|
2724 } |
|
2725 } |
|
2726 |
|
2727 // Helper method to take care of children who ASK_FOR_BASELINE, when |
|
2728 // we need their baseline. |
|
2729 static void |
|
2730 ResolveReflowedChildAscent(nsIFrame* aFrame, |
|
2731 nsHTMLReflowMetrics& aChildDesiredSize) |
|
2732 { |
|
2733 if (aChildDesiredSize.TopAscent() == nsHTMLReflowMetrics::ASK_FOR_BASELINE) { |
|
2734 // Use GetFirstLineBaseline(), or just GetBaseline() if that fails. |
|
2735 nscoord ascent; |
|
2736 if (nsLayoutUtils::GetFirstLineBaseline(aFrame, &ascent)) { |
|
2737 aChildDesiredSize.SetTopAscent(ascent); |
|
2738 } else { |
|
2739 aChildDesiredSize.SetTopAscent(aFrame->GetBaseline()); |
|
2740 } |
|
2741 } |
|
2742 } |
|
2743 |
|
2744 /** |
|
2745 * Given the flex container's "logical ascent" (i.e. distance from the |
|
2746 * flex container's content-box cross-start edge to its baseline), returns |
|
2747 * its actual physical ascent value (the distance from the *border-box* top |
|
2748 * edge to its baseline). |
|
2749 */ |
|
2750 static nscoord |
|
2751 ComputePhysicalAscentFromLogicalAscent(nscoord aLogicalAscent, |
|
2752 nscoord aContentBoxCrossSize, |
|
2753 const nsHTMLReflowState& aReflowState, |
|
2754 const FlexboxAxisTracker& aAxisTracker) |
|
2755 { |
|
2756 return aReflowState.ComputedPhysicalBorderPadding().top + |
|
2757 PhysicalPosFromLogicalPos(aLogicalAscent, aContentBoxCrossSize, |
|
2758 aAxisTracker.GetCrossAxis()); |
|
2759 } |
|
2760 |
|
2761 nsresult |
|
2762 nsFlexContainerFrame::SizeItemInCrossAxis( |
|
2763 nsPresContext* aPresContext, |
|
2764 const FlexboxAxisTracker& aAxisTracker, |
|
2765 nsHTMLReflowState& aChildReflowState, |
|
2766 FlexItem& aItem) |
|
2767 { |
|
2768 // In vertical flexbox (with horizontal cross-axis), we can just trust the |
|
2769 // reflow state's computed-width as our cross-size. We also don't need to |
|
2770 // record the baseline because we'll have converted any "align-self:baseline" |
|
2771 // items to be "align-self:flex-start" in the FlexItem constructor. |
|
2772 // FIXME: Once we support writing-mode (vertical text), we will be able to |
|
2773 // have baseline-aligned items in a vertical flexbox, and we'll need to |
|
2774 // record baseline information here. |
|
2775 if (IsAxisHorizontal(aAxisTracker.GetCrossAxis())) { |
|
2776 MOZ_ASSERT(aItem.GetAlignSelf() != NS_STYLE_ALIGN_ITEMS_BASELINE, |
|
2777 "In vert flex container, we depend on FlexItem constructor to " |
|
2778 "convert 'align-self: baseline' to 'align-self: flex-start'"); |
|
2779 aItem.SetCrossSize(aChildReflowState.ComputedWidth()); |
|
2780 return NS_OK; |
|
2781 } |
|
2782 |
|
2783 MOZ_ASSERT(!aItem.HadMeasuringReflow(), |
|
2784 "We shouldn't need more than one measuring reflow"); |
|
2785 |
|
2786 if (aItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_STRETCH) { |
|
2787 // This item's got "align-self: stretch", so we probably imposed a |
|
2788 // stretched computed height on it during its previous reflow. We're |
|
2789 // not imposing that height for *this* measuring reflow, so we need to |
|
2790 // tell it to treat this reflow as a vertical resize (regardless of |
|
2791 // whether any of its ancestors are being resized). |
|
2792 aChildReflowState.mFlags.mVResize = true; |
|
2793 } |
|
2794 nsHTMLReflowMetrics childDesiredSize(aChildReflowState); |
|
2795 nsReflowStatus childReflowStatus; |
|
2796 const uint32_t flags = NS_FRAME_NO_MOVE_FRAME; |
|
2797 nsresult rv = ReflowChild(aItem.Frame(), aPresContext, |
|
2798 childDesiredSize, aChildReflowState, |
|
2799 0, 0, flags, childReflowStatus); |
|
2800 aItem.SetHadMeasuringReflow(); |
|
2801 NS_ENSURE_SUCCESS(rv, rv); |
|
2802 |
|
2803 // XXXdholbert Once we do pagination / splitting, we'll need to actually |
