|
1 /* |
|
2 * jquant2.c |
|
3 * |
|
4 * This file was part of the Independent JPEG Group's software: |
|
5 * Copyright (C) 1991-1996, Thomas G. Lane. |
|
6 * libjpeg-turbo Modifications: |
|
7 * Copyright (C) 2009, D. R. Commander. |
|
8 * For conditions of distribution and use, see the accompanying README file. |
|
9 * |
|
10 * This file contains 2-pass color quantization (color mapping) routines. |
|
11 * These routines provide selection of a custom color map for an image, |
|
12 * followed by mapping of the image to that color map, with optional |
|
13 * Floyd-Steinberg dithering. |
|
14 * It is also possible to use just the second pass to map to an arbitrary |
|
15 * externally-given color map. |
|
16 * |
|
17 * Note: ordered dithering is not supported, since there isn't any fast |
|
18 * way to compute intercolor distances; it's unclear that ordered dither's |
|
19 * fundamental assumptions even hold with an irregularly spaced color map. |
|
20 */ |
|
21 |
|
22 #define JPEG_INTERNALS |
|
23 #include "jinclude.h" |
|
24 #include "jpeglib.h" |
|
25 |
|
26 #ifdef QUANT_2PASS_SUPPORTED |
|
27 |
|
28 |
|
29 /* |
|
30 * This module implements the well-known Heckbert paradigm for color |
|
31 * quantization. Most of the ideas used here can be traced back to |
|
32 * Heckbert's seminal paper |
|
33 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", |
|
34 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. |
|
35 * |
|
36 * In the first pass over the image, we accumulate a histogram showing the |
|
37 * usage count of each possible color. To keep the histogram to a reasonable |
|
38 * size, we reduce the precision of the input; typical practice is to retain |
|
39 * 5 or 6 bits per color, so that 8 or 4 different input values are counted |
|
40 * in the same histogram cell. |
|
41 * |
|
42 * Next, the color-selection step begins with a box representing the whole |
|
43 * color space, and repeatedly splits the "largest" remaining box until we |
|
44 * have as many boxes as desired colors. Then the mean color in each |
|
45 * remaining box becomes one of the possible output colors. |
|
46 * |
|
47 * The second pass over the image maps each input pixel to the closest output |
|
48 * color (optionally after applying a Floyd-Steinberg dithering correction). |
|
49 * This mapping is logically trivial, but making it go fast enough requires |
|
50 * considerable care. |
|
51 * |
|
52 * Heckbert-style quantizers vary a good deal in their policies for choosing |
|
53 * the "largest" box and deciding where to cut it. The particular policies |
|
54 * used here have proved out well in experimental comparisons, but better ones |
|
55 * may yet be found. |
|
56 * |
|
57 * In earlier versions of the IJG code, this module quantized in YCbCr color |
|
58 * space, processing the raw upsampled data without a color conversion step. |
|
59 * This allowed the color conversion math to be done only once per colormap |
|
60 * entry, not once per pixel. However, that optimization precluded other |
|
61 * useful optimizations (such as merging color conversion with upsampling) |
|
62 * and it also interfered with desired capabilities such as quantizing to an |
|
63 * externally-supplied colormap. We have therefore abandoned that approach. |
|
64 * The present code works in the post-conversion color space, typically RGB. |
|
65 * |
|
66 * To improve the visual quality of the results, we actually work in scaled |
|
67 * RGB space, giving G distances more weight than R, and R in turn more than |
|
68 * B. To do everything in integer math, we must use integer scale factors. |
|
69 * The 2/3/1 scale factors used here correspond loosely to the relative |
|
70 * weights of the colors in the NTSC grayscale equation. |
|
71 * If you want to use this code to quantize a non-RGB color space, you'll |
|
72 * probably need to change these scale factors. |
|
73 */ |
|
74 |
|
75 #define R_SCALE 2 /* scale R distances by this much */ |
|
76 #define G_SCALE 3 /* scale G distances by this much */ |
|
77 #define B_SCALE 1 /* and B by this much */ |
|
78 |
|
79 static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE}; |
|
80 #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]] |
|
81 #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]] |
|
82 #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]] |
|
83 |
|
84 /* |
|
85 * First we have the histogram data structure and routines for creating it. |
|
86 * |
|
87 * The number of bits of precision can be adjusted by changing these symbols. |
|
88 * We recommend keeping 6 bits for G and 5 each for R and B. |
|
89 * If you have plenty of memory and cycles, 6 bits all around gives marginally |
|
90 * better results; if you are short of memory, 5 bits all around will save |
|
91 * some space but degrade the results. |
|
92 * To maintain a fully accurate histogram, we'd need to allocate a "long" |
|
93 * (preferably unsigned long) for each cell. In practice this is overkill; |
|
94 * we can get by with 16 bits per cell. Few of the cell counts will overflow, |
|
95 * and clamping those that do overflow to the maximum value will give close- |
|
96 * enough results. This reduces the recommended histogram size from 256Kb |
|
97 * to 128Kb, which is a useful savings on PC-class machines. |
|
98 * (In the second pass the histogram space is re-used for pixel mapping data; |
|
99 * in that capacity, each cell must be able to store zero to the number of |
|
100 * desired colors. 16 bits/cell is plenty for that too.) |
|
101 * Since the JPEG code is intended to run in small memory model on 80x86 |
|
102 * machines, we can't just allocate the histogram in one chunk. Instead |
|
103 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each |
|
104 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and |
|
105 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that |
|
106 * on 80x86 machines, the pointer row is in near memory but the actual |
|
107 * arrays are in far memory (same arrangement as we use for image arrays). |
|
108 */ |
|
109 |
|
110 #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ |
|
111 |
|
112 /* These will do the right thing for either R,G,B or B,G,R color order, |
|
113 * but you may not like the results for other color orders. |
|
114 */ |
|
115 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ |
|
116 #define HIST_C1_BITS 6 /* bits of precision in G histogram */ |
|
117 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ |
|
118 |
|
119 /* Number of elements along histogram axes. */ |
|
120 #define HIST_C0_ELEMS (1<<HIST_C0_BITS) |
|
121 #define HIST_C1_ELEMS (1<<HIST_C1_BITS) |
|
122 #define HIST_C2_ELEMS (1<<HIST_C2_BITS) |
|
123 |
|
124 /* These are the amounts to shift an input value to get a histogram index. */ |
|
125 #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS) |
|
