|
1 /* Copyright (c) 2007-2008 CSIRO |
|
2 Copyright (c) 2007-2009 Xiph.Org Foundation |
|
3 Copyright (c) 2008-2009 Gregory Maxwell |
|
4 Written by Jean-Marc Valin and Gregory Maxwell */ |
|
5 /* |
|
6 Redistribution and use in source and binary forms, with or without |
|
7 modification, are permitted provided that the following conditions |
|
8 are met: |
|
9 |
|
10 - Redistributions of source code must retain the above copyright |
|
11 notice, this list of conditions and the following disclaimer. |
|
12 |
|
13 - Redistributions in binary form must reproduce the above copyright |
|
14 notice, this list of conditions and the following disclaimer in the |
|
15 documentation and/or other materials provided with the distribution. |
|
16 |
|
17 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
18 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
19 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
20 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
|
21 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|
22 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
23 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
24 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
|
25 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
|
26 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
27 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
28 */ |
|
29 |
|
30 #ifdef HAVE_CONFIG_H |
|
31 #include "config.h" |
|
32 #endif |
|
33 |
|
34 #include <math.h> |
|
35 #include "bands.h" |
|
36 #include "modes.h" |
|
37 #include "vq.h" |
|
38 #include "cwrs.h" |
|
39 #include "stack_alloc.h" |
|
40 #include "os_support.h" |
|
41 #include "mathops.h" |
|
42 #include "rate.h" |
|
43 #include "quant_bands.h" |
|
44 #include "pitch.h" |
|
45 |
|
46 int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev) |
|
47 { |
|
48 int i; |
|
49 for (i=0;i<N;i++) |
|
50 { |
|
51 if (val < thresholds[i]) |
|
52 break; |
|
53 } |
|
54 if (i>prev && val < thresholds[prev]+hysteresis[prev]) |
|
55 i=prev; |
|
56 if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1]) |
|
57 i=prev; |
|
58 return i; |
|
59 } |
|
60 |
|
61 opus_uint32 celt_lcg_rand(opus_uint32 seed) |
|
62 { |
|
63 return 1664525 * seed + 1013904223; |
|
64 } |
|
65 |
|
66 /* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness |
|
67 with this approximation is important because it has an impact on the bit allocation */ |
|
68 static opus_int16 bitexact_cos(opus_int16 x) |
|
69 { |
|
70 opus_int32 tmp; |
|
71 opus_int16 x2; |
|
72 tmp = (4096+((opus_int32)(x)*(x)))>>13; |
|
73 celt_assert(tmp<=32767); |
|
74 x2 = tmp; |
|
75 x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2))))); |
|
76 celt_assert(x2<=32766); |
|
77 return 1+x2; |
|
78 } |
|
79 |
|
80 static int bitexact_log2tan(int isin,int icos) |
|
81 { |
|
82 int lc; |
|
83 int ls; |
|
84 lc=EC_ILOG(icos); |
|
85 ls=EC_ILOG(isin); |
|
86 icos<<=15-lc; |
|
87 isin<<=15-ls; |
|
88 return (ls-lc)*(1<<11) |
|
89 +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932) |
|
90 -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932); |
|
91 } |
|
92 |
|
93 #ifdef FIXED_POINT |
|
94 /* Compute the amplitude (sqrt energy) in each of the bands */ |
|
95 void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int M) |
|
96 { |
|
97 int i, c, N; |
|
98 const opus_int16 *eBands = m->eBands; |
|
99 N = M*m->shortMdctSize; |
|
100 c=0; do { |
|
101 for (i=0;i<end;i++) |
|
102 { |
|
103 int j; |
|
104 opus_val32 maxval=0; |
|
105 opus_val32 sum = 0; |
|
106 |
|
107 j=M*eBands[i]; do { |
|
108 maxval = MAX32(maxval, X[j+c*N]); |
|
109 maxval = MAX32(maxval, -X[j+c*N]); |
|
110 } while (++j<M*eBands[i+1]); |
|
111 |
|
112 if (maxval > 0) |
|
113 { |
|
114 int shift = celt_ilog2(maxval)-10; |
|
115 j=M*eBands[i]; do { |
|
116 sum = MAC16_16(sum, EXTRACT16(VSHR32(X[j+c*N],shift)), |
|
117 EXTRACT16(VSHR32(X[j+c*N],shift))); |
|
118 } while (++j<M*eBands[i+1]); |
|
119 /* We're adding one here to ensure the normalized band isn't larger than unity norm */ |
|
120 bandE[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift); |
|
121 } else { |
|
122 bandE[i+c*m->nbEBands] = EPSILON; |
|
123 } |
|
124 /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ |
|
125 } |
|
126 } while (++c<C); |
|
127 /*printf ("\n");*/ |
|
128 } |
|
129 |
|
130 /* Normalise each band such that the energy is one. */ |
|
131 void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) |
|
132 { |
|
133 int i, c, N; |
|
134 const opus_int16 *eBands = m->eBands; |
|
135 N = M*m->shortMdctSize; |
|
136 c=0; do { |
|
137 i=0; do { |
|
138 opus_val16 g; |
|
139 int j,shift; |
|
140 opus_val16 E; |
|
141 shift = celt_zlog2(bandE[i+c*m->nbEBands])-13; |
|
142 E = VSHR32(bandE[i+c*m->nbEBands], shift); |
|
143 g = EXTRACT16(celt_rcp(SHL32(E,3))); |
|
144 j=M*eBands[i]; do { |
|
145 X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g); |
|
146 } while (++j<M*eBands[i+1]); |
|
147 } while (++i<end); |
|
148 } while (++c<C); |
|
149 } |
|
150 |
|
151 #else /* FIXED_POINT */ |
|
152 /* Compute the amplitude (sqrt energy) in each of the bands */ |
|
153 void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int M) |
|
154 { |
|
155 int i, c, N; |
|
156 const opus_int16 *eBands = m->eBands; |
|
157 N = M*m->shortMdctSize; |
|
158 c=0; do { |
|
159 for (i=0;i<end;i++) |
|
160 { |
|
161 int j; |
|
162 opus_val32 sum = 1e-27f; |
|
163 for (j=M*eBands[i];j<M*eBands[i+1];j++) |
|
164 sum += X[j+c*N]*X[j+c*N]; |
|