|
2804 // handle incomplete childReflowStatuses. But for now, we give our kids |
|
2805 // unconstrained available height, which means they should always complete. |
|
2806 MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus), |
|
2807 "We gave flex item unconstrained available height, so it " |
|
2808 "should be complete"); |
|
2809 |
|
2810 // Tell the child we're done with its initial reflow. |
|
2811 // (Necessary for e.g. GetBaseline() to work below w/out asserting) |
|
2812 rv = FinishReflowChild(aItem.Frame(), aPresContext, |
|
2813 childDesiredSize, &aChildReflowState, 0, 0, flags); |
|
2814 NS_ENSURE_SUCCESS(rv, rv); |
|
2815 |
|
2816 // Save the sizing info that we learned from this reflow |
|
2817 // ----------------------------------------------------- |
|
2818 |
|
2819 // Tentatively store the child's desired content-box cross-size. |
|
2820 // Note that childDesiredSize is the border-box size, so we have to |
|
2821 // subtract border & padding to get the content-box size. |
|
2822 // (Note that at this point in the code, we know our cross axis is vertical, |
|
2823 // so we don't bother with making aAxisTracker pick the cross-axis component |
|
2824 // for us.) |
|
2825 nscoord crossAxisBorderPadding = aItem.GetBorderPadding().TopBottom(); |
|
2826 if (childDesiredSize.Height() < crossAxisBorderPadding) { |
|
2827 // Child's requested size isn't large enough for its border/padding! |
|
2828 // This is OK for the trivial nsFrame::Reflow() impl, but other frame |
|
2829 // classes should know better. So, if we get here, the child had better be |
|
2830 // an instance of nsFrame (i.e. it should return null from GetType()). |
|
2831 // XXXdholbert Once we've fixed bug 765861, we should upgrade this to an |
|
2832 // assertion that trivially passes if bug 765861's flag has been flipped. |
|
2833 NS_WARN_IF_FALSE(!aItem.Frame()->GetType(), |
|
2834 "Child should at least request space for border/padding"); |
|
2835 aItem.SetCrossSize(0); |
|
2836 } else { |
|
2837 // (normal case) |
|
2838 aItem.SetCrossSize(childDesiredSize.Height() - crossAxisBorderPadding); |
|
2839 } |
|
2840 |
|
2841 // If we need to do baseline-alignment, store the child's ascent. |
|
2842 if (aItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_BASELINE) { |
|
2843 ResolveReflowedChildAscent(aItem.Frame(), childDesiredSize); |
|
2844 aItem.SetAscent(childDesiredSize.TopAscent()); |
|
2845 } |
|
2846 |
|
2847 return NS_OK; |
|
2848 } |
|
2849 |
|
2850 void |
|
2851 FlexLine::PositionItemsInCrossAxis(nscoord aLineStartPosition, |
|
2852 const FlexboxAxisTracker& aAxisTracker) |
|
2853 { |
|
2854 SingleLineCrossAxisPositionTracker lineCrossAxisPosnTracker(aAxisTracker); |
|
2855 |
|
2856 for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { |
|
2857 // First, stretch the item's cross size (if appropriate), and resolve any |
|
2858 // auto margins in this axis. |
|
2859 item->ResolveStretchedCrossSize(mLineCrossSize, aAxisTracker); |
|
2860 lineCrossAxisPosnTracker.ResolveAutoMarginsInCrossAxis(*this, *item); |
|
2861 |
|
2862 // Compute the cross-axis position of this item |
|
2863 nscoord itemCrossBorderBoxSize = |
|
2864 item->GetCrossSize() + |
|
2865 item->GetBorderPaddingSizeInAxis(aAxisTracker.GetCrossAxis()); |
|
2866 lineCrossAxisPosnTracker.EnterAlignPackingSpace(*this, *item, aAxisTracker); |
|
2867 lineCrossAxisPosnTracker.EnterMargin(item->GetMargin()); |
|
2868 lineCrossAxisPosnTracker.EnterChildFrame(itemCrossBorderBoxSize); |
|
2869 |
|
2870 item->SetCrossPosition(aLineStartPosition + |
|
2871 lineCrossAxisPosnTracker.GetPosition()); |
|
2872 |
|
2873 // Back out to cross-axis edge of the line. |
|
2874 lineCrossAxisPosnTracker.ResetPosition(); |