126 #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS) |
|
127 #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) |
|
128 |
|
129 |
|
130 typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ |
|
131 |
|
132 typedef histcell FAR * histptr; /* for pointers to histogram cells */ |
|
133 |
|
134 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ |
|
135 typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */ |
|
136 typedef hist2d * hist3d; /* type for top-level pointer */ |
|
137 |
|
138 |
|
139 /* Declarations for Floyd-Steinberg dithering. |
|
140 * |
|
141 * Errors are accumulated into the array fserrors[], at a resolution of |
|
142 * 1/16th of a pixel count. The error at a given pixel is propagated |
|
143 * to its not-yet-processed neighbors using the standard F-S fractions, |
|
144 * ... (here) 7/16 |
|
145 * 3/16 5/16 1/16 |
|
146 * We work left-to-right on even rows, right-to-left on odd rows. |
|
147 * |
|
148 * We can get away with a single array (holding one row's worth of errors) |
|
149 * by using it to store the current row's errors at pixel columns not yet |
|
150 * processed, but the next row's errors at columns already processed. We |
|
151 * need only a few extra variables to hold the errors immediately around the |
|
152 * current column. (If we are lucky, those variables are in registers, but |
|
153 * even if not, they're probably cheaper to access than array elements are.) |
|
154 * |
|
155 * The fserrors[] array has (#columns + 2) entries; the extra entry at |
|
156 * each end saves us from special-casing the first and last pixels. |
|
157 * Each entry is three values long, one value for each color component. |
|
158 * |
|
159 * Note: on a wide image, we might not have enough room in a PC's near data |
|
160 * segment to hold the error array; so it is allocated with alloc_large. |
|
161 */ |
|
162 |
|
163 #if BITS_IN_JSAMPLE == 8 |
|
164 typedef INT16 FSERROR; /* 16 bits should be enough */ |
|
165 typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
|
166 #else |
|
167 typedef INT32 FSERROR; /* may need more than 16 bits */ |
|
168 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ |
|
169 #endif |
|
170 |
|
171 typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ |
|
172 |
|
173 |
|
174 /* Private subobject */ |
|
175 |
|
176 typedef struct { |
|
177 struct jpeg_color_quantizer pub; /* public fields */ |
|
178 |
|
179 /* Space for the eventually created colormap is stashed here */ |
|
180 JSAMPARRAY sv_colormap; /* colormap allocated at init time */ |
|
181 int desired; /* desired # of colors = size of colormap */ |
|
182 |
|
183 /* Variables for accumulating image statistics */ |
|
184 hist3d histogram; /* pointer to the histogram */ |
|
185 |
|
186 boolean needs_zeroed; /* TRUE if next pass must zero histogram */ |
|
187 |
|
188 /* Variables for Floyd-Steinberg dithering */ |
|
189 FSERRPTR fserrors; /* accumulated errors */ |
|
190 boolean on_odd_row; /* flag to remember which row we are on */ |
|
191 int * error_limiter; /* table for clamping the applied error */ |
|
192 } my_cquantizer; |
|
193 |
|
194 typedef my_cquantizer * my_cquantize_ptr; |
|
195 |
|
196 |
|
197 /* |
|
198 * Prescan some rows of pixels. |
|
199 * In this module the prescan simply updates the histogram, which has been |
|
200 * initialized to zeroes by start_pass. |
|
201 * An output_buf parameter is required by the method signature, but no data |
|
202 * is actually output (in fact the buffer controller is probably passing a |
|
203 * NULL pointer). |
|
204 */ |
|
205 |
|
206 METHODDEF(void) |
|
207 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
|
208 JSAMPARRAY output_buf, int num_rows) |
|
209 { |
|
210 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
211 register JSAMPROW ptr; |
|
212 register histptr histp; |
|
213 register hist3d histogram = cquantize->histogram; |
|
214 int row; |
|
215 JDIMENSION col; |
|
216 JDIMENSION width = cinfo->output_width; |
|
217 |
|
218 for (row = 0; row < num_rows; row++) { |
|
219 ptr = input_buf[row]; |
|
220 for (col = width; col > 0; col--) { |
|
221 /* get pixel value and index into the histogram */ |
|
222 histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] |
|
223 [GETJSAMPLE(ptr[1]) >> C1_SHIFT] |
|
224 [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; |
|
225 /* increment, check for overflow and undo increment if so. */ |
|
226 if (++(*histp) <= 0) |
|
227 (*histp)--; |
|
228 ptr += 3; |
|
229 } |
|
230 } |
|
231 } |
|
232 |
|
233 |
|
234 /* |
|
235 * Next we have the really interesting routines: selection of a colormap |
|
236 * given the completed histogram. |
|
237 * These routines work with a list of "boxes", each representing a rectangular |
|
238 * subset of the input color space (to histogram precision). |
|
239 */ |
|
240 |
|
241 typedef struct { |
|
242 /* The bounds of the box (inclusive); expressed as histogram indexes */ |
|
243 int c0min, c0max; |
|
244 int c1min, c1max; |
|
245 int c2min, c2max; |
|
246 /* The volume (actually 2-norm) of the box */ |
|
247 INT32 volume; |
|
248 /* The number of nonzero histogram cells within this box */ |
|
249 long colorcount; |
|
250 } box; |
|
251 |
|
252 typedef box * boxptr; |
|
253 |
|
254 |
|
255 LOCAL(boxptr) |
|
256 find_biggest_color_pop (boxptr boxlist, int numboxes) |
|
257 /* Find the splittable box with the largest color population */ |
|
258 /* Returns NULL if no splittable boxes remain */ |
|
259 { |
|
260 register boxptr boxp; |
|
261 register int i; |
|
262 register long maxc = 0; |
|
263 boxptr which = NULL; |
|
264 |
|
265 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { |
|
266 if (boxp->colorcount > maxc && boxp->volume > 0) { |
|
267 which = boxp; |
|
268 maxc = boxp->colorcount; |
|
269 } |
|
270 } |
|
271 return which; |
|
272 } |
|
273 |
|
274 |
|
275 LOCAL(boxptr) |
|
276 find_biggest_volume (boxptr boxlist, int numboxes) |
|
277 /* Find the splittable box with the largest (scaled) volume */ |
|
278 /* Returns NULL if no splittable boxes remain */ |
|
279 { |
|
280 register boxptr boxp; |
|
281 register int i; |
|
282 register INT32 maxv = 0; |
|
283 boxptr which = NULL; |
|
284 |
|
285 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { |
|
286 if (boxp->volume > maxv) { |
|
287 which = boxp; |
|
288 maxv = boxp->volume; |
|
289 } |
|
290 } |
|
291 return which; |
|
292 } |
|
293 |
|
294 |
|
295 LOCAL(void) |
|
296 update_box (j_decompress_ptr cinfo, boxptr boxp) |
|
297 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ |
|
298 /* and recompute its volume and population */ |
|
299 { |
|
300 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
301 hist3d histogram = cquantize->histogram; |
|
302 histptr histp; |
|
303 int c0,c1,c2; |
|
304 int c0min,c0max,c1min,c1max,c2min,c2max; |
|
305 INT32 dist0,dist1,dist2; |
|
306 long ccount; |
|
307 |
