|
1 /* |
|
2 * jcdctmgr.c |
|
3 * |
|
4 * This file was part of the Independent JPEG Group's software: |
|
5 * Copyright (C) 1994-1996, Thomas G. Lane. |
|
6 * libjpeg-turbo Modifications: |
|
7 * Copyright (C) 1999-2006, MIYASAKA Masaru. |
|
8 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
|
9 * Copyright (C) 2011 D. R. Commander |
|
10 * For conditions of distribution and use, see the accompanying README file. |
|
11 * |
|
12 * This file contains the forward-DCT management logic. |
|
13 * This code selects a particular DCT implementation to be used, |
|
14 * and it performs related housekeeping chores including coefficient |
|
15 * quantization. |
|
16 */ |
|
17 |
|
18 #define JPEG_INTERNALS |
|
19 #include "jinclude.h" |
|
20 #include "jpeglib.h" |
|
21 #include "jdct.h" /* Private declarations for DCT subsystem */ |
|
22 #include "jsimddct.h" |
|
23 |
|
24 |
|
25 /* Private subobject for this module */ |
|
26 |
|
27 typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data)); |
|
28 typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data)); |
|
29 |
|
30 typedef JMETHOD(void, convsamp_method_ptr, |
|
31 (JSAMPARRAY sample_data, JDIMENSION start_col, |
|
32 DCTELEM * workspace)); |
|
33 typedef JMETHOD(void, float_convsamp_method_ptr, |
|
34 (JSAMPARRAY sample_data, JDIMENSION start_col, |
|
35 FAST_FLOAT *workspace)); |
|
36 |
|
37 typedef JMETHOD(void, quantize_method_ptr, |
|
38 (JCOEFPTR coef_block, DCTELEM * divisors, |
|
39 DCTELEM * workspace)); |
|
40 typedef JMETHOD(void, float_quantize_method_ptr, |
|
41 (JCOEFPTR coef_block, FAST_FLOAT * divisors, |
|
42 FAST_FLOAT * workspace)); |
|
43 |
|
44 METHODDEF(void) quantize (JCOEFPTR, DCTELEM *, DCTELEM *); |
|
45 |
|
46 typedef struct { |
|
47 struct jpeg_forward_dct pub; /* public fields */ |
|
48 |
|
49 /* Pointer to the DCT routine actually in use */ |
|
50 forward_DCT_method_ptr dct; |
|
51 convsamp_method_ptr convsamp; |
|
52 quantize_method_ptr quantize; |
|
53 |
|
54 /* The actual post-DCT divisors --- not identical to the quant table |
|
55 * entries, because of scaling (especially for an unnormalized DCT). |
|
56 * Each table is given in normal array order. |
|
57 */ |
|
58 DCTELEM * divisors[NUM_QUANT_TBLS]; |
|
59 |
|
60 /* work area for FDCT subroutine */ |
|
61 DCTELEM * workspace; |
|
62 |
|
63 #ifdef DCT_FLOAT_SUPPORTED |
|
64 /* Same as above for the floating-point case. */ |
|
65 float_DCT_method_ptr float_dct; |
|
66 float_convsamp_method_ptr float_convsamp; |
|
67 float_quantize_method_ptr float_quantize; |
|
68 FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; |
|
69 FAST_FLOAT * float_workspace; |
|
70 #endif |
|
71 } my_fdct_controller; |
|
72 |
|
73 typedef my_fdct_controller * my_fdct_ptr; |
|
74 |
|
75 |
|
76 /* |
|
77 * Find the highest bit in an integer through binary search. |
|
78 */ |
|
79 LOCAL(int) |
|
80 flss (UINT16 val) |
|
81 { |
|
82 int bit; |
|
83 |
|
84 bit = 16; |
|
85 |
|
86 if (!val) |
|
87 return 0; |
|
88 |
|
89 if (!(val & 0xff00)) { |
|
90 bit -= 8; |
|
91 val <<= 8; |
|
92 } |
|
93 if (!(val & 0xf000)) { |
|
94 bit -= 4; |
|
95 val <<= 4; |
|
96 } |
|
97 if (!(val & 0xc000)) { |
|
98 bit -= 2; |
|
99 val <<= 2; |
|
100 } |
|
101 if (!(val & 0x8000)) { |
|
102 bit -= 1; |
|
103 val <<= 1; |
|
104 } |
|
105 |
|
106 return bit; |
|
107 } |
|
108 |
|
109 /* |
|
110 * Compute values to do a division using reciprocal. |
|
111 * |
|
112 * This implementation is based on an algorithm described in |
|
113 * "How to optimize for the Pentium family of microprocessors" |
|
114 * (http://www.agner.org/assem/). |
|
115 * More information about the basic algorithm can be found in |
|
116 * the paper "Integer Division Using Reciprocals" by Robert Alverson. |