|
2875 } |
|
2876 } |
|
2877 |
|
2878 nsresult |
|
2879 nsFlexContainerFrame::Reflow(nsPresContext* aPresContext, |
|
2880 nsHTMLReflowMetrics& aDesiredSize, |
|
2881 const nsHTMLReflowState& aReflowState, |
|
2882 nsReflowStatus& aStatus) |
|
2883 { |
|
2884 DO_GLOBAL_REFLOW_COUNT("nsFlexContainerFrame"); |
|
2885 DISPLAY_REFLOW(aPresContext, this, aReflowState, aDesiredSize, aStatus); |
|
2886 PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, |
|
2887 ("Reflow() for nsFlexContainerFrame %p\n", this)); |
|
2888 |
|
2889 if (IsFrameTreeTooDeep(aReflowState, aDesiredSize, aStatus)) { |
|
2890 return NS_OK; |
|
2891 } |
|
2892 |
|
2893 // We (and our children) can only depend on our ancestor's height if we have |
|
2894 // a percent-height, or if we're positioned and we have "top" and "bottom" |
|
2895 // set and have height:auto. (There are actually other cases, too -- e.g. if |
|
2896 // our parent is itself a vertical flex container and we're flexible -- but |
|
2897 // we'll let our ancestors handle those sorts of cases.) |
|
2898 const nsStylePosition* stylePos = StylePosition(); |
|
2899 if (stylePos->mHeight.HasPercent() || |
|
2900 (StyleDisplay()->IsAbsolutelyPositionedStyle() && |
|
2901 eStyleUnit_Auto == stylePos->mHeight.GetUnit() && |
|
2902 eStyleUnit_Auto != stylePos->mOffset.GetTopUnit() && |
|
2903 eStyleUnit_Auto != stylePos->mOffset.GetBottomUnit())) { |
|
2904 AddStateBits(NS_FRAME_CONTAINS_RELATIVE_HEIGHT); |
|
2905 } |
|
2906 |
|
2907 #ifdef DEBUG |
|
2908 SanityCheckAnonymousFlexItems(); |
|
2909 #endif // DEBUG |
|
2910 |
|
2911 // If we've never reordered our children, then we can trust that they're |
|
2912 // already in DOM-order, and we only need to consider their "order" property |
|
2913 // when checking them for sortedness & sorting them. |
|
2914 // |
|
2915 // After we actually sort them, though, we can't trust that they're in DOM |
|
2916 // order anymore. So, from that point on, our sort & sorted-order-checking |
|
2917 // operations need to use a fancier LEQ function that also takes DOM order |
|
2918 // into account, so that we can honor the spec's requirement that frames w/ |
|
2919 // equal "order" values are laid out in DOM order. |
|
2920 |
|
2921 if (!HasAnyStateBits(NS_STATE_FLEX_CHILDREN_REORDERED)) { |
|
2922 if (SortChildrenIfNeeded<IsOrderLEQ>()) { |
|
2923 AddStateBits(NS_STATE_FLEX_CHILDREN_REORDERED); |
|
2924 } |
|
2925 } else { |
|
2926 SortChildrenIfNeeded<IsOrderLEQWithDOMFallback>(); |
|
2927 } |
|
2928 |
|
2929 const FlexboxAxisTracker axisTracker(this); |
|
2930 |
|
2931 // If we're being fragmented into a constrained height, subtract off |
|
2932 // borderpadding-top from it, to get the available height for our |
|
2933 // content box. (Don't subtract if we're skipping top border/padding, |
|
2934 // though.) |
|
2935 nscoord availableHeightForContent = aReflowState.AvailableHeight(); |
|
2936 if (availableHeightForContent != NS_UNCONSTRAINEDSIZE && |
|
2937 !(GetSkipSides() & (1 << NS_SIDE_TOP))) { |
|
2938 availableHeightForContent -= aReflowState.ComputedPhysicalBorderPadding().top; |
|
2939 // (Don't let that push availableHeightForContent below zero, though): |
|
2940 availableHeightForContent = std::max(availableHeightForContent, 0); |
|
2941 } |
|
2942 |
|
2943 nscoord contentBoxMainSize = GetMainSizeFromReflowState(aReflowState, |
|
2944 axisTracker); |
|
2945 |
|
2946 nsAutoTArray<StrutInfo, 1> struts; |
|
2947 nsresult rv = DoFlexLayout(aPresContext, aDesiredSize, aReflowState, aStatus, |
|
2948 contentBoxMainSize, availableHeightForContent, |
|
2949 struts, axisTracker); |
|
2950 |
|
2951 if (NS_SUCCEEDED(rv) && !struts.IsEmpty()) { |
|