|
308 c0min = boxp->c0min; c0max = boxp->c0max; |
|
309 c1min = boxp->c1min; c1max = boxp->c1max; |
|
310 c2min = boxp->c2min; c2max = boxp->c2max; |
|
311 |
|
312 if (c0max > c0min) |
|
313 for (c0 = c0min; c0 <= c0max; c0++) |
|
314 for (c1 = c1min; c1 <= c1max; c1++) { |
|
315 histp = & histogram[c0][c1][c2min]; |
|
316 for (c2 = c2min; c2 <= c2max; c2++) |
|
317 if (*histp++ != 0) { |
|
318 boxp->c0min = c0min = c0; |
|
319 goto have_c0min; |
|
320 } |
|
321 } |
|
322 have_c0min: |
|
323 if (c0max > c0min) |
|
324 for (c0 = c0max; c0 >= c0min; c0--) |
|
325 for (c1 = c1min; c1 <= c1max; c1++) { |
|
326 histp = & histogram[c0][c1][c2min]; |
|
327 for (c2 = c2min; c2 <= c2max; c2++) |
|
328 if (*histp++ != 0) { |
|
329 boxp->c0max = c0max = c0; |
|
330 goto have_c0max; |
|
331 } |
|
332 } |
|
333 have_c0max: |
|
334 if (c1max > c1min) |
|
335 for (c1 = c1min; c1 <= c1max; c1++) |
|
336 for (c0 = c0min; c0 <= c0max; c0++) { |
|
337 histp = & histogram[c0][c1][c2min]; |
|
338 for (c2 = c2min; c2 <= c2max; c2++) |
|
339 if (*histp++ != 0) { |
|
340 boxp->c1min = c1min = c1; |
|
341 goto have_c1min; |
|
342 } |
|
343 } |
|
344 have_c1min: |
|
345 if (c1max > c1min) |
|
346 for (c1 = c1max; c1 >= c1min; c1--) |
|
347 for (c0 = c0min; c0 <= c0max; c0++) { |
|
348 histp = & histogram[c0][c1][c2min]; |
|
349 for (c2 = c2min; c2 <= c2max; c2++) |
|
350 if (*histp++ != 0) { |
|
351 boxp->c1max = c1max = c1; |
|
352 goto have_c1max; |
|
353 } |
|
354 } |
|
355 have_c1max: |
|
356 if (c2max > c2min) |
|
357 for (c2 = c2min; c2 <= c2max; c2++) |
|
358 for (c0 = c0min; c0 <= c0max; c0++) { |
|
359 histp = & histogram[c0][c1min][c2]; |
|
360 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
|
361 if (*histp != 0) { |
|
362 boxp->c2min = c2min = c2; |
|
363 goto have_c2min; |
|
364 } |
|
365 } |
|
366 have_c2min: |
|
367 if (c2max > c2min) |
|
368 for (c2 = c2max; c2 >= c2min; c2--) |
|
369 for (c0 = c0min; c0 <= c0max; c0++) { |
|
370 histp = & histogram[c0][c1min][c2]; |
|
371 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
|
372 if (*histp != 0) { |
|
373 boxp->c2max = c2max = c2; |
|
374 goto have_c2max; |
|
375 } |
|
376 } |
|
377 have_c2max: |
|
378 |
|
379 /* Update box volume. |
|
380 * We use 2-norm rather than real volume here; this biases the method |
|
381 * against making long narrow boxes, and it has the side benefit that |
|
382 * a box is splittable iff norm > 0. |
|
383 * Since the differences are expressed in histogram-cell units, |
|
384 * we have to shift back to JSAMPLE units to get consistent distances; |
|
385 * after which, we scale according to the selected distance scale factors. |
|
386 */ |
|
387 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; |
|
388 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; |
|
389 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; |
|
390 boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; |
|
391 |
|
392 /* Now scan remaining volume of box and compute population */ |
|
393 ccount = 0; |
|
394 for (c0 = c0min; c0 <= c0max; c0++) |
|
395 for (c1 = c1min; c1 <= c1max; c1++) { |
|
396 histp = & histogram[c0][c1][c2min]; |
|
397 for (c2 = c2min; c2 <= c2max; c2++, histp++) |
|
398 if (*histp != 0) { |
|
399 ccount++; |
|
400 } |
|
401 } |
|
402 boxp->colorcount = ccount; |
|
403 } |
|
404 |
|
405 |
|
406 LOCAL(int) |
|
407 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, |
|
408 int desired_colors) |
|
409 /* Repeatedly select and split the largest box until we have enough boxes */ |
|
410 { |
|
411 int n,lb; |
|
412 int c0,c1,c2,cmax; |
|
413 register boxptr b1,b2; |
|
414 |
|
415 while (numboxes < desired_colors) { |
|
416 /* Select box to split. |
|
417 * Current algorithm: by population for first half, then by volume. |
|
418 */ |
|
419 if (numboxes*2 <= desired_colors) { |
|
420 b1 = find_biggest_color_pop(boxlist, numboxes); |
|
421 } else { |
|
422 b1 = find_biggest_volume(boxlist, numboxes); |
|
423 } |
|
424 if (b1 == NULL) /* no splittable boxes left! */ |
|
425 break; |
|
426 b2 = &boxlist[numboxes]; /* where new box will go */ |
|
427 /* Copy the color bounds to the new box. */ |
|
428 b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; |
|
429 b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; |
|
430 /* Choose which axis to split the box on. |
|
431 * Current algorithm: longest scaled axis. |
|
432 * See notes in update_box about scaling distances. |
|
433 */ |
|
434 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; |
|
435 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; |
|
436 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; |
|
437 /* We want to break any ties in favor of green, then red, blue last. |
|
438 * This code does the right thing for R,G,B or B,G,R color orders only. |
|
439 */ |
|
440 if (rgb_red[cinfo->out_color_space] == 0) { |
|
441 cmax = c1; n = 1; |
|
442 if (c0 > cmax) { cmax = c0; n = 0; } |
|
443 if (c2 > cmax) { n = 2; } |
|
444 } |
|
445 else { |
|
446 cmax = c1; n = 1; |
|
447 if (c2 > cmax) { cmax = c2; n = 2; } |
|
448 if (c0 > cmax) { n = 0; } |
|
449 } |
|
450 /* Choose split point along selected axis, and update box bounds. |
|
451 * Current algorithm: split at halfway point. |
|
452 * (Since the box has been shrunk to minimum volume, |
|
453 * any split will produce two nonempty subboxes.) |
|
454 * Note that lb value is max for lower box, so must be < old max. |
|
455 */ |
|
456 switch (n) { |
|
457 case 0: |
|
458 lb = (b1->c0max + b1->c0min) / 2; |
|
459 b1->c0max = lb; |
|
460 b2->c0min = lb+1; |
|
461 break; |
|
462 case 1: |
|
463 lb = (b1->c1max + b1->c1min) / 2; |
|
464 b1->c1max = lb; |
|
465 b2->c1min = lb+1; |
|
466 break; |
|
467 case 2: |
|
468 lb = (b1->c2max + b1->c2min) / 2; |
|
469 b1->c2max = lb; |
|
470 b2->c2min = lb+1; |
|
471 break; |
|
472 } |
|
473 /* Update stats for boxes */ |
|
474 update_box(cinfo, b1); |
|
475 update_box(cinfo, b2); |
|
476 numboxes++; |
|
477 } |
|
478 return numboxes; |
|
479 } |
|
480 |
|
481 |
|
482 LOCAL(void) |
|
483 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) |
|
484 /* Compute representative color for a box, put it in colormap[icolor] */ |
|
485 { |
|
486 /* Current algorithm: mean weighted by pixels (not colors) */ |
|
487 /* Note it is important to get the rounding correct! */ |
|
488 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
489 hist3d histogram = cquantize->histogram; |
|
490 histptr histp; |
|
491 int c0,c1,c2; |
|
492 int c0min,c0max,c1min,c1max,c2min,c2max; |
|
493 long count; |
|
494 long total = 0; |
|
495 long c0total = 0; |
|
496 long c1total = 0; |
|
497 long c2total = 0; |
|
498 |
|
499 c0min = boxp->c0min; c0max = boxp->c0max; |
|
500 c1min = boxp->c1min; c1max = boxp->c1max; |
|
501 c2min = boxp->c2min; c2max = boxp->c2max; |
|
502 |
|
503 for (c0 = c0min; c0 <= c0max; c0++) |
|