|
117 * |
|
118 * The basic idea is to replace x/d by x * d^-1. In order to store |
|
119 * d^-1 with enough precision we shift it left a few places. It turns |
|
120 * out that this algoright gives just enough precision, and also fits |
|
121 * into DCTELEM: |
|
122 * |
|
123 * b = (the number of significant bits in divisor) - 1 |
|
124 * r = (word size) + b |
|
125 * f = 2^r / divisor |
|
126 * |
|
127 * f will not be an integer for most cases, so we need to compensate |
|
128 * for the rounding error introduced: |
|
129 * |
|
130 * no fractional part: |
|
131 * |
|
132 * result = input >> r |
|
133 * |
|
134 * fractional part of f < 0.5: |
|
135 * |
|
136 * round f down to nearest integer |
|
137 * result = ((input + 1) * f) >> r |
|
138 * |
|
139 * fractional part of f > 0.5: |
|
140 * |
|
141 * round f up to nearest integer |
|
142 * result = (input * f) >> r |
|
143 * |
|
144 * This is the original algorithm that gives truncated results. But we |
|
145 * want properly rounded results, so we replace "input" with |
|
146 * "input + divisor/2". |
|
147 * |
|
148 * In order to allow SIMD implementations we also tweak the values to |
|
149 * allow the same calculation to be made at all times: |
|
150 * |
|
151 * dctbl[0] = f rounded to nearest integer |
|
152 * dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) |
|
153 * dctbl[2] = 1 << ((word size) * 2 - r) |
|
154 * dctbl[3] = r - (word size) |
|
155 * |
|
156 * dctbl[2] is for stupid instruction sets where the shift operation |
|
157 * isn't member wise (e.g. MMX). |
|
158 * |
|
159 * The reason dctbl[2] and dctbl[3] reduce the shift with (word size) |
|
160 * is that most SIMD implementations have a "multiply and store top |
|
161 * half" operation. |
|
162 * |
|
163 * Lastly, we store each of the values in their own table instead |
|
164 * of in a consecutive manner, yet again in order to allow SIMD |
|
165 * routines. |
|
166 */ |
|
167 LOCAL(int) |
|
168 compute_reciprocal (UINT16 divisor, DCTELEM * dtbl) |
|
169 { |
|
170 UDCTELEM2 fq, fr; |
|
171 UDCTELEM c; |
|
172 int b, r; |
|
173 |
|
174 b = flss(divisor) - 1; |
|
175 r = sizeof(DCTELEM) * 8 + b; |
|
176 |
|
177 fq = ((UDCTELEM2)1 << r) / divisor; |
|
178 fr = ((UDCTELEM2)1 << r) % divisor; |
|
179 |
|
180 c = divisor / 2; /* for rounding */ |
|
181 |
|
182 if (fr == 0) { /* divisor is power of two */ |
|
183 /* fq will be one bit too large to fit in DCTELEM, so adjust */ |
|
184 fq >>= 1; |
|
185 r--; |
|
186 } else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */ |
|
187 c++; |
|
188 } else { /* fractional part is > 0.5 */ |
|
189 fq++; |
|
190 } |
|
191 |
|
192 dtbl[DCTSIZE2 * 0] = (DCTELEM) fq; /* reciprocal */ |
|
193 dtbl[DCTSIZE2 * 1] = (DCTELEM) c; /* correction + roundfactor */ |
|
194 dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r)); /* scale */ |
|
195 dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */ |
|
196 |
|
197 if(r <= 16) return 0; |
|
198 else return 1; |
|
199 } |
|
200 |
|
201 /* |
|
202 * Initialize for a processing pass. |
|
203 * Verify that all referenced Q-tables are present, and set up |
|
204 * the divisor table for each one. |
|
205 * In the current implementation, DCT of all components is done during |
|
206 * the first pass, even if only some components will be output in the |
|
207 * first scan. Hence all components should be examined here. |
|
208 */ |
|
209 |
|
210 METHODDEF(void) |
|
211 start_pass_fdctmgr (j_compress_ptr cinfo) |
|
212 { |
|
213 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
|
214 int ci, qtblno, i; |
|
215 jpeg_component_info *compptr; |
|
216 JQUANT_TBL * qtbl; |
|
217 DCTELEM * dtbl; |
|
218 |
|