2952 // We're restarting flex layout, with new knowledge of collapsed items. |
|
2953 rv = DoFlexLayout(aPresContext, aDesiredSize, aReflowState, aStatus, |
|
2954 contentBoxMainSize, availableHeightForContent, |
|
2955 struts, axisTracker); |
|
2956 } |
|
2957 |
|
2958 return rv; |
|
2959 } |
|
2960 |
|
2961 // RAII class to clean up a list of FlexLines. |
|
2962 // Specifically, this removes each line from the list, deletes all the |
|
2963 // FlexItems in its list, and deletes the FlexLine. |
|
2964 class MOZ_STACK_CLASS AutoFlexLineListClearer |
|
2965 { |
|
2966 public: |
|
2967 AutoFlexLineListClearer(LinkedList<FlexLine>& aLines |
|
2968 MOZ_GUARD_OBJECT_NOTIFIER_PARAM) |
|
2969 : mLines(aLines) |
|
2970 { |
|
2971 MOZ_GUARD_OBJECT_NOTIFIER_INIT; |
|
2972 } |
|
2973 |
|
2974 ~AutoFlexLineListClearer() |
|
2975 { |
|
2976 while (FlexLine* line = mLines.popFirst()) { |
|
2977 while (FlexItem* item = line->mItems.popFirst()) { |
|
2978 delete item; |
|
2979 } |
|
2980 delete line; |
|
2981 } |
|
2982 } |
|
2983 |
|
2984 private: |
|
2985 LinkedList<FlexLine>& mLines; |
|
2986 MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER |
|
2987 }; |
|
2988 |
|
2989 nsresult |
|
2990 nsFlexContainerFrame::DoFlexLayout(nsPresContext* aPresContext, |
|
2991 nsHTMLReflowMetrics& aDesiredSize, |
|
2992 const nsHTMLReflowState& aReflowState, |
|
2993 nsReflowStatus& aStatus, |
|
2994 nscoord aContentBoxMainSize, |
|
2995 nscoord aAvailableHeightForContent, |
|
2996 nsTArray<StrutInfo>& aStruts, |
|
2997 const FlexboxAxisTracker& aAxisTracker) |
|
2998 { |
|
2999 aStatus = NS_FRAME_COMPLETE; |
|
3000 |
|
3001 LinkedList<FlexLine> lines; |
|
3002 AutoFlexLineListClearer cleanupLines(lines); |
|
3003 |
|
3004 nsresult rv = GenerateFlexLines(aPresContext, aReflowState, |
|
3005 aContentBoxMainSize, |
|
3006 aAvailableHeightForContent, |
|
3007 aStruts, aAxisTracker, lines); |
|
3008 NS_ENSURE_SUCCESS(rv, rv); |
|
3009 |
|
3010 aContentBoxMainSize = |
|
3011 ClampFlexContainerMainSize(aReflowState, aAxisTracker, |
|
3012 aContentBoxMainSize, aAvailableHeightForContent, |
|
3013 lines.getFirst(), aStatus); |
|
3014 |
|
3015 for (FlexLine* line = lines.getFirst(); line; line = line->getNext()) { |
|
3016 line->ResolveFlexibleLengths(aContentBoxMainSize); |
|
3017 } |
|
3018 |
|
3019 // Cross Size Determination - Flexbox spec section 9.4 |
|
3020 // =================================================== |
|
3021 // Calculate the hypothetical cross size of each item: |
|
3022 nscoord sumLineCrossSizes = 0; |
|
3023 for (FlexLine* line = lines.getFirst(); line; line = line->getNext()) { |
|
3024 for (FlexItem* item = line->GetFirstItem(); item; item = item->getNext()) { |
|
3025 // (If the item's already been stretched, or it's a strut, then it |
|
3026 // already knows its cross size. Don't bother trying to recalculate it.) |
|
3027 if (!item->IsStretched() && !item->IsStrut()) { |
|
3028 nsHTMLReflowState childReflowState(aPresContext, aReflowState, |
|
3029 item->Frame(), |
|
3030 nsSize(aReflowState.ComputedWidth(), |
|
3031 NS_UNCONSTRAINEDSIZE)); |
|
3032 // Override computed main-size |
|
3033 if (IsAxisHorizontal(aAxisTracker.GetMainAxis())) { |
|
3034 childReflowState.SetComputedWidth(item->GetMainSize()); |
|
3035 } else { |
|
3036 childReflowState.SetComputedHeight(item->GetMainSize()); |
|
3037 } |
|
3038 |
|
3039 nsresult rv = SizeItemInCrossAxis(aPresContext, aAxisTracker, |
|
3040 childReflowState, *item); |
|
3041 NS_ENSURE_SUCCESS(rv, rv); |
|
3042 } |
|
3043 } |
|
3044 // Now that we've finished with this line's items, size the line itself: |
|
3045 line->ComputeCrossSizeAndBaseline(aAxisTracker); |
|
3046 sumLineCrossSizes += line->GetLineCrossSize(); |
|
3047 } |
|
3048 |
|