504 for (c1 = c1min; c1 <= c1max; c1++) { |
|
505 histp = & histogram[c0][c1][c2min]; |
|
506 for (c2 = c2min; c2 <= c2max; c2++) { |
|
507 if ((count = *histp++) != 0) { |
|
508 total += count; |
|
509 c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; |
|
510 c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; |
|
511 c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; |
|
512 } |
|
513 } |
|
514 } |
|
515 |
|
516 cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); |
|
517 cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); |
|
518 cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); |
|
519 } |
|
520 |
|
521 |
|
522 LOCAL(void) |
|
523 select_colors (j_decompress_ptr cinfo, int desired_colors) |
|
524 /* Master routine for color selection */ |
|
525 { |
|
526 boxptr boxlist; |
|
527 int numboxes; |
|
528 int i; |
|
529 |
|
530 /* Allocate workspace for box list */ |
|
531 boxlist = (boxptr) (*cinfo->mem->alloc_small) |
|
532 ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); |
|
533 /* Initialize one box containing whole space */ |
|
534 numboxes = 1; |
|
535 boxlist[0].c0min = 0; |
|
536 boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; |
|
537 boxlist[0].c1min = 0; |
|
538 boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; |
|
539 boxlist[0].c2min = 0; |
|
540 boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; |
|
541 /* Shrink it to actually-used volume and set its statistics */ |
|
542 update_box(cinfo, & boxlist[0]); |
|
543 /* Perform median-cut to produce final box list */ |
|
544 numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); |
|
545 /* Compute the representative color for each box, fill colormap */ |
|
546 for (i = 0; i < numboxes; i++) |
|
547 compute_color(cinfo, & boxlist[i], i); |
|
548 cinfo->actual_number_of_colors = numboxes; |
|
549 TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); |
|
550 } |
|
551 |
|
552 |
|
553 /* |
|
554 * These routines are concerned with the time-critical task of mapping input |
|
555 * colors to the nearest color in the selected colormap. |
|
556 * |
|
557 * We re-use the histogram space as an "inverse color map", essentially a |
|
558 * cache for the results of nearest-color searches. All colors within a |
|
559 * histogram cell will be mapped to the same colormap entry, namely the one |
|
560 * closest to the cell's center. This may not be quite the closest entry to |
|
561 * the actual input color, but it's almost as good. A zero in the cache |
|
562 * indicates we haven't found the nearest color for that cell yet; the array |
|
563 * is cleared to zeroes before starting the mapping pass. When we find the |
|
564 * nearest color for a cell, its colormap index plus one is recorded in the |
|
565 * cache for future use. The pass2 scanning routines call fill_inverse_cmap |
|
566 * when they need to use an unfilled entry in the cache. |
|
567 * |
|
568 * Our method of efficiently finding nearest colors is based on the "locally |
|
569 * sorted search" idea described by Heckbert and on the incremental distance |
|
570 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics |
|
571 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that |
|
572 * the distances from a given colormap entry to each cell of the histogram can |
|
573 * be computed quickly using an incremental method: the differences between |
|
574 * distances to adjacent cells themselves differ by a constant. This allows a |
|
575 * fairly fast implementation of the "brute force" approach of computing the |
|
576 * distance from every colormap entry to every histogram cell. Unfortunately, |
|
577 * it needs a work array to hold the best-distance-so-far for each histogram |
|
578 * cell (because the inner loop has to be over cells, not colormap entries). |
|
579 * The work array elements have to be INT32s, so the work array would need |
|
580 * 256Kb at our recommended precision. This is not feasible in DOS machines. |
|
581 * |
|
582 * To get around these problems, we apply Thomas' method to compute the |
|
583 * nearest colors for only the cells within a small subbox of the histogram. |
|
584 * The work array need be only as big as the subbox, so the memory usage |
|
585 * problem is solved. Furthermore, we need not fill subboxes that are never |
|
586 * referenced in pass2; many images use only part of the color gamut, so a |
|
587 * fair amount of work is saved. An additional advantage of this |
|
588 * approach is that we can apply Heckbert's locality criterion to quickly |
|
589 * eliminate colormap entries that are far away from the subbox; typically |
|
590 * three-fourths of the colormap entries are rejected by Heckbert's criterion, |
|
591 * and we need not compute their distances to individual cells in the subbox. |
|
592 * The speed of this approach is heavily influenced by the subbox size: too |
|
593 * small means too much overhead, too big loses because Heckbert's criterion |
|
594 * can't eliminate as many colormap entries. Empirically the best subbox |
|
595 * size seems to be about 1/512th of the histogram (1/8th in each direction). |
|
596 * |
|
597 * Thomas' article also describes a refined method which is asymptotically |
|
598 * faster than the brute-force method, but it is also far more complex and |
|
599 * cannot efficiently be applied to small subboxes. It is therefore not |
|
600 * useful for programs intended to be portable to DOS machines. On machines |
|
601 * with plenty of memory, filling the whole histogram in one shot with Thomas' |
|
602 * refined method might be faster than the present code --- but then again, |
|
603 * it might not be any faster, and it's certainly more complicated. |
|
604 */ |
|
605 |
|
606 |
|
607 /* log2(histogram cells in update box) for each axis; this can be adjusted */ |
|
608 #define BOX_C0_LOG (HIST_C0_BITS-3) |
|
609 #define BOX_C1_LOG (HIST_C1_BITS-3) |
|
610 #define BOX_C2_LOG (HIST_C2_BITS-3) |
|
611 |
|
612 #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */ |
|
613 #define BOX_C1_ELEMS (1<<BOX_C1_LOG) |
|
614 #define BOX_C2_ELEMS (1<<BOX_C2_LOG) |
|
615 |
|
616 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) |
|
617 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) |
|
618 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) |
|
619 |
|
620 |
|
621 /* |
|
622 * The next three routines implement inverse colormap filling. They could |
|
623 * all be folded into one big routine, but splitting them up this way saves |
|
624 * some stack space (the mindist[] and bestdist[] arrays need not coexist) |
|
625 * and may allow some compilers to produce better code by registerizing more |
|
626 * inner-loop variables. |
|
627 */ |
|
628 |
|
629 LOCAL(int) |
|
630 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
|
631 JSAMPLE colorlist[]) |
|