165 bandE[i+c*m->nbEBands] = celt_sqrt(sum); |
|
166 /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ |
|
167 } |
|
168 } while (++c<C); |
|
169 /*printf ("\n");*/ |
|
170 } |
|
171 |
|
172 /* Normalise each band such that the energy is one. */ |
|
173 void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) |
|
174 { |
|
175 int i, c, N; |
|
176 const opus_int16 *eBands = m->eBands; |
|
177 N = M*m->shortMdctSize; |
|
178 c=0; do { |
|
179 for (i=0;i<end;i++) |
|
180 { |
|
181 int j; |
|
182 opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]); |
|
183 for (j=M*eBands[i];j<M*eBands[i+1];j++) |
|
184 X[j+c*N] = freq[j+c*N]*g; |
|
185 } |
|
186 } while (++c<C); |
|
187 } |
|
188 |
|
189 #endif /* FIXED_POINT */ |
|
190 |
|
191 /* De-normalise the energy to produce the synthesis from the unit-energy bands */ |
|
192 void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, |
|
193 celt_sig * OPUS_RESTRICT freq, const opus_val16 *bandLogE, int start, int end, int C, int M) |
|
194 { |
|
195 int i, c, N; |
|
196 const opus_int16 *eBands = m->eBands; |
|
197 N = M*m->shortMdctSize; |
|
198 celt_assert2(C<=2, "denormalise_bands() not implemented for >2 channels"); |
|
199 c=0; do { |
|
200 celt_sig * OPUS_RESTRICT f; |
|
201 const celt_norm * OPUS_RESTRICT x; |
|
202 f = freq+c*N; |
|
203 x = X+c*N+M*eBands[start]; |
|
204 for (i=0;i<M*eBands[start];i++) |
|
205 *f++ = 0; |
|
206 for (i=start;i<end;i++) |
|
207 { |
|
208 int j, band_end; |
|
209 opus_val16 g; |
|
210 opus_val16 lg; |
|
211 #ifdef FIXED_POINT |
|
212 int shift; |
|
213 #endif |
|
214 j=M*eBands[i]; |
|
215 band_end = M*eBands[i+1]; |
|
216 lg = ADD16(bandLogE[i+c*m->nbEBands], SHL16((opus_val16)eMeans[i],6)); |
|
217 #ifndef FIXED_POINT |
|
218 g = celt_exp2(lg); |
|
219 #else |
|
220 /* Handle the integer part of the log energy */ |
|
221 shift = 16-(lg>>DB_SHIFT); |
|
222 if (shift>31) |
|
223 { |
|
224 shift=0; |
|
225 g=0; |
|
226 } else { |
|
227 /* Handle the fractional part. */ |
|
228 g = celt_exp2_frac(lg&((1<<DB_SHIFT)-1)); |
|
229 } |
|
230 /* Handle extreme gains with negative shift. */ |
|
231 if (shift<0) |
|
232 { |
|
233 /* For shift < -2 we'd be likely to overflow, so we're capping |
|
234 the gain here. This shouldn't happen unless the bitstream is |
|
235 already corrupted. */ |
|
236 if (shift < -2) |
|
237 { |
|
238 g = 32767; |
|
239 shift = -2; |
|
240 } |
|
241 do { |
|
242 *f++ = SHL32(MULT16_16(*x++, g), -shift); |
|
243 } while (++j<band_end); |
|
244 } else |
|
245 #endif |
|
246 /* Be careful of the fixed-point "else" just above when changing this code */ |
|
247 do { |
|
248 *f++ = SHR32(MULT16_16(*x++, g), shift); |
|
249 } while (++j<band_end); |
|
250 } |
|
251 celt_assert(start <= end); |
|
252 for (i=M*eBands[end];i<N;i++) |
|
253 *f++ = 0; |
|
254 } while (++c<C); |
|
255 } |
|
256 |
|
257 /* This prevents energy collapse for transients with multiple short MDCTs */ |
|
258 void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size, |
|
259 int start, int end, opus_val16 *logE, opus_val16 *prev1logE, |
|
260 opus_val16 *prev2logE, int *pulses, opus_uint32 seed) |
|
261 { |
|
262 int c, i, j, k; |
|
263 for (i=start;i<end;i++) |
|
264 { |
|
265 int N0; |
|
266 opus_val16 thresh, sqrt_1; |
|
267 int depth; |
|
268 #ifdef FIXED_POINT |
|
269 int shift; |
|
270 opus_val32 thresh32; |
|
271 #endif |
|
272 |
|
273 N0 = m->eBands[i+1]-m->eBands[i]; |
|
274 /* depth in 1/8 bits */ |
|
275 depth = (1+pulses[i])/((m->eBands[i+1]-m->eBands[i])<<LM); |
|
276 |
|
277 #ifdef FIXED_POINT |
|
278 thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1); |
|
279 thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32)); |
|
280 { |
|
281 opus_val32 t; |
|
282 t = N0<<LM; |
|
283 shift = celt_ilog2(t)>>1; |
|
284 t = SHL32(t, (7-shift)<<1); |
|
285 sqrt_1 = celt_rsqrt_norm(t); |
|
286 } |
|
287 #else |
|
288 thresh = .5f*celt_exp2(-.125f*depth); |
|
289 sqrt_1 = celt_rsqrt(N0<<LM); |
|
290 #endif |
|
291 |
|
292 c=0; do |
|
293 { |
|
294 celt_norm *X; |
|
295 opus_val16 prev1; |
|
296 opus_val16 prev2; |
|
297 opus_val32 Ediff; |
|
298 opus_val16 r; |
|
299 int renormalize=0; |
|
300 prev1 = prev1logE[c*m->nbEBands+i]; |
|
301 prev2 = prev2logE[c*m->nbEBands+i]; |
|
302 if (C==1) |
|
303 { |
|
304 prev1 = MAX16(prev1,prev1logE[m->nbEBands+i]); |
|
305 prev2 = MAX16(prev2,prev2logE[m->nbEBands+i]); |
|
306 } |
|
307 Ediff = EXTEND32(logE[c*m->nbEBands+i])-EXTEND32(MIN16(prev1,prev2)); |
|
308 Ediff = MAX32(0, Ediff); |
|
309 |
|
310 #ifdef FIXED_POINT |
|
311 if (Ediff < 16384) |
|
312 { |
|
313 opus_val32 r32 = SHR32(celt_exp2(-EXTRACT16(Ediff)),1); |
|
314 r = 2*MIN16(16383,r32); |
|
315 } else { |
|
316 r = 0; |
|
317 } |
|
318 if (LM==3) |
|
319 r = MULT16_16_Q14(23170, MIN32(23169, r)); |
|
320 r = SHR16(MIN16(thresh, r),1); |
|
321 r = SHR32(MULT16_16_Q15(sqrt_1, r),shift); |
|
322 #else |
|
323 /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because |
|
324 short blocks don't have the same energy as long */ |
|
325 r = 2.f*celt_exp2(-Ediff); |
|
326 if (LM==3) |
|
327 r *= 1.41421356f; |
|
328 r = MIN16(thresh, r); |
|
329 r = r*sqrt_1; |
|
330 #endif |
|
331 X = X_+c*size+(m->eBands[i]<<LM); |
|
332 for (k=0;k<1<<LM;k++) |
|
333 { |
|
334 /* Detect collapse */ |
|
335 if (!(collapse_masks[i*C+c]&1<<k)) |
|
336 { |
|
337 /* Fill with noise */ |
|
338 for (j=0;j<N0;j++) |
|
339 { |
|
340 seed = celt_lcg_rand(seed); |
|
341 X[(j<<LM)+k] = (seed&0x8000 ? r : -r); |
|
342 } |
|
343 renormalize = 1; |
|
344 } |
|
345 } |