3049 bool isCrossSizeDefinite; |
|
3050 const nscoord contentBoxCrossSize = |
|
3051 ComputeCrossSize(aReflowState, aAxisTracker, sumLineCrossSizes, |
|
3052 aAvailableHeightForContent, &isCrossSizeDefinite, aStatus); |
|
3053 |
|
3054 // Set up state for cross-axis alignment, at a high level (outside the |
|
3055 // scope of a particular flex line) |
|
3056 CrossAxisPositionTracker |
|
3057 crossAxisPosnTracker(lines.getFirst(), |
|
3058 aReflowState.mStylePosition->mAlignContent, |
|
3059 contentBoxCrossSize, isCrossSizeDefinite, |
|
3060 aAxisTracker); |
|
3061 |
|
3062 // Now that we know the cross size of each line (including |
|
3063 // "align-content:stretch" adjustments, from the CrossAxisPositionTracker |
|
3064 // constructor), we can create struts for any flex items with |
|
3065 // "visibility: collapse" (and restart flex layout). |
|
3066 if (aStruts.IsEmpty()) { // (Don't make struts if we already did) |
|
3067 BuildStrutInfoFromCollapsedItems(lines.getFirst(), aStruts); |
|
3068 if (!aStruts.IsEmpty()) { |
|
3069 // Restart flex layout, using our struts. |
|
3070 return NS_OK; |
|
3071 } |
|
3072 } |
|
3073 |
|
3074 // If the container should derive its baseline from the first FlexLine, |
|
3075 // do that here (while crossAxisPosnTracker is conveniently pointing |
|
3076 // at the cross-start edge of that line, which the line's baseline offset is |
|
3077 // measured from): |
|
3078 nscoord flexContainerAscent; |
|
3079 if (!aAxisTracker.AreAxesInternallyReversed()) { |
|
3080 nscoord firstLineBaselineOffset = lines.getFirst()->GetBaselineOffset(); |
|
3081 if (firstLineBaselineOffset == nscoord_MIN) { |
|
3082 // No baseline-aligned items in line. Use sentinel value to prompt us to |
|
3083 // get baseline from the first FlexItem after we've reflowed it. |
|
3084 flexContainerAscent = nscoord_MIN; |
|
3085 } else { |
|
3086 flexContainerAscent = |
|
3087 ComputePhysicalAscentFromLogicalAscent( |
|
3088 crossAxisPosnTracker.GetPosition() + firstLineBaselineOffset, |
|
3089 contentBoxCrossSize, aReflowState, aAxisTracker); |
|
3090 } |
|
3091 } |
|
3092 |
|
3093 for (FlexLine* line = lines.getFirst(); line; line = line->getNext()) { |
|
3094 |
|
3095 // Main-Axis Alignment - Flexbox spec section 9.5 |
|
3096 // ============================================== |
|
3097 line->PositionItemsInMainAxis(aReflowState.mStylePosition->mJustifyContent, |
|
3098 aContentBoxMainSize, |
|
3099 aAxisTracker); |
|
3100 |
|
3101 // Cross-Axis Alignment - Flexbox spec section 9.6 |
|
3102 // =============================================== |
|
3103 line->PositionItemsInCrossAxis(crossAxisPosnTracker.GetPosition(), |
|
3104 aAxisTracker); |
|
3105 crossAxisPosnTracker.TraverseLine(*line); |
|
3106 crossAxisPosnTracker.TraversePackingSpace(); |
|
3107 } |
|
3108 |
|
3109 // If the container should derive its baseline from the last FlexLine, |
|
3110 // do that here (while crossAxisPosnTracker is conveniently pointing |
|
3111 // at the cross-end edge of that line, which the line's baseline offset is |
|
3112 // measured from): |
|
3113 if (aAxisTracker.AreAxesInternallyReversed()) { |
|
3114 nscoord lastLineBaselineOffset = lines.getLast()->GetBaselineOffset(); |
|
3115 if (lastLineBaselineOffset == nscoord_MIN) { |
|
3116 // No baseline-aligned items in line. Use sentinel value to prompt us to |
|
3117 // get baseline from the last FlexItem after we've reflowed it. |
|
3118 flexContainerAscent = nscoord_MIN; |
|
3119 } else { |
|
3120 flexContainerAscent = |
|
3121 ComputePhysicalAscentFromLogicalAscent( |
|
3122 crossAxisPosnTracker.GetPosition() - lastLineBaselineOffset, |
|
3123 contentBoxCrossSize, aReflowState, aAxisTracker); |
|
3124 } |
|
3125 } |
|
3126 |
|