632 /* Locate the colormap entries close enough to an update box to be candidates |
|
633 * for the nearest entry to some cell(s) in the update box. The update box |
|
634 * is specified by the center coordinates of its first cell. The number of |
|
635 * candidate colormap entries is returned, and their colormap indexes are |
|
636 * placed in colorlist[]. |
|
637 * This routine uses Heckbert's "locally sorted search" criterion to select |
|
638 * the colors that need further consideration. |
|
639 */ |
|
640 { |
|
641 int numcolors = cinfo->actual_number_of_colors; |
|
642 int maxc0, maxc1, maxc2; |
|
643 int centerc0, centerc1, centerc2; |
|
644 int i, x, ncolors; |
|
645 INT32 minmaxdist, min_dist, max_dist, tdist; |
|
646 INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ |
|
647 |
|
648 /* Compute true coordinates of update box's upper corner and center. |
|
649 * Actually we compute the coordinates of the center of the upper-corner |
|
650 * histogram cell, which are the upper bounds of the volume we care about. |
|
651 * Note that since ">>" rounds down, the "center" values may be closer to |
|
652 * min than to max; hence comparisons to them must be "<=", not "<". |
|
653 */ |
|
654 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); |
|
655 centerc0 = (minc0 + maxc0) >> 1; |
|
656 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); |
|
657 centerc1 = (minc1 + maxc1) >> 1; |
|
658 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); |
|
659 centerc2 = (minc2 + maxc2) >> 1; |
|
660 |
|
661 /* For each color in colormap, find: |
|
662 * 1. its minimum squared-distance to any point in the update box |
|
663 * (zero if color is within update box); |
|
664 * 2. its maximum squared-distance to any point in the update box. |
|
665 * Both of these can be found by considering only the corners of the box. |
|
666 * We save the minimum distance for each color in mindist[]; |
|
667 * only the smallest maximum distance is of interest. |
|
668 */ |
|
669 minmaxdist = 0x7FFFFFFFL; |
|
670 |
|
671 for (i = 0; i < numcolors; i++) { |
|
672 /* We compute the squared-c0-distance term, then add in the other two. */ |
|
673 x = GETJSAMPLE(cinfo->colormap[0][i]); |
|
674 if (x < minc0) { |
|
675 tdist = (x - minc0) * C0_SCALE; |
|
676 min_dist = tdist*tdist; |
|
677 tdist = (x - maxc0) * C0_SCALE; |
|
678 max_dist = tdist*tdist; |
|
679 } else if (x > maxc0) { |
|
680 tdist = (x - maxc0) * C0_SCALE; |
|
681 min_dist = tdist*tdist; |
|
682 tdist = (x - minc0) * C0_SCALE; |
|
683 max_dist = tdist*tdist; |
|
684 } else { |
|
685 /* within cell range so no contribution to min_dist */ |
|
686 min_dist = 0; |
|
687 if (x <= centerc0) { |
|
688 tdist = (x - maxc0) * C0_SCALE; |
|
689 max_dist = tdist*tdist; |
|
690 } else { |
|
691 tdist = (x - minc0) * C0_SCALE; |
|
692 max_dist = tdist*tdist; |
|
693 } |
|
694 } |
|
695 |
|
696 x = GETJSAMPLE(cinfo->colormap[1][i]); |
|
697 if (x < minc1) { |
|
698 tdist = (x - minc1) * C1_SCALE; |
|
699 min_dist += tdist*tdist; |
|
700 tdist = (x - maxc1) * C1_SCALE; |
|
701 max_dist += tdist*tdist; |
|
702 } else if (x > maxc1) { |
|
703 tdist = (x - maxc1) * C1_SCALE; |
|
704 min_dist += tdist*tdist; |
|
705 tdist = (x - minc1) * C1_SCALE; |
|
706 max_dist += tdist*tdist; |
|
707 } else { |
|
708 /* within cell range so no contribution to min_dist */ |
|
709 if (x <= centerc1) { |
|
710 tdist = (x - maxc1) * C1_SCALE; |
|
711 max_dist += tdist*tdist; |
|
712 } else { |
|
713 tdist = (x - minc1) * C1_SCALE; |
|
714 max_dist += tdist*tdist; |
|
715 } |
|
716 } |
|
717 |
|
718 x = GETJSAMPLE(cinfo->colormap[2][i]); |
|
719 if (x < minc2) { |
|
720 tdist = (x - minc2) * C2_SCALE; |
|
721 min_dist += tdist*tdist; |
|
722 tdist = (x - maxc2) * C2_SCALE; |
|
723 max_dist += tdist*tdist; |
|
724 } else if (x > maxc2) { |
|
725 tdist = (x - maxc2) * C2_SCALE; |
|
726 min_dist += tdist*tdist; |
|
727 tdist = (x - minc2) * C2_SCALE; |
|
728 max_dist += tdist*tdist; |
|
729 } else { |
|
730 /* within cell range so no contribution to min_dist */ |
|
731 if (x <= centerc2) { |
|
732 tdist = (x - maxc2) * C2_SCALE; |
|
733 max_dist += tdist*tdist; |
|
734 } else { |
|
735 tdist = (x - minc2) * C2_SCALE; |
|
736 max_dist += tdist*tdist; |
|
737 } |
|
738 } |
|
739 |
|
740 mindist[i] = min_dist; /* save away the results */ |
|
741 if (max_dist < minmaxdist) |
|
742 minmaxdist = max_dist; |
|
743 } |
|
744 |
|
745 /* Now we know that no cell in the update box is more than minmaxdist |
|
746 * away from some colormap entry. Therefore, only colors that are |
|
747 * within minmaxdist of some part of the box need be considered. |
|
748 */ |
|
749 ncolors = 0; |
|
750 for (i = 0; i < numcolors; i++) { |
|
751 if (mindist[i] <= minmaxdist) |
|
752 colorlist[ncolors++] = (JSAMPLE) i; |
|
753 } |
|
754 return ncolors; |
|
755 } |
|
756 |
|
757 |
|
758 LOCAL(void) |
|
759 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
|
760 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) |
|
761 /* Find the closest colormap entry for each cell in the update box, |
|
762 * given the list of candidate colors prepared by find_nearby_colors. |
|
763 * Return the indexes of the closest entries in the bestcolor[] array. |
|
764 * This routine uses Thomas' incremental distance calculation method to |
|
765 * find the distance from a colormap entry to successive cells in the box. |
|
766 */ |
|
767 { |
|
768 int ic0, ic1, ic2; |
|
769 int i, icolor; |
|
770 register INT32 * bptr; /* pointer into bestdist[] array */ |
|
771 JSAMPLE * cptr; /* pointer into bestcolor[] array */ |
|
772 INT32 dist0, dist1; /* initial distance values */ |
|
773 register INT32 dist2; /* current distance in inner loop */ |
|
774 INT32 xx0, xx1; /* distance increments */ |
|
775 register INT32 xx2; |
|
776 INT32 inc0, inc1, inc2; /* initial values for increments */ |
|
777 /* This array holds the distance to the nearest-so-far color for each cell */ |
|
778 INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
|
779 |
|
780 /* Initialize best-distance for each cell of the update box */ |
|
781 bptr = bestdist; |
|
782 for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) |
|
783 *bptr++ = 0x7FFFFFFFL; |
|
784 |
|
785 /* For each color selected by find_nearby_colors, |
|
786 * compute its distance to the center of each cell in the box. |
|
787 * If that's less than best-so-far, update best distance and color number. |
|
788 */ |
|
789 |
|
790 /* Nominal steps between cell centers ("x" in Thomas article) */ |
|
791 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) |
|
792 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) |
|
793 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) |
|
794 |
|
795 for (i = 0; i < numcolors; i++) { |
|
796 icolor = GETJSAMPLE(colorlist[i]); |
|
797 /* Compute (square of) distance from minc0/c1/c2 to this color */ |
|