|
346 /* We just added some energy, so we need to renormalise */ |
|
347 if (renormalize) |
|
348 renormalise_vector(X, N0<<LM, Q15ONE); |
|
349 } while (++c<C); |
|
350 } |
|
351 } |
|
352 |
|
353 static void intensity_stereo(const CELTMode *m, celt_norm *X, celt_norm *Y, const celt_ener *bandE, int bandID, int N) |
|
354 { |
|
355 int i = bandID; |
|
356 int j; |
|
357 opus_val16 a1, a2; |
|
358 opus_val16 left, right; |
|
359 opus_val16 norm; |
|
360 #ifdef FIXED_POINT |
|
361 int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13; |
|
362 #endif |
|
363 left = VSHR32(bandE[i],shift); |
|
364 right = VSHR32(bandE[i+m->nbEBands],shift); |
|
365 norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); |
|
366 a1 = DIV32_16(SHL32(EXTEND32(left),14),norm); |
|
367 a2 = DIV32_16(SHL32(EXTEND32(right),14),norm); |
|
368 for (j=0;j<N;j++) |
|
369 { |
|
370 celt_norm r, l; |
|
371 l = X[j]; |
|
372 r = Y[j]; |
|
373 X[j] = MULT16_16_Q14(a1,l) + MULT16_16_Q14(a2,r); |
|
374 /* Side is not encoded, no need to calculate */ |
|
375 } |
|
376 } |
|
377 |
|
378 static void stereo_split(celt_norm *X, celt_norm *Y, int N) |
|
379 { |
|
380 int j; |
|
381 for (j=0;j<N;j++) |
|
382 { |
|
383 celt_norm r, l; |
|
384 l = MULT16_16_Q15(QCONST16(.70710678f,15), X[j]); |
|
385 r = MULT16_16_Q15(QCONST16(.70710678f,15), Y[j]); |
|
386 X[j] = l+r; |
|
387 Y[j] = r-l; |
|
388 } |
|
389 } |
|
390 |
|
391 static void stereo_merge(celt_norm *X, celt_norm *Y, opus_val16 mid, int N) |
|
392 { |
|
393 int j; |
|
394 opus_val32 xp=0, side=0; |
|
395 opus_val32 El, Er; |
|
396 opus_val16 mid2; |
|
397 #ifdef FIXED_POINT |
|
398 int kl, kr; |
|
399 #endif |
|
400 opus_val32 t, lgain, rgain; |
|
401 |
|
402 /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ |
|
403 dual_inner_prod(Y, X, Y, N, &xp, &side); |
|
404 /* Compensating for the mid normalization */ |
|
405 xp = MULT16_32_Q15(mid, xp); |
|
406 /* mid and side are in Q15, not Q14 like X and Y */ |
|
407 mid2 = SHR32(mid, 1); |
|
408 El = MULT16_16(mid2, mid2) + side - 2*xp; |
|
409 Er = MULT16_16(mid2, mid2) + side + 2*xp; |
|
410 if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28)) |
|
411 { |
|
412 for (j=0;j<N;j++) |
|
413 Y[j] = X[j]; |
|
414 return; |
|
415 } |
|
416 |
|
417 #ifdef FIXED_POINT |
|
418 kl = celt_ilog2(El)>>1; |
|
419 kr = celt_ilog2(Er)>>1; |
|
420 #endif |
|
421 t = VSHR32(El, (kl-7)<<1); |
|
422 lgain = celt_rsqrt_norm(t); |
|
423 t = VSHR32(Er, (kr-7)<<1); |
|
424 rgain = celt_rsqrt_norm(t); |
|
425 |
|
426 #ifdef FIXED_POINT |
|
427 if (kl < 7) |
|
428 kl = 7; |
|
429 if (kr < 7) |
|
430 kr = 7; |
|
431 #endif |
|
432 |
|
433 for (j=0;j<N;j++) |
|
434 { |
|
435 celt_norm r, l; |
|
436 /* Apply mid scaling (side is already scaled) */ |
|
437 l = MULT16_16_Q15(mid, X[j]); |
|
438 r = Y[j]; |
|
439 X[j] = EXTRACT16(PSHR32(MULT16_16(lgain, SUB16(l,r)), kl+1)); |
|
440 Y[j] = EXTRACT16(PSHR32(MULT16_16(rgain, ADD16(l,r)), kr+1)); |
|
441 } |
|
442 } |
|
443 |
|
444 /* Decide whether we should spread the pulses in the current frame */ |
|
445 int spreading_decision(const CELTMode *m, celt_norm *X, int *average, |
|
446 int last_decision, int *hf_average, int *tapset_decision, int update_hf, |
|
447 int end, int C, int M) |
|
448 { |
|
449 int i, c, N0; |
|
450 int sum = 0, nbBands=0; |
|
451 const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
|
452 int decision; |
|
453 int hf_sum=0; |
|
454 |
|
455 celt_assert(end>0); |
|
456 |
|
457 N0 = M*m->shortMdctSize; |
|
458 |
|
459 if (M*(eBands[end]-eBands[end-1]) <= 8) |
|
460 return SPREAD_NONE; |
|
461 c=0; do { |
|
462 for (i=0;i<end;i++) |
|
463 { |
|
464 int j, N, tmp=0; |
|
465 int tcount[3] = {0,0,0}; |
|
466 celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0; |
|
467 N = M*(eBands[i+1]-eBands[i]); |
|
468 if (N<=8) |
|
469 continue; |
|
470 /* Compute rough CDF of |x[j]| */ |
|
471 for (j=0;j<N;j++) |
|
472 { |
|
473 opus_val32 x2N; /* Q13 */ |
|
474 |
|
475 x2N = MULT16_16(MULT16_16_Q15(x[j], x[j]), N); |
|
476 if (x2N < QCONST16(0.25f,13)) |
|
477 tcount[0]++; |
|
478 if (x2N < QCONST16(0.0625f,13)) |
|
479 tcount[1]++; |
|
480 if (x2N < QCONST16(0.015625f,13)) |
|
481 tcount[2]++; |
|
482 } |
|
483 |
|
484 /* Only include four last bands (8 kHz and up) */ |
|
485 if (i>m->nbEBands-4) |
|
486 hf_sum += 32*(tcount[1]+tcount[0])/N; |
|
487 tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); |
|
488 sum += tmp*256; |
|
489 nbBands++; |
|
490 } |
|
491 } while (++c<C); |
|
492 |
|
493 if (update_hf) |
|
494 { |
|
495 if (hf_sum) |
|
496 hf_sum /= C*(4-m->nbEBands+end); |
|
497 *hf_average = (*hf_average+hf_sum)>>1; |
|
498 hf_sum = *hf_average; |
|
499 if (*tapset_decision==2) |
|
500 hf_sum += 4; |
|
501 else if (*tapset_decision==0) |
|
502 hf_sum -= 4; |
|
503 if (hf_sum > 22) |
|
504 *tapset_decision=2; |
|
505 else if (hf_sum > 18) |
|
506 *tapset_decision=1; |
|
507 else |
|
508 *tapset_decision=0; |
|
509 } |
|
510 /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ |
|
511 celt_assert(nbBands>0); /* end has to be non-zero */ |
|
512 sum /= nbBands; |
|
513 /* Recursive averaging */ |
|
514 sum = (sum+*average)>>1; |
|
515 *average = sum; |
|
516 /* Hysteresis */ |
|
517 sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; |
|
518 if (sum < 80) |
|
519 { |
|
520 decision = SPREAD_AGGRESSIVE; |
|
521 } else if (sum < 256) |
|
522 { |
|
523 decision = SPREAD_NORMAL; |
|
524 } else if (sum < 384) |
|
525 { |
|
526 decision = SPREAD_LIGHT; |
|
527 } else { |
|