3127 // Before giving each child a final reflow, calculate the origin of the |
|
3128 // flex container's content box (with respect to its border-box), so that |
|
3129 // we can compute our flex item's final positions. |
|
3130 nsMargin containerBorderPadding(aReflowState.ComputedPhysicalBorderPadding()); |
|
3131 ApplySkipSides(containerBorderPadding, &aReflowState); |
|
3132 const nsPoint containerContentBoxOrigin(containerBorderPadding.left, |
|
3133 containerBorderPadding.top); |
|
3134 |
|
3135 // FINAL REFLOW: Give each child frame another chance to reflow, now that |
|
3136 // we know its final size and position. |
|
3137 for (const FlexLine* line = lines.getFirst(); line; line = line->getNext()) { |
|
3138 for (const FlexItem* item = line->GetFirstItem(); item; |
|
3139 item = item->getNext()) { |
|
3140 nsPoint physicalPosn = aAxisTracker.PhysicalPointFromLogicalPoint( |
|
3141 item->GetMainPosition(), |
|
3142 item->GetCrossPosition(), |
|
3143 aContentBoxMainSize, |
|
3144 contentBoxCrossSize); |
|
3145 // Adjust physicalPosn to be relative to the container's border-box |
|
3146 // (i.e. its frame rect), instead of the container's content-box: |
|
3147 physicalPosn += containerContentBoxOrigin; |
|
3148 |
|
3149 nsHTMLReflowState childReflowState(aPresContext, aReflowState, |
|
3150 item->Frame(), |
|
3151 nsSize(aReflowState.ComputedWidth(), |
|
3152 NS_UNCONSTRAINEDSIZE)); |
|
3153 |
|
3154 // Keep track of whether we've overriden the child's computed height |
|
3155 // and/or width, so we can set its resize flags accordingly. |
|
3156 bool didOverrideComputedWidth = false; |
|
3157 bool didOverrideComputedHeight = false; |
|
3158 |
|
3159 // Override computed main-size |
|
3160 if (IsAxisHorizontal(aAxisTracker.GetMainAxis())) { |
|
3161 childReflowState.SetComputedWidth(item->GetMainSize()); |
|
3162 didOverrideComputedWidth = true; |
|
3163 } else { |
|
3164 childReflowState.SetComputedHeight(item->GetMainSize()); |
|
3165 didOverrideComputedHeight = true; |
|
3166 } |
|
3167 |
|
3168 // Override reflow state's computed cross-size, for stretched items. |
|
3169 if (item->IsStretched()) { |
|
3170 MOZ_ASSERT(item->GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_STRETCH, |
|
3171 "stretched item w/o 'align-self: stretch'?"); |
|
3172 if (IsAxisHorizontal(aAxisTracker.GetCrossAxis())) { |
|
3173 childReflowState.SetComputedWidth(item->GetCrossSize()); |
|
3174 didOverrideComputedWidth = true; |
|
3175 } else { |
|
3176 // If this item's height is stretched, it's a relative height. |
|
3177 item->Frame()->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_HEIGHT); |
|
3178 childReflowState.SetComputedHeight(item->GetCrossSize()); |
|
3179 didOverrideComputedHeight = true; |
|
3180 } |
|
3181 } |
|
3182 |
|
3183 // XXXdholbert Might need to actually set the correct margins in the |
|
3184 // reflow state at some point, so that they can be saved on the frame for |
|
3185 // UsedMarginProperty(). Maybe doesn't matter though...? |
|
3186 |
|
3187 // If we're overriding the computed width or height, *and* we had an |
|
3188 // earlier "measuring" reflow, then this upcoming reflow needs to be |
|
3189 // treated as a resize. |
|
3190 if (item->HadMeasuringReflow()) { |
|
3191 if (didOverrideComputedWidth) { |
|
3192 // (This is somewhat redundant, since the reflow state already |
|
3193 // sets mHResize whenever our computed width has changed since the |
|
3194 // previous reflow. Still, it's nice for symmetry, and it may become |
|
3195 // necessary once we support orthogonal flows.) |
|
3196 childReflowState.mFlags.mHResize = true; |
|
3197 } |
|
3198 if (didOverrideComputedHeight) { |
|
3199 childReflowState.mFlags.mVResize = true; |
|
3200 } |