798 inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; |
|
799 dist0 = inc0*inc0; |
|
800 inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; |
|
801 dist0 += inc1*inc1; |
|
802 inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; |
|
803 dist0 += inc2*inc2; |
|
804 /* Form the initial difference increments */ |
|
805 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; |
|
806 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; |
|
807 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; |
|
808 /* Now loop over all cells in box, updating distance per Thomas method */ |
|
809 bptr = bestdist; |
|
810 cptr = bestcolor; |
|
811 xx0 = inc0; |
|
812 for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { |
|
813 dist1 = dist0; |
|
814 xx1 = inc1; |
|
815 for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { |
|
816 dist2 = dist1; |
|
817 xx2 = inc2; |
|
818 for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { |
|
819 if (dist2 < *bptr) { |
|
820 *bptr = dist2; |
|
821 *cptr = (JSAMPLE) icolor; |
|
822 } |
|
823 dist2 += xx2; |
|
824 xx2 += 2 * STEP_C2 * STEP_C2; |
|
825 bptr++; |
|
826 cptr++; |
|
827 } |
|
828 dist1 += xx1; |
|
829 xx1 += 2 * STEP_C1 * STEP_C1; |
|
830 } |
|
831 dist0 += xx0; |
|
832 xx0 += 2 * STEP_C0 * STEP_C0; |
|
833 } |
|
834 } |
|
835 } |
|
836 |
|
837 |
|
838 LOCAL(void) |
|
839 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) |
|
840 /* Fill the inverse-colormap entries in the update box that contains */ |
|
841 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ |
|
842 /* we can fill as many others as we wish.) */ |
|
843 { |
|
844 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
845 hist3d histogram = cquantize->histogram; |
|
846 int minc0, minc1, minc2; /* lower left corner of update box */ |
|
847 int ic0, ic1, ic2; |
|
848 register JSAMPLE * cptr; /* pointer into bestcolor[] array */ |
|
849 register histptr cachep; /* pointer into main cache array */ |
|
850 /* This array lists the candidate colormap indexes. */ |
|
851 JSAMPLE colorlist[MAXNUMCOLORS]; |
|
852 int numcolors; /* number of candidate colors */ |
|
853 /* This array holds the actually closest colormap index for each cell. */ |
|
854 JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
|
855 |
|
856 /* Convert cell coordinates to update box ID */ |
|
857 c0 >>= BOX_C0_LOG; |
|
858 c1 >>= BOX_C1_LOG; |
|
859 c2 >>= BOX_C2_LOG; |
|
860 |
|
861 /* Compute true coordinates of update box's origin corner. |
|
862 * Actually we compute the coordinates of the center of the corner |
|
863 * histogram cell, which are the lower bounds of the volume we care about. |
|
864 */ |
|
865 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); |
|
866 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); |
|
867 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); |
|
868 |
|
869 /* Determine which colormap entries are close enough to be candidates |
|
870 * for the nearest entry to some cell in the update box. |
|
871 */ |
|
872 numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); |
|
873 |
|
874 /* Determine the actually nearest colors. */ |
|
875 find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, |
|
876 bestcolor); |
|
877 |
|
878 /* Save the best color numbers (plus 1) in the main cache array */ |
|
879 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ |
|
880 c1 <<= BOX_C1_LOG; |
|
881 c2 <<= BOX_C2_LOG; |
|
882 cptr = bestcolor; |
|
883 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { |
|
884 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { |
|
885 cachep = & histogram[c0+ic0][c1+ic1][c2]; |
|
886 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { |
|
887 *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); |
|
888 } |
|
889 } |
|
890 } |
|
891 } |
|
892 |
|
893 |
|
894 /* |
|
895 * Map some rows of pixels to the output colormapped representation. |
|
896 */ |
|
897 |
|
898 METHODDEF(void) |
|
899 pass2_no_dither (j_decompress_ptr cinfo, |
|
900 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) |
|
901 /* This version performs no dithering */ |
|
902 { |
|
903 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
904 hist3d histogram = cquantize->histogram; |
|
905 register JSAMPROW inptr, outptr; |
|
906 register histptr cachep; |
|
907 register int c0, c1, c2; |
|
908 int row; |
|
909 JDIMENSION col; |
|
910 JDIMENSION width = cinfo->output_width; |
|
911 |
|
912 for (row = 0; row < num_rows; row++) { |
|
913 inptr = input_buf[row]; |
|
914 outptr = output_buf[row]; |
|
915 for (col = width; col > 0; col--) { |
|
916 /* get pixel value and index into the cache */ |
|
917 c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; |
|
918 c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; |
|
919 c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; |
|
920 cachep = & histogram[c0][c1][c2]; |
|
921 /* If we have not seen this color before, find nearest colormap entry */ |
|
922 /* and update the cache */ |
|
923 if (*cachep == 0) |
|
924 fill_inverse_cmap(cinfo, c0,c1,c2); |
|
925 /* Now emit the colormap index for this cell */ |
|
926 *outptr++ = (JSAMPLE) (*cachep - 1); |
|
927 } |
|
928 } |
|
929 } |
|
930 |
|
931 |
|
932 METHODDEF(void) |
|
933 pass2_fs_dither (j_decompress_ptr cinfo, |
|
934 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) |
|
935 /* This version performs Floyd-Steinberg dithering */ |
|
936 { |
|
937 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
938 hist3d histogram = cquantize->histogram; |
|
939 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ |
|
940 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ |
|
941 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ |
|
942 register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
|
943 JSAMPROW inptr; /* => current input pixel */ |
|
944 JSAMPROW outptr; /* => current output pixel */ |
|
945 histptr cachep; |
|
946 int dir; /* +1 or -1 depending on direction */ |
|
947 int dir3; /* 3*dir, for advancing inptr & errorptr */ |
|
948 int row; |
|
949 JDIMENSION col; |
|
950 JDIMENSION width = cinfo->output_width; |
|
951 JSAMPLE *range_limit = cinfo->sample_range_limit; |
|
952 int *error_limit = cquantize->error_limiter; |
|
953 JSAMPROW colormap0 = cinfo->colormap[0]; |
|
954 JSAMPROW colormap1 = cinfo->colormap[1]; |
|
955 JSAMPROW colormap2 = cinfo->colormap[2]; |
|
956 SHIFT_TEMPS |
|
957 |
|
958 for (row = 0; row < num_rows; row++) { |
|
959 inptr = input_buf[row]; |
|
960 outptr = output_buf[row]; |
|
961 if (cquantize->on_odd_row) { |
|
962 /* work right to left in this row */ |
|
963 inptr += (width-1) * 3; /* so point to rightmost pixel */ |
|
964 outptr += width-1; |
|
965 dir = -1; |
|
966 dir3 = -3; |
|
967 errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ |
|
968 cquantize->on_odd_row = FALSE; /* flip for next time */ |
|
969 } else { |
|