219 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
220 ci++, compptr++) { |
|
221 qtblno = compptr->quant_tbl_no; |
|
222 /* Make sure specified quantization table is present */ |
|
223 if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
|
224 cinfo->quant_tbl_ptrs[qtblno] == NULL) |
|
225 ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
|
226 qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
|
227 /* Compute divisors for this quant table */ |
|
228 /* We may do this more than once for same table, but it's not a big deal */ |
|
229 switch (cinfo->dct_method) { |
|
230 #ifdef DCT_ISLOW_SUPPORTED |
|
231 case JDCT_ISLOW: |
|
232 /* For LL&M IDCT method, divisors are equal to raw quantization |
|
233 * coefficients multiplied by 8 (to counteract scaling). |
|
234 */ |
|
235 if (fdct->divisors[qtblno] == NULL) { |
|
236 fdct->divisors[qtblno] = (DCTELEM *) |
|
237 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
238 (DCTSIZE2 * 4) * SIZEOF(DCTELEM)); |
|
239 } |
|
240 dtbl = fdct->divisors[qtblno]; |
|
241 for (i = 0; i < DCTSIZE2; i++) { |
|
242 if(!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) |
|
243 && fdct->quantize == jsimd_quantize) |
|
244 fdct->quantize = quantize; |
|
245 } |
|
246 break; |
|
247 #endif |
|
248 #ifdef DCT_IFAST_SUPPORTED |
|
249 case JDCT_IFAST: |
|
250 { |
|
251 /* For AA&N IDCT method, divisors are equal to quantization |
|
252 * coefficients scaled by scalefactor[row]*scalefactor[col], where |
|
253 * scalefactor[0] = 1 |
|
254 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
|
255 * We apply a further scale factor of 8. |
|
256 */ |
|
257 #define CONST_BITS 14 |
|
258 static const INT16 aanscales[DCTSIZE2] = { |
|
259 /* precomputed values scaled up by 14 bits */ |
|
260 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
|
261 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
|
262 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
|
263 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
|
264 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
|
265 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
|
266 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
|
267 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
|
268 }; |
|
269 SHIFT_TEMPS |
|
270 |
|
271 if (fdct->divisors[qtblno] == NULL) { |
|
272 fdct->divisors[qtblno] = (DCTELEM *) |
|
273 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
274 (DCTSIZE2 * 4) * SIZEOF(DCTELEM)); |
|
275 } |
|
276 dtbl = fdct->divisors[qtblno]; |
|
277 for (i = 0; i < DCTSIZE2; i++) { |
|
278 if(!compute_reciprocal( |
|
279 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
|
280 (INT32) aanscales[i]), |
|
281 CONST_BITS-3), &dtbl[i]) |
|
282 && fdct->quantize == jsimd_quantize) |
|
283 fdct->quantize = quantize; |
|
284 } |
|
285 } |
|
286 break; |
|
287 #endif |
|
288 #ifdef DCT_FLOAT_SUPPORTED |
|
289 case JDCT_FLOAT: |
|
290 { |
|
291 /* For float AA&N IDCT method, divisors are equal to quantization |
|
292 * coefficients scaled by scalefactor[row]*scalefactor[col], where |
|
293 * scalefactor[0] = 1 |
|
294 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
|
295 * We apply a further scale factor of 8. |
|
296 * What's actually stored is 1/divisor so that the inner loop can |
|
297 * use a multiplication rather than a division. |
|
298 */ |
|
299 FAST_FLOAT * fdtbl; |
|
300 int row, col; |
|
301 static const double aanscalefactor[DCTSIZE] = { |
|
302 1.0, 1.387039845, 1.306562965, 1.175875602, |
|
303 1.0, 0.785694958, 0.541196100, 0.275899379 |
|
304 }; |
|
305 |
|
306 if (fdct->float_divisors[qtblno] == NULL) { |
|
307 fdct->float_divisors[qtblno] = (FAST_FLOAT *) |
|
308 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