|
3201 } |
|
3202 // NOTE: Be very careful about doing anything else with childReflowState |
|
3203 // after this point, because some of its methods (e.g. SetComputedWidth) |
|
3204 // internally call InitResizeFlags and stomp on mVResize & mHResize. |
|
3205 |
|
3206 nsHTMLReflowMetrics childDesiredSize(childReflowState); |
|
3207 nsReflowStatus childReflowStatus; |
|
3208 nsresult rv = ReflowChild(item->Frame(), aPresContext, |
|
3209 childDesiredSize, childReflowState, |
|
3210 physicalPosn.x, physicalPosn.y, |
|
3211 0, childReflowStatus); |
|
3212 NS_ENSURE_SUCCESS(rv, rv); |
|
3213 |
|
3214 // XXXdholbert Once we do pagination / splitting, we'll need to actually |
|
3215 // handle incomplete childReflowStatuses. But for now, we give our kids |
|
3216 // unconstrained available height, which means they should always |
|
3217 // complete. |
|
3218 MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus), |
|
3219 "We gave flex item unconstrained available height, so it " |
|
3220 "should be complete"); |
|
3221 |
|
3222 childReflowState.ApplyRelativePositioning(&physicalPosn); |
|
3223 |
|
3224 rv = FinishReflowChild(item->Frame(), aPresContext, |
|
3225 childDesiredSize, &childReflowState, |
|
3226 physicalPosn.x, physicalPosn.y, 0); |
|
3227 NS_ENSURE_SUCCESS(rv, rv); |
|
3228 |
|
3229 // If this is our first child and we haven't established a baseline for |
|
3230 // the container yet (i.e. if we don't have 'align-self: baseline' on any |
|
3231 // children), then use this child's baseline as the container's baseline. |
|
3232 if (item->Frame() == mFrames.FirstChild() && |
|
3233 flexContainerAscent == nscoord_MIN) { |
|
3234 ResolveReflowedChildAscent(item->Frame(), childDesiredSize); |
|
3235 |
|
3236 // (We use GetNormalPosition() instead of physicalPosn because we don't |
|
3237 // want relative positioning on the child to affect the baseline that we |
|
3238 // read from it). |
|
3239 flexContainerAscent = item->Frame()->GetNormalPosition().y + |
|
3240 childDesiredSize.TopAscent(); |
|
3241 } |
|
3242 } |
|
3243 } |
|
3244 |
|
3245 nsSize desiredContentBoxSize = |
|
3246 aAxisTracker.PhysicalSizeFromLogicalSizes(aContentBoxMainSize, |
|
3247 contentBoxCrossSize); |
|
3248 |
|
3249 aDesiredSize.Width() = desiredContentBoxSize.width + |
|
3250 containerBorderPadding.LeftRight(); |
|
3251 // Does *NOT* include bottom border/padding yet (we add that a bit lower down) |
|
3252 aDesiredSize.Height() = desiredContentBoxSize.height + |
|
3253 containerBorderPadding.top; |
|
3254 |
|
3255 if (flexContainerAscent == nscoord_MIN) { |
|
3256 // Still don't have our baseline set -- this happens if we have no |
|
3257 // children (or if our children are huge enough that they have nscoord_MIN |
|
3258 // as their baseline... in which case, we'll use the wrong baseline, but no |
|
3259 // big deal) |
|
3260 NS_WARN_IF_FALSE(lines.getFirst()->IsEmpty(), |
|
3261 "Have flex items but didn't get an ascent - that's odd " |
|
3262 "(or there are just gigantic sizes involved)"); |
|
3263 // Per spec, just use the bottom of content-box. |
|
3264 flexContainerAscent = aDesiredSize.Height(); |
|
3265 } |
|
3266 aDesiredSize.SetTopAscent(flexContainerAscent); |
|
3267 |
|
3268 // Now: If we're complete, add bottom border/padding to desired height |
|
3269 // (unless that pushes us over available height, in which case we become |
|
3270 // incomplete (unless we already weren't asking for any height, in which case |
|
3271 // we stay complete to avoid looping forever)). |
|
3272 // NOTE: If we're auto-height, we allow our bottom border/padding to push us |
|
3273 // over the available height without requesting a continuation, for |
|