970 /* work left to right in this row */ |
|
971 dir = 1; |
|
972 dir3 = 3; |
|
973 errorptr = cquantize->fserrors; /* => entry before first real column */ |
|
974 cquantize->on_odd_row = TRUE; /* flip for next time */ |
|
975 } |
|
976 /* Preset error values: no error propagated to first pixel from left */ |
|
977 cur0 = cur1 = cur2 = 0; |
|
978 /* and no error propagated to row below yet */ |
|
979 belowerr0 = belowerr1 = belowerr2 = 0; |
|
980 bpreverr0 = bpreverr1 = bpreverr2 = 0; |
|
981 |
|
982 for (col = width; col > 0; col--) { |
|
983 /* curN holds the error propagated from the previous pixel on the |
|
984 * current line. Add the error propagated from the previous line |
|
985 * to form the complete error correction term for this pixel, and |
|
986 * round the error term (which is expressed * 16) to an integer. |
|
987 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct |
|
988 * for either sign of the error value. |
|
989 * Note: errorptr points to *previous* column's array entry. |
|
990 */ |
|
991 cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); |
|
992 cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); |
|
993 cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); |
|
994 /* Limit the error using transfer function set by init_error_limit. |
|
995 * See comments with init_error_limit for rationale. |
|
996 */ |
|
997 cur0 = error_limit[cur0]; |
|
998 cur1 = error_limit[cur1]; |
|
999 cur2 = error_limit[cur2]; |
|
1000 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. |
|
1001 * The maximum error is +- MAXJSAMPLE (or less with error limiting); |
|
1002 * this sets the required size of the range_limit array. |
|
1003 */ |
|
1004 cur0 += GETJSAMPLE(inptr[0]); |
|
1005 cur1 += GETJSAMPLE(inptr[1]); |
|
1006 cur2 += GETJSAMPLE(inptr[2]); |
|
1007 cur0 = GETJSAMPLE(range_limit[cur0]); |
|
1008 cur1 = GETJSAMPLE(range_limit[cur1]); |
|
1009 cur2 = GETJSAMPLE(range_limit[cur2]); |
|
1010 /* Index into the cache with adjusted pixel value */ |
|
1011 cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; |
|
1012 /* If we have not seen this color before, find nearest colormap */ |
|
1013 /* entry and update the cache */ |
|
1014 if (*cachep == 0) |
|
1015 fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); |
|
1016 /* Now emit the colormap index for this cell */ |
|
1017 { register int pixcode = *cachep - 1; |
|
1018 *outptr = (JSAMPLE) pixcode; |
|
1019 /* Compute representation error for this pixel */ |
|
1020 cur0 -= GETJSAMPLE(colormap0[pixcode]); |
|
1021 cur1 -= GETJSAMPLE(colormap1[pixcode]); |
|
1022 cur2 -= GETJSAMPLE(colormap2[pixcode]); |
|
1023 } |
|
1024 /* Compute error fractions to be propagated to adjacent pixels. |
|
1025 * Add these into the running sums, and simultaneously shift the |
|
1026 * next-line error sums left by 1 column. |
|
1027 */ |
|
1028 { register LOCFSERROR bnexterr, delta; |
|
1029 |
|
1030 bnexterr = cur0; /* Process component 0 */ |
|
1031 delta = cur0 * 2; |
|
1032 cur0 += delta; /* form error * 3 */ |
|
1033 errorptr[0] = (FSERROR) (bpreverr0 + cur0); |
|
1034 cur0 += delta; /* form error * 5 */ |
|
1035 bpreverr0 = belowerr0 + cur0; |
|
1036 belowerr0 = bnexterr; |
|
1037 cur0 += delta; /* form error * 7 */ |
|
1038 bnexterr = cur1; /* Process component 1 */ |
|
1039 delta = cur1 * 2; |
|
1040 cur1 += delta; /* form error * 3 */ |
|
1041 errorptr[1] = (FSERROR) (bpreverr1 + cur1); |
|
1042 cur1 += delta; /* form error * 5 */ |
|
1043 bpreverr1 = belowerr1 + cur1; |
|
1044 belowerr1 = bnexterr; |
|
1045 cur1 += delta; /* form error * 7 */ |
|
1046 bnexterr = cur2; /* Process component 2 */ |
|
1047 delta = cur2 * 2; |
|
1048 cur2 += delta; /* form error * 3 */ |
|
1049 errorptr[2] = (FSERROR) (bpreverr2 + cur2); |
|
1050 cur2 += delta; /* form error * 5 */ |
|
1051 bpreverr2 = belowerr2 + cur2; |
|
1052 belowerr2 = bnexterr; |
|
1053 cur2 += delta; /* form error * 7 */ |
|
1054 } |
|
1055 /* At this point curN contains the 7/16 error value to be propagated |
|
1056 * to the next pixel on the current line, and all the errors for the |
|
1057 * next line have been shifted over. We are therefore ready to move on. |
|
1058 */ |
|
1059 inptr += dir3; /* Advance pixel pointers to next column */ |
|
1060 outptr += dir; |
|
1061 errorptr += dir3; /* advance errorptr to current column */ |
|
1062 } |
|
1063 /* Post-loop cleanup: we must unload the final error values into the |
|
1064 * final fserrors[] entry. Note we need not unload belowerrN because |
|
1065 * it is for the dummy column before or after the actual array. |
|
1066 */ |
|
1067 errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ |
|
1068 errorptr[1] = (FSERROR) bpreverr1; |
|
1069 errorptr[2] = (FSERROR) bpreverr2; |
|
1070 } |
|
1071 } |
|
1072 |
|
1073 |
|
1074 /* |
|
1075 * Initialize the error-limiting transfer function (lookup table). |
|
1076 * The raw F-S error computation can potentially compute error values of up to |
|
1077 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be |
|
1078 * much less, otherwise obviously wrong pixels will be created. (Typical |
|
1079 * effects include weird fringes at color-area boundaries, isolated bright |
|
1080 * pixels in a dark area, etc.) The standard advice for avoiding this problem |
|
1081 * is to ensure that the "corners" of the color cube are allocated as output |
|
1082 * colors; then repeated errors in the same direction cannot cause cascading |
|
1083 * error buildup. However, that only prevents the error from getting |
|
1084 * completely out of hand; Aaron Giles reports that error limiting improves |
|
1085 * the results even with corner colors allocated. |
|
1086 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty |
|
1087 * well, but the smoother transfer function used below is even better. Thanks |
|
1088 * to Aaron Giles for this idea. |
|
1089 */ |
|
1090 |
|
1091 LOCAL(void) |
|
1092 init_error_limit (j_decompress_ptr cinfo) |
|
1093 /* Allocate and fill in the error_limiter table */ |
|
1094 { |
|
1095 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
1096 int * table; |
|
1097 int in, out; |
|
1098 |
|
1099 table = (int *) (*cinfo->mem->alloc_small) |
|
1100 ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); |
|
1101 table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ |
|
1102 cquantize->error_limiter = table; |
|
1103 |
|
1104 #define STEPSIZE ((MAXJSAMPLE+1)/16) |
|
1105 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ |
|
1106 out = 0; |
|
1107 for (in = 0; in < STEPSIZE; in++, out++) { |
|
1108 table[in] = out; table[-in] = -out; |
|
1109 } |
|
1110 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ |
|
1111 for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { |
|
1112 table[in] = out; table[-in] = -out; |
|
1113 } |
|
1114 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ |
|
1115 for (; in <= MAXJSAMPLE; in++) { |