309 DCTSIZE2 * SIZEOF(FAST_FLOAT)); |
|
310 } |
|
311 fdtbl = fdct->float_divisors[qtblno]; |
|
312 i = 0; |
|
313 for (row = 0; row < DCTSIZE; row++) { |
|
314 for (col = 0; col < DCTSIZE; col++) { |
|
315 fdtbl[i] = (FAST_FLOAT) |
|
316 (1.0 / (((double) qtbl->quantval[i] * |
|
317 aanscalefactor[row] * aanscalefactor[col] * 8.0))); |
|
318 i++; |
|
319 } |
|
320 } |
|
321 } |
|
322 break; |
|
323 #endif |
|
324 default: |
|
325 ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
326 break; |
|
327 } |
|
328 } |
|
329 } |
|
330 |
|
331 |
|
332 /* |
|
333 * Load data into workspace, applying unsigned->signed conversion. |
|
334 */ |
|
335 |
|
336 METHODDEF(void) |
|
337 convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) |
|
338 { |
|
339 register DCTELEM *workspaceptr; |
|
340 register JSAMPROW elemptr; |
|
341 register int elemr; |
|
342 |
|
343 workspaceptr = workspace; |
|
344 for (elemr = 0; elemr < DCTSIZE; elemr++) { |
|
345 elemptr = sample_data[elemr] + start_col; |
|
346 |
|
347 #if DCTSIZE == 8 /* unroll the inner loop */ |
|
348 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
349 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
350 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
351 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
352 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
353 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
354 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
355 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
356 #else |
|
357 { |
|
358 register int elemc; |
|
359 for (elemc = DCTSIZE; elemc > 0; elemc--) |
|
360 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
|
361 } |
|
362 #endif |
|
363 } |
|
364 } |
|
365 |
|
366 |
|
367 /* |
|
368 * Quantize/descale the coefficients, and store into coef_blocks[]. |
|
369 */ |
|
370 |
|
371 METHODDEF(void) |
|
372 quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) |
|
373 { |
|
374 int i; |
|
375 DCTELEM temp; |
|
376 UDCTELEM recip, corr, shift; |
|
377 UDCTELEM2 product; |
|
378 JCOEFPTR output_ptr = coef_block; |
|
379 |
|
380 for (i = 0; i < DCTSIZE2; i++) { |
|
381 temp = workspace[i]; |
|
382 recip = divisors[i + DCTSIZE2 * 0]; |
|
383 corr = divisors[i + DCTSIZE2 * 1]; |
|
384 shift = divisors[i + DCTSIZE2 * 3]; |
|
385 |
|
386 if (temp < 0) { |
|
387 temp = -temp; |
|
388 product = (UDCTELEM2)(temp + corr) * recip; |
|
389 product >>= shift + sizeof(DCTELEM)*8; |
|
390 temp = product; |
|
391 temp = -temp; |
|
392 } else { |
|
393 product = (UDCTELEM2)(temp + corr) * recip; |
|
394 product >>= shift + sizeof(DCTELEM)*8; |
|
395 temp = product; |
|
396 } |
|
397 |
|
398 output_ptr[i] = (JCOEF) temp; |
|
399 } |
|
400 } |
|
401 |
|
402 |
|
403 /* |
|
404 * Perform forward DCT on one or more blocks of a component. |
|
405 * |
|
406 * The input samples are taken from the sample_data[] array starting at |
|
407 * position start_row/start_col, and moving to the right for any additional |
|
408 * blocks. The quantized coefficients are returned in coef_blocks[]. |
|
409 */ |
|
410 |
|
411 METHODDEF(void) |
|
412 forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, |
|
413 JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
|
414 JDIMENSION start_row, JDIMENSION start_col, |
|
415 JDIMENSION num_blocks) |
|
416 /* This version is used for integer DCT implementations. */ |
|
417 { |
|
418 /* This routine is heavily used, so it's worth coding it tightly. */ |
|
419 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
|
420 DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; |
|
421 DCTELEM * workspace; |
|
422 JDIMENSION bi; |
|
423 |
|