3274 // consistency with the behavior of "display:block" elements. |
|
3275 if (NS_FRAME_IS_COMPLETE(aStatus)) { |
|
3276 // NOTE: We can't use containerBorderPadding.bottom for this, because if |
|
3277 // we're auto-height, ApplySkipSides will have zeroed it (because it |
|
3278 // assumed we might get a continuation). We have the correct value in |
|
3279 // aReflowState.ComputedPhyiscalBorderPadding().bottom, though, so we use that. |
|
3280 nscoord desiredHeightWithBottomBP = |
|
3281 aDesiredSize.Height() + aReflowState.ComputedPhysicalBorderPadding().bottom; |
|
3282 |
|
3283 if (aReflowState.AvailableHeight() == NS_UNCONSTRAINEDSIZE || |
|
3284 aDesiredSize.Height() == 0 || |
|
3285 desiredHeightWithBottomBP <= aReflowState.AvailableHeight() || |
|
3286 aReflowState.ComputedHeight() == NS_INTRINSICSIZE) { |
|
3287 // Update desired height to include bottom border/padding |
|
3288 aDesiredSize.Height() = desiredHeightWithBottomBP; |
|
3289 } else { |
|
3290 // We couldn't fit bottom border/padding, so we'll need a continuation. |
|
3291 NS_FRAME_SET_INCOMPLETE(aStatus); |
|
3292 } |
|
3293 } |
|
3294 |
|
3295 // Overflow area = union(my overflow area, kids' overflow areas) |
|
3296 aDesiredSize.SetOverflowAreasToDesiredBounds(); |
|
3297 for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { |
|
3298 ConsiderChildOverflow(aDesiredSize.mOverflowAreas, e.get()); |
|
3299 } |
|
3300 |
|
3301 FinishReflowWithAbsoluteFrames(aPresContext, aDesiredSize, |
|
3302 aReflowState, aStatus); |
|
3303 |
|
3304 NS_FRAME_SET_TRUNCATION(aStatus, aReflowState, aDesiredSize) |
|
3305 return NS_OK; |
|
3306 } |
|
3307 |
|
3308 /* virtual */ nscoord |
|
3309 nsFlexContainerFrame::GetMinWidth(nsRenderingContext* aRenderingContext) |
|
3310 { |
|
3311 nscoord minWidth = 0; |
|
3312 DISPLAY_MIN_WIDTH(this, minWidth); |
|
3313 |
|
3314 FlexboxAxisTracker axisTracker(this); |
|
3315 |
|
3316 for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { |
|
3317 nscoord childMinWidth = |
|
3318 nsLayoutUtils::IntrinsicForContainer(aRenderingContext, e.get(), |
|
3319 nsLayoutUtils::MIN_WIDTH); |
|
3320 // For a horizontal single-line flex container, the intrinsic min width is |
|
3321 // the sum of its items' min widths. |
|
3322 // For a vertical flex container, or for a multi-line horizontal flex |
|
3323 // container, the intrinsic min width is the max of its items' min widths. |
|
3324 if (IsAxisHorizontal(axisTracker.GetMainAxis()) && |
|
3325 NS_STYLE_FLEX_WRAP_NOWRAP == StylePosition()->mFlexWrap) { |
|
3326 minWidth += childMinWidth; |
|
3327 } else { |
|
3328 minWidth = std::max(minWidth, childMinWidth); |
|
3329 } |
|
3330 } |
|
3331 return minWidth; |
|
3332 } |
|
3333 |
|
3334 /* virtual */ nscoord |
|
3335 nsFlexContainerFrame::GetPrefWidth(nsRenderingContext* aRenderingContext) |
|
3336 { |
|
3337 nscoord prefWidth = 0; |
|
3338 DISPLAY_PREF_WIDTH(this, prefWidth); |
|
3339 |
|
3340 // XXXdholbert Optimization: We could cache our intrinsic widths like |
|
3341 // nsBlockFrame does (and return it early from this function if it's set). |
|
3342 // Whenever anything happens that might change it, set it to |
|
3343 // NS_INTRINSIC_WIDTH_UNKNOWN (like nsBlockFrame::MarkIntrinsicWidthsDirty |
|
3344 // does) |
|
3345 FlexboxAxisTracker axisTracker(this); |
|
3346 |
|
3347 for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { |
|
3348 nscoord childPrefWidth = |
|
3349 nsLayoutUtils::IntrinsicForContainer(aRenderingContext, e.get(), |
|
3350 nsLayoutUtils::PREF_WIDTH); |
|
3351 if (IsAxisHorizontal(axisTracker.GetMainAxis())) { |
|
3352 prefWidth += childPrefWidth; |
|
3353 } else { |
|
3354 prefWidth = std::max(prefWidth, childPrefWidth); |
|
3355 } |
|
3356 } |
|
3357 return prefWidth; |
|
3358 } |