|
1116 table[in] = out; table[-in] = -out; |
|
1117 } |
|
1118 #undef STEPSIZE |
|
1119 } |
|
1120 |
|
1121 |
|
1122 /* |
|
1123 * Finish up at the end of each pass. |
|
1124 */ |
|
1125 |
|
1126 METHODDEF(void) |
|
1127 finish_pass1 (j_decompress_ptr cinfo) |
|
1128 { |
|
1129 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
1130 |
|
1131 /* Select the representative colors and fill in cinfo->colormap */ |
|
1132 cinfo->colormap = cquantize->sv_colormap; |
|
1133 select_colors(cinfo, cquantize->desired); |
|
1134 /* Force next pass to zero the color index table */ |
|
1135 cquantize->needs_zeroed = TRUE; |
|
1136 } |
|
1137 |
|
1138 |
|
1139 METHODDEF(void) |
|
1140 finish_pass2 (j_decompress_ptr cinfo) |
|
1141 { |
|
1142 /* no work */ |
|
1143 } |
|
1144 |
|
1145 |
|
1146 /* |
|
1147 * Initialize for each processing pass. |
|
1148 */ |
|
1149 |
|
1150 METHODDEF(void) |
|
1151 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
|
1152 { |
|
1153 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
1154 hist3d histogram = cquantize->histogram; |
|
1155 int i; |
|
1156 |
|
1157 /* Only F-S dithering or no dithering is supported. */ |
|
1158 /* If user asks for ordered dither, give him F-S. */ |
|
1159 if (cinfo->dither_mode != JDITHER_NONE) |
|
1160 cinfo->dither_mode = JDITHER_FS; |
|
1161 |
|
1162 if (is_pre_scan) { |
|
1163 /* Set up method pointers */ |
|
1164 cquantize->pub.color_quantize = prescan_quantize; |
|
1165 cquantize->pub.finish_pass = finish_pass1; |
|
1166 cquantize->needs_zeroed = TRUE; /* Always zero histogram */ |
|
1167 } else { |
|
1168 /* Set up method pointers */ |
|
1169 if (cinfo->dither_mode == JDITHER_FS) |
|
1170 cquantize->pub.color_quantize = pass2_fs_dither; |
|
1171 else |
|
1172 cquantize->pub.color_quantize = pass2_no_dither; |
|
1173 cquantize->pub.finish_pass = finish_pass2; |
|
1174 |
|
1175 /* Make sure color count is acceptable */ |
|
1176 i = cinfo->actual_number_of_colors; |
|
1177 if (i < 1) |
|
1178 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); |
|
1179 if (i > MAXNUMCOLORS) |
|
1180 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); |
|
1181 |
|
1182 if (cinfo->dither_mode == JDITHER_FS) { |
|
1183 size_t arraysize = (size_t) ((cinfo->output_width + 2) * |
|
1184 (3 * SIZEOF(FSERROR))); |
|
1185 /* Allocate Floyd-Steinberg workspace if we didn't already. */ |
|
1186 if (cquantize->fserrors == NULL) |
|
1187 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) |
|
1188 ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
|
1189 /* Initialize the propagated errors to zero. */ |
|
1190 jzero_far((void FAR *) cquantize->fserrors, arraysize); |
|
1191 /* Make the error-limit table if we didn't already. */ |
|
1192 if (cquantize->error_limiter == NULL) |
|
1193 init_error_limit(cinfo); |
|
1194 cquantize->on_odd_row = FALSE; |
|
1195 } |
|
1196 |
|
1197 } |
|
1198 /* Zero the histogram or inverse color map, if necessary */ |
|
1199 if (cquantize->needs_zeroed) { |
|
1200 for (i = 0; i < HIST_C0_ELEMS; i++) { |
|
1201 jzero_far((void FAR *) histogram[i], |
|
1202 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); |
|
1203 } |
|
1204 cquantize->needs_zeroed = FALSE; |
|
1205 } |
|
1206 } |
|
1207 |
|
1208 |
|
1209 /* |
|
1210 * Switch to a new external colormap between output passes. |
|
1211 */ |
|
1212 |
|
1213 METHODDEF(void) |
|
1214 new_color_map_2_quant (j_decompress_ptr cinfo) |
|
1215 { |
|
1216 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
1217 |
|
1218 /* Reset the inverse color map */ |
|
1219 cquantize->needs_zeroed = TRUE; |
|
1220 } |
|
1221 |
|
1222 |
|
1223 /* |
|
1224 * Module initialization routine for 2-pass color quantization. |
|
1225 */ |
|
1226 |
|
1227 GLOBAL(void) |
|
1228 jinit_2pass_quantizer (j_decompress_ptr cinfo) |
|
1229 { |
|
1230 my_cquantize_ptr cquantize; |
|
1231 int i; |
|
1232 |
|
1233 cquantize = (my_cquantize_ptr) |
|
1234 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
1235 SIZEOF(my_cquantizer)); |
|
1236 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; |
|
1237 cquantize->pub.start_pass = start_pass_2_quant; |
|
1238 cquantize->pub.new_color_map = new_color_map_2_quant; |
|
1239 cquantize->fserrors = NULL; /* flag optional arrays not allocated */ |
|
1240 cquantize->error_limiter = NULL; |
|
1241 |
|
1242 /* Make sure jdmaster didn't give me a case I can't handle */ |
|
1243 if (cinfo->out_color_components != 3) |
|
1244 ERREXIT(cinfo, JERR_NOTIMPL); |
|
1245 |
|
1246 /* Allocate the histogram/inverse colormap storage */ |
|
1247 cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) |
|
1248 ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); |
|
1249 for (i = 0; i < HIST_C0_ELEMS; i++) { |
|
1250 cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) |
|
1251 ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
1252 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); |
|
1253 } |
|
1254 cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ |
|
1255 |
|
1256 /* Allocate storage for the completed colormap, if required. |
|
1257 * We do this now since it is FAR storage and may affect |
|
1258 * the memory manager's space calculations. |
|
1259 */ |
|
1260 if (cinfo->enable_2pass_quant) { |
|
1261 /* Make sure color count is acceptable */ |
|
1262 int desired = cinfo->desired_number_of_colors; |
|
1263 /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ |
|
1264 if (desired < 8) |
|
1265 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); |
|
1266 /* Make sure colormap indexes can be represented by JSAMPLEs */ |
|
1267 if (desired > MAXNUMCOLORS) |
|
1268 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); |
|
1269 cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) |
|
1270 ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); |
|
1271 cquantize->desired = desired; |
|
1272 } else |
|
1273 cquantize->sv_colormap = NULL; |
|
1274 |
|
1275 /* Only F-S dithering or no dithering is supported. */ |
|
1276 /* If user asks for ordered dither, give him F-S. */ |
|
1277 if (cinfo->dither_mode != JDITHER_NONE) |
|
1278 cinfo->dither_mode = JDITHER_FS; |
|
1279 |
|
1280 /* Allocate Floyd-Steinberg workspace if necessary. |
|
1281 * This isn't really needed until pass 2, but again it is FAR storage. |
|
1282 * Although we will cope with a later change in dither_mode, |
|
1283 * we do not promise to honor max_memory_to_use if dither_mode changes. |
|
1284 */ |
|
1285 if (cinfo->dither_mode == JDITHER_FS) { |
|
1286 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) |
|
1287 ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
1288 (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)))); |
|
1289 /* Might as well create the error-limiting table too. */ |
|
1290 init_error_limit(cinfo); |
|
1291 } |
|
1292 } |
|
1293 |
|
1294 #endif /* QUANT_2PASS_SUPPORTED */ |