528 decision = SPREAD_NONE; |
|
529 } |
|
530 #ifdef FUZZING |
|
531 decision = rand()&0x3; |
|
532 *tapset_decision=rand()%3; |
|
533 #endif |
|
534 return decision; |
|
535 } |
|
536 |
|
537 /* Indexing table for converting from natural Hadamard to ordery Hadamard |
|
538 This is essentially a bit-reversed Gray, on top of which we've added |
|
539 an inversion of the order because we want the DC at the end rather than |
|
540 the beginning. The lines are for N=2, 4, 8, 16 */ |
|
541 static const int ordery_table[] = { |
|
542 1, 0, |
|
543 3, 0, 2, 1, |
|
544 7, 0, 4, 3, 6, 1, 5, 2, |
|
545 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5, |
|
546 }; |
|
547 |
|
548 static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) |
|
549 { |
|
550 int i,j; |
|
551 VARDECL(celt_norm, tmp); |
|
552 int N; |
|
553 SAVE_STACK; |
|
554 N = N0*stride; |
|
555 ALLOC(tmp, N, celt_norm); |
|
556 celt_assert(stride>0); |
|
557 if (hadamard) |
|
558 { |
|
559 const int *ordery = ordery_table+stride-2; |
|
560 for (i=0;i<stride;i++) |
|
561 { |
|
562 for (j=0;j<N0;j++) |
|
563 tmp[ordery[i]*N0+j] = X[j*stride+i]; |
|
564 } |
|
565 } else { |
|
566 for (i=0;i<stride;i++) |
|
567 for (j=0;j<N0;j++) |
|
568 tmp[i*N0+j] = X[j*stride+i]; |
|
569 } |
|
570 for (j=0;j<N;j++) |
|
571 X[j] = tmp[j]; |
|
572 RESTORE_STACK; |
|
573 } |
|
574 |
|
575 static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) |
|
576 { |
|
577 int i,j; |
|
578 VARDECL(celt_norm, tmp); |
|
579 int N; |
|
580 SAVE_STACK; |
|
581 N = N0*stride; |
|
582 ALLOC(tmp, N, celt_norm); |
|
583 if (hadamard) |
|
584 { |
|
585 const int *ordery = ordery_table+stride-2; |
|
586 for (i=0;i<stride;i++) |
|
587 for (j=0;j<N0;j++) |
|
588 tmp[j*stride+i] = X[ordery[i]*N0+j]; |
|
589 } else { |
|
590 for (i=0;i<stride;i++) |
|
591 for (j=0;j<N0;j++) |
|
592 tmp[j*stride+i] = X[i*N0+j]; |
|
593 } |
|
594 for (j=0;j<N;j++) |
|
595 X[j] = tmp[j]; |
|
596 RESTORE_STACK; |
|
597 } |
|
598 |
|
599 void haar1(celt_norm *X, int N0, int stride) |
|
600 { |
|
601 int i, j; |
|
602 N0 >>= 1; |
|
603 for (i=0;i<stride;i++) |
|
604 for (j=0;j<N0;j++) |
|
605 { |
|
606 celt_norm tmp1, tmp2; |
|
607 tmp1 = MULT16_16_Q15(QCONST16(.70710678f,15), X[stride*2*j+i]); |
|
608 tmp2 = MULT16_16_Q15(QCONST16(.70710678f,15), X[stride*(2*j+1)+i]); |
|
609 X[stride*2*j+i] = tmp1 + tmp2; |
|
610 X[stride*(2*j+1)+i] = tmp1 - tmp2; |
|
611 } |
|
612 } |
|
613 |
|
614 static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo) |
|
615 { |
|
616 static const opus_int16 exp2_table8[8] = |
|
617 {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048}; |
|
618 int qn, qb; |
|
619 int N2 = 2*N-1; |
|
620 if (stereo && N==2) |
|
621 N2--; |
|
622 /* The upper limit ensures that in a stereo split with itheta==16384, we'll |
|
623 always have enough bits left over to code at least one pulse in the |
|
624 side; otherwise it would collapse, since it doesn't get folded. */ |
|
625 qb = IMIN(b-pulse_cap-(4<<BITRES), (b+N2*offset)/N2); |
|
626 |
|
627 qb = IMIN(8<<BITRES, qb); |
|
628 |
|
629 if (qb<(1<<BITRES>>1)) { |
|
630 qn = 1; |
|
631 } else { |
|
632 qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES)); |
|
633 qn = (qn+1)>>1<<1; |
|
634 } |
|
635 celt_assert(qn <= 256); |
|
636 return qn; |
|
637 } |
|
638 |
|
639 struct band_ctx { |
|
640 int encode; |
|
641 const CELTMode *m; |
|
642 int i; |
|
643 int intensity; |
|
644 int spread; |
|
645 int tf_change; |
|
646 ec_ctx *ec; |
|
647 opus_int32 remaining_bits; |
|
648 const celt_ener *bandE; |
|
649 opus_uint32 seed; |
|
650 }; |
|
651 |
|
652 struct split_ctx { |
|
653 int inv; |
|
654 int imid; |
|
655 int iside; |
|
656 int delta; |
|
657 int itheta; |
|
658 int qalloc; |
|
659 }; |
|
660 |
|
661 static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx, |
|
662 celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0, |
|
663 int LM, |
|
664 int stereo, int *fill) |
|
665 { |
|
666 int qn; |
|
667 int itheta=0; |
|
668 int delta; |
|
669 int imid, iside; |
|
670 int qalloc; |
|
671 int pulse_cap; |
|
672 int offset; |
|
673 opus_int32 tell; |
|
674 int inv=0; |
|
675 int encode; |
|
676 const CELTMode *m; |
|
677 int i; |
|
678 int intensity; |
|
679 ec_ctx *ec; |
|
680 const celt_ener *bandE; |
|
681 |
|
682 encode = ctx->encode; |
|
683 m = ctx->m; |
|
684 i = ctx->i; |
|
685 intensity = ctx->intensity; |
|
686 ec = ctx->ec; |
|
687 bandE = ctx->bandE; |
|
688 |
|
689 /* Decide on the resolution to give to the split parameter theta */ |
|
690 pulse_cap = m->logN[i]+LM*(1<<BITRES); |
|
691 offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET); |
|
692 qn = compute_qn(N, *b, offset, pulse_cap, stereo); |
|
693 if (stereo && i>=intensity) |
|
694 qn = 1; |
|
695 if (encode) |
|
696 { |
|
697 /* theta is the atan() of the ratio between the (normalized) |
|
698 side and mid. With just that parameter, we can re-scale both |
|
699 mid and side because we know that 1) they have unit norm and |
|
700 2) they are orthogonal. */ |
|
701 itheta = stereo_itheta(X, Y, stereo, N); |
|
702 } |
|
703 tell = ec_tell_frac(ec); |
|
704 if (qn!=1) |
|
705 { |
|
706 if (encode) |
|
707 itheta = (itheta*qn+8192)>>14; |
|
708 |
|
709 /* Entropy coding of the angle. We use a uniform pdf for the |
|
710 time split, a step for stereo, and a triangular one for the rest. */ |
|
711 if (stereo && N>2) |
|
712 { |
|
713 int p0 = 3; |
|
714 int x = itheta; |
|
715 int x0 = qn/2; |
|
716 int ft = p0*(x0+1) + x0; |
|