424 /* Make sure the compiler doesn't look up these every pass */ |
|
425 forward_DCT_method_ptr do_dct = fdct->dct; |
|
426 convsamp_method_ptr do_convsamp = fdct->convsamp; |
|
427 quantize_method_ptr do_quantize = fdct->quantize; |
|
428 workspace = fdct->workspace; |
|
429 |
|
430 sample_data += start_row; /* fold in the vertical offset once */ |
|
431 |
|
432 for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
|
433 /* Load data into workspace, applying unsigned->signed conversion */ |
|
434 (*do_convsamp) (sample_data, start_col, workspace); |
|
435 |
|
436 /* Perform the DCT */ |
|
437 (*do_dct) (workspace); |
|
438 |
|
439 /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
|
440 (*do_quantize) (coef_blocks[bi], divisors, workspace); |
|
441 } |
|
442 } |
|
443 |
|
444 |
|
445 #ifdef DCT_FLOAT_SUPPORTED |
|
446 |
|
447 |
|
448 METHODDEF(void) |
|
449 convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace) |
|
450 { |
|
451 register FAST_FLOAT *workspaceptr; |
|
452 register JSAMPROW elemptr; |
|
453 register int elemr; |
|
454 |
|
455 workspaceptr = workspace; |
|
456 for (elemr = 0; elemr < DCTSIZE; elemr++) { |
|
457 elemptr = sample_data[elemr] + start_col; |
|
458 #if DCTSIZE == 8 /* unroll the inner loop */ |
|
459 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
460 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
461 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
462 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
463 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
464 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
465 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
466 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
467 #else |
|
468 { |
|
469 register int elemc; |
|
470 for (elemc = DCTSIZE; elemc > 0; elemc--) |
|
471 *workspaceptr++ = (FAST_FLOAT) |
|
472 (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
|
473 } |
|
474 #endif |
|
475 } |
|
476 } |
|
477 |
|
478 |
|
479 METHODDEF(void) |
|
480 quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace) |
|
481 { |
|
482 register FAST_FLOAT temp; |
|
483 register int i; |
|
484 register JCOEFPTR output_ptr = coef_block; |
|
485 |
|
486 for (i = 0; i < DCTSIZE2; i++) { |
|
487 /* Apply the quantization and scaling factor */ |
|
488 temp = workspace[i] * divisors[i]; |
|
489 |
|
490 /* Round to nearest integer. |
|
491 * Since C does not specify the direction of rounding for negative |
|
492 * quotients, we have to force the dividend positive for portability. |
|
493 * The maximum coefficient size is +-16K (for 12-bit data), so this |
|
494 * code should work for either 16-bit or 32-bit ints. |
|
495 */ |
|
496 output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); |
|
497 } |
|
498 } |
|
499 |
|
500 |
|
501 METHODDEF(void) |
|
502 forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, |
|
503 JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
|
504 JDIMENSION start_row, JDIMENSION start_col, |
|
505 JDIMENSION num_blocks) |
|
506 /* This version is used for floating-point DCT implementations. */ |
|
507 { |
|
508 /* This routine is heavily used, so it's worth coding it tightly. */ |
|
509 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
|
510 FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; |
|
511 FAST_FLOAT * workspace; |
|
512 JDIMENSION bi; |
|
513 |
|
514 |
|
515 /* Make sure the compiler doesn't look up these every pass */ |
|
516 float_DCT_method_ptr do_dct = fdct->float_dct; |
|
517 float_convsamp_method_ptr do_convsamp = fdct->float_convsamp; |
|
518 float_quantize_method_ptr do_quantize = fdct->float_quantize; |
|
519 workspace = fdct->float_workspace; |
|
520 |
|