717 /* Use a probability of p0 up to itheta=8192 and then use 1 after */ |
|
718 if (encode) |
|
719 { |
|
720 ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); |
|
721 } else { |
|
722 int fs; |
|
723 fs=ec_decode(ec,ft); |
|
724 if (fs<(x0+1)*p0) |
|
725 x=fs/p0; |
|
726 else |
|
727 x=x0+1+(fs-(x0+1)*p0); |
|
728 ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); |
|
729 itheta = x; |
|
730 } |
|
731 } else if (B0>1 || stereo) { |
|
732 /* Uniform pdf */ |
|
733 if (encode) |
|
734 ec_enc_uint(ec, itheta, qn+1); |
|
735 else |
|
736 itheta = ec_dec_uint(ec, qn+1); |
|
737 } else { |
|
738 int fs=1, ft; |
|
739 ft = ((qn>>1)+1)*((qn>>1)+1); |
|
740 if (encode) |
|
741 { |
|
742 int fl; |
|
743 |
|
744 fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; |
|
745 fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : |
|
746 ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); |
|
747 |
|
748 ec_encode(ec, fl, fl+fs, ft); |
|
749 } else { |
|
750 /* Triangular pdf */ |
|
751 int fl=0; |
|
752 int fm; |
|
753 fm = ec_decode(ec, ft); |
|
754 |
|
755 if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) |
|
756 { |
|
757 itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; |
|
758 fs = itheta + 1; |
|
759 fl = itheta*(itheta + 1)>>1; |
|
760 } |
|
761 else |
|
762 { |
|
763 itheta = (2*(qn + 1) |
|
764 - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; |
|
765 fs = qn + 1 - itheta; |
|
766 fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); |
|
767 } |
|
768 |
|
769 ec_dec_update(ec, fl, fl+fs, ft); |
|
770 } |
|
771 } |
|
772 itheta = (opus_int32)itheta*16384/qn; |
|
773 if (encode && stereo) |
|
774 { |
|
775 if (itheta==0) |
|
776 intensity_stereo(m, X, Y, bandE, i, N); |
|
777 else |
|
778 stereo_split(X, Y, N); |
|
779 } |
|
780 /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. |
|
781 Let's do that at higher complexity */ |
|
782 } else if (stereo) { |
|
783 if (encode) |
|
784 { |
|
785 inv = itheta > 8192; |
|
786 if (inv) |
|
787 { |
|
788 int j; |
|
789 for (j=0;j<N;j++) |
|
790 Y[j] = -Y[j]; |
|
791 } |
|
792 intensity_stereo(m, X, Y, bandE, i, N); |
|
793 } |
|
794 if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES) |
|
795 { |
|
796 if (encode) |
|
797 ec_enc_bit_logp(ec, inv, 2); |
|
798 else |
|
799 inv = ec_dec_bit_logp(ec, 2); |
|
800 } else |
|
801 inv = 0; |
|
802 itheta = 0; |
|
803 } |
|
804 qalloc = ec_tell_frac(ec) - tell; |
|
805 *b -= qalloc; |
|
806 |
|
807 if (itheta == 0) |
|
808 { |
|
809 imid = 32767; |
|
810 iside = 0; |
|
811 *fill &= (1<<B)-1; |
|
812 delta = -16384; |
|
813 } else if (itheta == 16384) |
|
814 { |
|
815 imid = 0; |
|
816 iside = 32767; |
|
817 *fill &= ((1<<B)-1)<<B; |
|
818 delta = 16384; |
|
819 } else { |
|
820 imid = bitexact_cos((opus_int16)itheta); |
|
821 iside = bitexact_cos((opus_int16)(16384-itheta)); |
|
822 /* This is the mid vs side allocation that minimizes squared error |
|
823 in that band. */ |
|
824 delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); |
|
825 } |
|
826 |
|
827 sctx->inv = inv; |
|
828 sctx->imid = imid; |
|
829 sctx->iside = iside; |
|
830 sctx->delta = delta; |
|
831 sctx->itheta = itheta; |
|
832 sctx->qalloc = qalloc; |
|
833 } |
|
834 static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b, |
|
835 celt_norm *lowband_out) |
|
836 { |
|
837 #ifdef RESYNTH |
|
838 int resynth = 1; |
|
839 #else |
|
840 int resynth = !ctx->encode; |
|
841 #endif |
|
842 int c; |
|
843 int stereo; |
|
844 celt_norm *x = X; |
|
845 int encode; |
|
846 ec_ctx *ec; |
|
847 |
|
848 encode = ctx->encode; |
|
849 ec = ctx->ec; |
|
850 |
|
851 stereo = Y != NULL; |
|
852 c=0; do { |
|
853 int sign=0; |
|
854 if (ctx->remaining_bits>=1<<BITRES) |
|
855 { |
|
856 if (encode) |
|
857 { |
|
858 sign = x[0]<0; |
|
859 ec_enc_bits(ec, sign, 1); |
|
860 } else { |
|
861 sign = ec_dec_bits(ec, 1); |
|
862 } |
|
863 ctx->remaining_bits -= 1<<BITRES; |
|
864 b-=1<<BITRES; |
|
865 } |
|
866 if (resynth) |
|
867 x[0] = sign ? -NORM_SCALING : NORM_SCALING; |
|
868 x = Y; |
|
869 } while (++c<1+stereo); |
|
870 if (lowband_out) |
|
871 lowband_out[0] = SHR16(X[0],4); |
|
872 return 1; |
|
873 } |
|
874 |
|
875 /* This function is responsible for encoding and decoding a mono partition. |
|
876 It can split the band in two and transmit the energy difference with |
|
877 the two half-bands. It can be called recursively so bands can end up being |
|
878 split in 8 parts. */ |
|
879 static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X, |
|
880 int N, int b, int B, celt_norm *lowband, |
|
881 int LM, |
|
882 opus_val16 gain, int fill) |
|
883 { |
|
884 const unsigned char *cache; |
|
885 int q; |
|
886 int curr_bits; |
|
887 int imid=0, iside=0; |
|
888 int B0=B; |
|
889 opus_val16 mid=0, side=0; |
|
890 unsigned cm=0; |
|
891 #ifdef RESYNTH |
|
892 int resynth = 1; |
|
893 #else |
|
894 int resynth = !ctx->encode; |
|
895 #endif |
|
896 celt_norm *Y=NULL; |
|
897 int encode; |
|
898 const CELTMode *m; |
|
899 int i; |
|
900 int spread; |
|
901 ec_ctx *ec; |
|
902 |
|
903 encode = ctx->encode; |
|
904 m = ctx->m; |
|
905 i = ctx->i; |
|
906 spread = ctx->spread; |
|
907 ec = ctx->ec; |
|
908 |
|
909 /* If we need 1.5 more bit than we can produce, split the band in two. */ |
|
910 cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; |
|
911 if (LM != -1 && b > cache[cache[0]]+12 && N>2) |
|
912 { |
|
913 int mbits, sbits, delta; |
|
914 int itheta; |
|
915 int qalloc; |
|
916 struct split_ctx sctx; |
|
917 celt_norm *next_lowband2=NULL; |
|
918 opus_int32 rebalance; |
|
919 |
|
920 N >>= 1; |
|
921 Y = X+N; |
|
922 LM -= 1; |
|
923 if (B==1) |
|
924 fill = (fill&1)|(fill<<1); |
|
925 B = (B+1)>>1; |
|
926 |
|
927 compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, |
|
928 LM, 0, &fill); |
|
929 imid = sctx.imid; |
|
930 iside = sctx.iside; |
|
931 delta = sctx.delta; |
|
932 itheta = sctx.itheta; |
|
933 qalloc = sctx.qalloc; |
|
934 #ifdef FIXED_POINT |
|
935 mid = imid; |
|
936 side = iside; |
|
937 #else |
|
938 mid = (1.f/32768)*imid; |
|
939 side = (1.f/32768)*iside; |
|
940 #endif |
|
941 |
|
942 /* Give more bits to low-energy MDCTs than they would otherwise deserve */ |
|
943 if (B0>1 && (itheta&0x3fff)) |
|
944 { |
|
945 if (itheta > 8192) |
|
946 /* Rough approximation for pre-echo masking */ |
|
947 delta -= delta>>(4-LM); |
|
948 else |
|
949 /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ |
|
950 delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); |
|
951 } |
|
952 mbits = IMAX(0, IMIN(b, (b-delta)/2)); |
|
953 sbits = b-mbits; |
|
954 ctx->remaining_bits -= qalloc; |
|
955 |
|
956 if (lowband) |
|
957 next_lowband2 = lowband+N; /* >32-bit split case */ |
|
958 |
|
959 rebalance = ctx->remaining_bits; |
|
960 if (mbits >= sbits) |
|
961 { |
|
962 cm = quant_partition(ctx, X, N, mbits, B, |
|
963 lowband, LM, |
|
964 MULT16_16_P15(gain,mid), fill); |
|
965 rebalance = mbits - (rebalance-ctx->remaining_bits); |
|
966 if (rebalance > 3<<BITRES && itheta!=0) |
|
967 sbits += rebalance - (3<<BITRES); |
|
968 cm |= quant_partition(ctx, Y, N, sbits, B, |
|
969 next_lowband2, LM, |
|
970 MULT16_16_P15(gain,side), fill>>B)<<(B0>>1); |
|
971 } else { |
|
972 cm = quant_partition(ctx, Y, N, sbits, B, |
|
973 next_lowband2, LM, |
|
974 MULT16_16_P15(gain,side), fill>>B)<<(B0>>1); |
|
975 rebalance = sbits - (rebalance-ctx->remaining_bits); |
|
976 if (rebalance > 3<<BITRES && itheta!=16384) |
|
977 mbits += rebalance - (3<<BITRES); |
|
978 cm |= quant_partition(ctx, X, N, mbits, B, |
|
979 lowband, LM, |
|
980 MULT16_16_P15(gain,mid), fill); |
|
981 } |
|
982 } else { |
|
983 /* This is the basic no-split case */ |
|
984 q = bits2pulses(m, i, LM, b); |
|
985 curr_bits = pulses2bits(m, i, LM, q); |
|
986 ctx->remaining_bits -= curr_bits; |
|
987 |
|
988 /* Ensures we can never bust the budget */ |
|
989 while (ctx->remaining_bits < 0 && q > 0) |
|
990 { |
|
991 ctx->remaining_bits += curr_bits; |
|
992 q--; |
|
993 curr_bits = pulses2bits(m, i, LM, q); |
|
994 ctx->remaining_bits -= curr_bits; |
|
995 } |
|
996 |
|
997 if (q!=0) |
|
998 { |
|
999 int K = get_pulses(q); |
|
1000 |
|
1001 /* Finally do the actual quantization */ |
|
1002 if (encode) |
|
1003 { |
|
1004 cm = alg_quant(X, N, K, spread, B, ec |
|
1005 #ifdef RESYNTH |
|
1006 , gain |
|
1007 #endif |
|
1008 ); |
|
1009 } else { |
|
1010 cm = alg_unquant(X, N, K, spread, B, ec, gain); |
|
1011 } |
|
1012 } else { |
|
1013 /* If there's no pulse, fill the band anyway */ |
|
1014 int j; |
|
1015 if (resynth) |
|
1016 { |
|
1017 unsigned cm_mask; |
|
1018 /* B can be as large as 16, so this shift might overflow an int on a |
|
1019 16-bit platform; use a long to get defined behavior.*/ |
|
1020 cm_mask = (unsigned)(1UL<<B)-1; |
|
1021 fill &= cm_mask; |
|
1022 if (!fill) |
|
1023 { |
|
1024 for (j=0;j<N;j++) |
|
1025 X[j] = 0; |
|
1026 } else { |
|
1027 if (lowband == NULL) |
|
1028 { |
|
1029 /* Noise */ |
|
1030 for (j=0;j<N;j++) |
|
1031 { |
|
1032 ctx->seed = celt_lcg_rand(ctx->seed); |
|
1033 X[j] = (celt_norm)((opus_int32)ctx->seed>>20); |
|
1034 } |
|
1035 cm = cm_mask; |
|
1036 } else { |
|
1037 /* Folded spectrum */ |
|
1038 for (j=0;j<N;j++) |
|
1039 { |
|
1040 opus_val16 tmp; |
|
1041 ctx->seed = celt_lcg_rand(ctx->seed); |
|
1042 /* About 48 dB below the "normal" folding level */ |
|
1043 tmp = QCONST16(1.0f/256, 10); |
|
1044 tmp = (ctx->seed)&0x8000 ? tmp : -tmp; |
|
1045 X[j] = lowband[j]+tmp; |
|
1046 } |
|
1047 cm = fill; |
|
1048 } |
|
1049 renormalise_vector(X, N, gain); |
|
1050 } |
|
1051 } |
|
1052 } |
|
1053 } |
|
1054 |
|
1055 return cm; |
|
1056 } |
|
1057 |
|
1058 |
|
1059 /* This function is responsible for encoding and decoding a band for the mono case. */ |
|
1060 static unsigned quant_band(struct band_ctx *ctx, celt_norm *X, |
|
1061 int N, int b, int B, celt_norm *lowband, |
|
1062 int LM, celt_norm *lowband_out, |
|
1063 opus_val16 gain, celt_norm *lowband_scratch, int fill) |
|
1064 { |
|
1065 int N0=N; |
|
1066 int N_B=N; |
|
1067 int N_B0; |
|
1068 int B0=B; |
|
1069 int time_divide=0; |
|
1070 int recombine=0; |
|
1071 int longBlocks; |
|
1072 unsigned cm=0; |
|
1073 #ifdef RESYNTH |
|
1074 int resynth = 1; |
|
1075 #else |
|
1076 int resynth = !ctx->encode; |
|
1077 #endif |
|
1078 int k; |
|
1079 int encode; |
|
1080 int tf_change; |
|
1081 |
|
1082 encode = ctx->encode; |
|
1083 tf_change = ctx->tf_change; |
|
1084 |
|
1085 longBlocks = B0==1; |
|
1086 |
|
1087 N_B /= B; |
|
1088 |
|
1089 /* Special case for one sample */ |
|
1090 if (N==1) |
|
1091 { |
|
1092 return quant_band_n1(ctx, X, NULL, b, lowband_out); |
|
1093 } |
|
1094 |
|
1095 if (tf_change>0) |
|
1096 recombine = tf_change; |
|
1097 /* Band recombining to increase frequency resolution */ |
|
1098 |
|
1099 if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) |
|
1100 { |
|
1101 int j; |
|
1102 for (j=0;j<N;j++) |
|
1103 lowband_scratch[j] = lowband[j]; |
|
1104 lowband = lowband_scratch; |
|
1105 } |
|
1106 |
|
1107 for (k=0;k<recombine;k++) |
|
1108 { |