521 sample_data += start_row; /* fold in the vertical offset once */ |
|
522 |
|
523 for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
|
524 /* Load data into workspace, applying unsigned->signed conversion */ |
|
525 (*do_convsamp) (sample_data, start_col, workspace); |
|
526 |
|
527 /* Perform the DCT */ |
|
528 (*do_dct) (workspace); |
|
529 |
|
530 /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
|
531 (*do_quantize) (coef_blocks[bi], divisors, workspace); |
|
532 } |
|
533 } |
|
534 |
|
535 #endif /* DCT_FLOAT_SUPPORTED */ |
|
536 |
|
537 |
|
538 /* |
|
539 * Initialize FDCT manager. |
|
540 */ |
|
541 |
|
542 GLOBAL(void) |
|
543 jinit_forward_dct (j_compress_ptr cinfo) |
|
544 { |
|
545 my_fdct_ptr fdct; |
|
546 int i; |
|
547 |
|
548 fdct = (my_fdct_ptr) |
|
549 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
550 SIZEOF(my_fdct_controller)); |
|
551 cinfo->fdct = (struct jpeg_forward_dct *) fdct; |
|
552 fdct->pub.start_pass = start_pass_fdctmgr; |
|
553 |
|
554 /* First determine the DCT... */ |
|
555 switch (cinfo->dct_method) { |
|
556 #ifdef DCT_ISLOW_SUPPORTED |
|
557 case JDCT_ISLOW: |
|
558 fdct->pub.forward_DCT = forward_DCT; |
|
559 if (jsimd_can_fdct_islow()) |
|
560 fdct->dct = jsimd_fdct_islow; |
|
561 else |
|
562 fdct->dct = jpeg_fdct_islow; |
|
563 break; |
|
564 #endif |
|
565 #ifdef DCT_IFAST_SUPPORTED |
|
566 case JDCT_IFAST: |
|
567 fdct->pub.forward_DCT = forward_DCT; |
|
568 if (jsimd_can_fdct_ifast()) |
|
569 fdct->dct = jsimd_fdct_ifast; |
|
570 else |
|
571 fdct->dct = jpeg_fdct_ifast; |
|
572 break; |
|
573 #endif |
|
574 #ifdef DCT_FLOAT_SUPPORTED |
|
575 case JDCT_FLOAT: |
|
576 fdct->pub.forward_DCT = forward_DCT_float; |
|
577 if (jsimd_can_fdct_float()) |
|
578 fdct->float_dct = jsimd_fdct_float; |
|
579 else |
|
580 fdct->float_dct = jpeg_fdct_float; |
|
581 break; |
|
582 #endif |
|
583 default: |
|
584 ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
585 break; |
|
586 } |
|
587 |
|
588 /* ...then the supporting stages. */ |
|
589 switch (cinfo->dct_method) { |
|
590 #ifdef DCT_ISLOW_SUPPORTED |
|
591 case JDCT_ISLOW: |
|
592 #endif |
|
593 #ifdef DCT_IFAST_SUPPORTED |
|
594 case JDCT_IFAST: |
|
595 #endif |
|
596 #if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) |
|
597 if (jsimd_can_convsamp()) |
|
598 fdct->convsamp = jsimd_convsamp; |
|
599 else |
|
600 fdct->convsamp = convsamp; |
|
601 if (jsimd_can_quantize()) |
|
602 fdct->quantize = jsimd_quantize; |
|
603 else |
|
604 fdct->quantize = quantize; |
|
605 break; |
|
606 #endif |
|
607 #ifdef DCT_FLOAT_SUPPORTED |
|
608 case JDCT_FLOAT: |
|
609 if (jsimd_can_convsamp_float()) |
|
610 fdct->float_convsamp = jsimd_convsamp_float; |
|
611 else |
|
612 fdct->float_convsamp = convsamp_float; |
|
613 if (jsimd_can_quantize_float()) |
|
614 fdct->float_quantize = jsimd_quantize_float; |
|
615 else |
|
616 fdct->float_quantize = quantize_float; |
|
617 break; |
|
618 #endif |
|
619 default: |
|
620 ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
621 break; |
|
622 } |
|
623 |
|
624 /* Allocate workspace memory */ |
|
625 #ifdef DCT_FLOAT_SUPPORTED |
|
626 if (cinfo->dct_method == JDCT_FLOAT) |
|
627 fdct->float_workspace = (FAST_FLOAT *) |
|
628 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
629 SIZEOF(FAST_FLOAT) * DCTSIZE2); |
|
630 else |
|
631 #endif |
|
632 fdct->workspace = (DCTELEM *) |
|
633 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
634 SIZEOF(DCTELEM) * DCTSIZE2); |
|
635 |
|
636 /* Mark divisor tables unallocated */ |
|
637 for (i = 0; i < NUM_QUANT_TBLS; i++) { |
|
638 fdct->divisors[i] = NULL; |
|
639 #ifdef DCT_FLOAT_SUPPORTED |
|
640 fdct->float_divisors[i] = NULL; |
|
641 #endif |
|
642 } |
|
643 } |