|
1109 static const unsigned char bit_interleave_table[16]={ |
|
1110 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 |
|
1111 }; |
|
1112 if (encode) |
|
1113 haar1(X, N>>k, 1<<k); |
|
1114 if (lowband) |
|
1115 haar1(lowband, N>>k, 1<<k); |
|
1116 fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; |
|
1117 } |
|
1118 B>>=recombine; |
|
1119 N_B<<=recombine; |
|
1120 |
|
1121 /* Increasing the time resolution */ |
|
1122 while ((N_B&1) == 0 && tf_change<0) |
|
1123 { |
|
1124 if (encode) |
|
1125 haar1(X, N_B, B); |
|
1126 if (lowband) |
|
1127 haar1(lowband, N_B, B); |
|
1128 fill |= fill<<B; |
|
1129 B <<= 1; |
|
1130 N_B >>= 1; |
|
1131 time_divide++; |
|
1132 tf_change++; |
|
1133 } |
|
1134 B0=B; |
|
1135 N_B0 = N_B; |
|
1136 |
|
1137 /* Reorganize the samples in time order instead of frequency order */ |
|
1138 if (B0>1) |
|
1139 { |
|
1140 if (encode) |
|
1141 deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); |
|
1142 if (lowband) |
|
1143 deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); |
|
1144 } |
|
1145 |
|
1146 cm = quant_partition(ctx, X, N, b, B, lowband, |
|
1147 LM, gain, fill); |
|
1148 |
|
1149 /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
|
1150 if (resynth) |
|
1151 { |
|
1152 /* Undo the sample reorganization going from time order to frequency order */ |
|
1153 if (B0>1) |
|
1154 interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); |
|
1155 |
|
1156 /* Undo time-freq changes that we did earlier */ |
|
1157 N_B = N_B0; |
|
1158 B = B0; |
|
1159 for (k=0;k<time_divide;k++) |
|
1160 { |
|
1161 B >>= 1; |
|
1162 N_B <<= 1; |
|
1163 cm |= cm>>B; |
|
1164 haar1(X, N_B, B); |
|
1165 } |
|
1166 |
|
1167 for (k=0;k<recombine;k++) |
|
1168 { |
|
1169 static const unsigned char bit_deinterleave_table[16]={ |
|
1170 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, |
|
1171 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF |
|
1172 }; |
|
1173 cm = bit_deinterleave_table[cm]; |
|
1174 haar1(X, N0>>k, 1<<k); |
|
1175 } |
|
1176 B<<=recombine; |
|
1177 |
|
1178 /* Scale output for later folding */ |
|
1179 if (lowband_out) |
|
1180 { |
|
1181 int j; |
|
1182 opus_val16 n; |
|
1183 n = celt_sqrt(SHL32(EXTEND32(N0),22)); |
|
1184 for (j=0;j<N0;j++) |
|
1185 lowband_out[j] = MULT16_16_Q15(n,X[j]); |
|
1186 } |
|
1187 cm &= (1<<B)-1; |
|
1188 } |
|
1189 return cm; |
|
1190 } |
|
1191 |
|
1192 |
|
1193 /* This function is responsible for encoding and decoding a band for the stereo case. */ |
|
1194 static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, |
|
1195 int N, int b, int B, celt_norm *lowband, |
|
1196 int LM, celt_norm *lowband_out, |
|
1197 celt_norm *lowband_scratch, int fill) |
|
1198 { |
|
1199 int imid=0, iside=0; |
|
1200 int inv = 0; |
|
1201 opus_val16 mid=0, side=0; |
|
1202 unsigned cm=0; |
|
1203 #ifdef RESYNTH |
|
1204 int resynth = 1; |
|
1205 #else |
|
1206 int resynth = !ctx->encode; |
|
1207 #endif |
|
1208 int mbits, sbits, delta; |
|
1209 int itheta; |
|
1210 int qalloc; |
|
1211 struct split_ctx sctx; |
|
1212 int orig_fill; |
|
1213 int encode; |
|
1214 ec_ctx *ec; |
|
1215 |
|
1216 encode = ctx->encode; |
|
1217 ec = ctx->ec; |
|
1218 |
|
1219 /* Special case for one sample */ |
|
1220 if (N==1) |
|
1221 { |
|
1222 return quant_band_n1(ctx, X, Y, b, lowband_out); |
|
1223 } |
|
1224 |
|
1225 orig_fill = fill; |
|
1226 |
|
1227 compute_theta(ctx, &sctx, X, Y, N, &b, B, B, |
|
1228 LM, 1, &fill); |
|
1229 inv = sctx.inv; |
|
1230 imid = sctx.imid; |
|
1231 iside = sctx.iside; |
|
1232 delta = sctx.delta; |
|
1233 itheta = sctx.itheta; |
|
1234 qalloc = sctx.qalloc; |
|
1235 #ifdef FIXED_POINT |
|
1236 mid = imid; |
|
1237 side = iside; |
|
1238 #else |
|
1239 mid = (1.f/32768)*imid; |
|
1240 side = (1.f/32768)*iside; |
|
1241 #endif |
|
1242 |
|
1243 /* This is a special case for N=2 that only works for stereo and takes |
|
1244 advantage of the fact that mid and side are orthogonal to encode |
|
1245 the side with just one bit. */ |
|
1246 if (N==2) |
|
1247 { |
|
1248 int c; |
|
1249 int sign=0; |
|
1250 celt_norm *x2, *y2; |
|
1251 mbits = b; |
|
1252 sbits = 0; |
|
1253 /* Only need one bit for the side. */ |
|
1254 if (itheta != 0 && itheta != 16384) |
|
1255 sbits = 1<<BITRES; |
|
1256 mbits -= sbits; |
|
1257 c = itheta > 8192; |
|
1258 ctx->remaining_bits -= qalloc+sbits; |
|
1259 |
|
1260 x2 = c ? Y : X; |
|
1261 y2 = c ? X : Y; |
|
1262 if (sbits) |
|
1263 { |
|
1264 if (encode) |
|
1265 { |
|
1266 /* Here we only need to encode a sign for the side. */ |
|
1267 sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; |
|
1268 ec_enc_bits(ec, sign, 1); |
|
1269 } else { |
|
1270 sign = ec_dec_bits(ec, 1); |
|
1271 } |
|
1272 } |
|
1273 sign = 1-2*sign; |
|
1274 /* We use orig_fill here because we want to fold the side, but if |
|
1275 itheta==16384, we'll have cleared the low bits of fill. */ |
|
1276 cm = quant_band(ctx, x2, N, mbits, B, lowband, |
|
1277 LM, lowband_out, Q15ONE, lowband_scratch, orig_fill); |
|
1278 /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), |
|
1279 and there's no need to worry about mixing with the other channel. */ |
|
1280 y2[0] = -sign*x2[1]; |
|
1281 y2[1] = sign*x2[0]; |
|
1282 if (resynth) |
|
1283 { |
|
1284 celt_norm tmp; |
|
1285 X[0] = MULT16_16_Q15(mid, X[0]); |
|
1286 X[1] = MULT16_16_Q15(mid, X[1]); |
|
1287 Y[0] = MULT16_16_Q15(side, Y[0]); |
|
1288 Y[1] = MULT16_16_Q15(side, Y[1]); |
|
1289 tmp = X[0]; |
|
1290 X[0] = SUB16(tmp,Y[0]); |
|
1291 Y[0] = ADD16(tmp,Y[0]); |
|
1292 tmp = X[1]; |
|
1293 X[1] = SUB16(tmp,Y[1]); |
|
1294 Y[1] = ADD16(tmp,Y[1]); |
|
1295 } |
|
1296 } else { |
|
1297 /* "Normal" split code */ |
|
1298 opus_int32 rebalance; |
|
1299 |
|
1300 mbits = IMAX(0, IMIN(b, (b-delta)/2)); |
|
1301 sbits = b-mbits; |
|
1302 ctx->remaining_bits -= qalloc; |
|
1303 |
|
1304 rebalance = ctx->remaining_bits; |
|
1305 if (mbits >= sbits) |
|
1306 { |
|
1307 /* In stereo mode, we do not apply a scaling to the mid because we need the normalized |
|
1308 mid for folding later. */ |
|
1309 cm = quant_band(ctx, X, N, mbits, B, |
|
1310 lowband, LM, lowband_out, |
|
1311 Q15ONE, lowband_scratch, fill); |
|
1312 rebalance = mbits - (rebalance-ctx->remaining_bits); |
|
1313 if (rebalance > 3<<BITRES && itheta!=0) |
|
1314 sbits += rebalance - (3<<BITRES); |
|
1315 |
|
1316 /* For a stereo split, the high bits of fill are always zero, so no |
|
1317 folding will be done to the side. */ |
|
1318 cm |= quant_band(ctx, Y, N, sbits, B, |
|
1319 NULL, LM, NULL, |
|
1320 side, NULL, fill>>B); |
|
1321 } else { |
|
1322 /* For a stereo split, the high bits of fill are always zero, so no |
|
1323 folding will be done to the side. */ |
|
1324 cm = quant_band(ctx, Y, N, sbits, B, |
|
1325 NULL, LM, NULL, |
|
1326 side, NULL, fill>>B); |
|
1327 rebalance = sbits - (rebalance-ctx->remaining_bits); |
|
1328 if (rebalance > 3<<BITRES && itheta!=16384) |
|
1329 mbits += rebalance - (3<<BITRES); |
|
1330 /* In stereo mode, we do not apply a scaling to the mid because we need the normalized |
|
1331 mid for folding later. */ |
|
1332 cm |= quant_band(ctx, X, N, mbits, B, |
|
1333 lowband, LM, lowband_out, |
|
1334 Q15ONE, lowband_scratch, fill); |
|
1335 } |
|
1336 } |
|
1337 |
|
1338 |
|
1339 /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
|
1340 if (resynth) |
|
1341 { |
|
1342 if (N!=2) |
|
1343 stereo_merge(X, Y, mid, N); |
|
1344 if (inv) |
|
1345 { |
|
1346 int j; |
|
1347 for (j=0;j<N;j++) |
|
1348 Y[j] = -Y[j]; |
|
1349 } |
|
1350 } |
|
1351 return cm; |
|
1352 } |
|
1353 |
|
1354 |
|
1355 void quant_all_bands(int encode, const CELTMode *m, int start, int end, |
|
1356 celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, const celt_ener *bandE, int *pulses, |
|
1357 int shortBlocks, int spread, int dual_stereo, int intensity, int *tf_res, |
|
1358 opus_int32 total_bits, opus_int32 balance, ec_ctx *ec, int LM, int codedBands, opus_uint32 *seed) |
|
1359 { |
|
1360 int i; |
|
1361 opus_int32 remaining_bits; |
|
1362 const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
|
1363 celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; |
|
1364 VARDECL(celt_norm, _norm); |
|
1365 celt_norm *lowband_scratch; |
|
1366 int B; |
|
1367 int M; |
|
1368 int lowband_offset; |
|
1369 int update_lowband = 1; |
|
1370 int C = Y_ != NULL ? 2 : 1; |
|
1371 int norm_offset; |
|
1372 #ifdef RESYNTH |
|
1373 int resynth = 1; |
|
1374 #else |
|
1375 int resynth = !encode; |
|
1376 #endif |
|
1377 struct band_ctx ctx; |
|
1378 SAVE_STACK; |
|
1379 |
|
1380 M = 1<<LM; |
|
1381 B = shortBlocks ? M : 1; |
|
1382 norm_offset = M*eBands[start]; |
|
1383 /* No need to allocate norm for the last band because we don't need an |
|
1384 output in that band. */ |
|
1385 ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); |
|
1386 norm = _norm; |
|
1387 norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; |
|
1388 /* We can use the last band as scratch space because we don't need that |
|
1389 scratch space for the last band. */ |
|
1390 lowband_scratch = X_+M*eBands[m->nbEBands-1]; |
|
1391 |
|
1392 lowband_offset = 0; |
|
1393 ctx.bandE = bandE; |
|
1394 ctx.ec = ec; |
|
1395 ctx.encode = encode; |
|
1396 ctx.intensity = intensity; |
|
1397 ctx.m = m; |
|
1398 ctx.seed = *seed; |
|
1399 ctx.spread = spread; |
|
1400 for (i=start;i<end;i++) |
|
1401 { |
|
1402 opus_int32 tell; |
|
1403 int b; |
|
1404 int N; |
|
1405 opus_int32 curr_balance; |
|
1406 int effective_lowband=-1; |
|
1407 celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; |
|
1408 int tf_change=0; |
|
1409 unsigned x_cm; |
|
1410 unsigned y_cm; |
|
1411 int last; |
|
1412 |
|
1413 ctx.i = i; |
|
1414 last = (i==end-1); |
|
1415 |
|
1416 X = X_+M*eBands[i]; |
|
1417 if (Y_!=NULL) |
|
1418 Y = Y_+M*eBands[i]; |
|
1419 else |
|
1420 Y = NULL; |
|
1421 N = M*eBands[i+1]-M*eBands[i]; |
|
1422 tell = ec_tell_frac(ec); |
|
1423 |
|
1424 /* Compute how many bits we want to allocate to this band */ |
|
1425 if (i != start) |
|
1426 balance -= tell; |
|
1427 remaining_bits = total_bits-tell-1; |
|
1428 ctx.remaining_bits = remaining_bits; |
|
1429 if (i <= codedBands-1) |
|
1430 { |
|
1431 curr_balance = balance / IMIN(3, codedBands-i); |
|
1432 b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); |
|
1433 } else { |
|
1434 b = 0; |
|
1435 } |
|
1436 |
|
1437 if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) |
|
1438 lowband_offset = i; |
|
1439 |
|
1440 tf_change = tf_res[i]; |
|
1441 ctx.tf_change = tf_change; |
|
1442 if (i>=m->effEBands) |
|
1443 { |
|
1444 X=norm; |
|
1445 if (Y_!=NULL) |
|
1446 Y = norm; |
|
1447 lowband_scratch = NULL; |
|
1448 } |
|
1449 if (i==end-1) |
|
1450 lowband_scratch = NULL; |
|
1451 |
|
1452 /* Get a conservative estimate of the collapse_mask's for the bands we're |
|
1453 going to be folding from. */ |
|
1454 if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) |
|
1455 { |
|
1456 int fold_start; |
|
1457 int fold_end; |
|
1458 int fold_i; |
|
1459 /* This ensures we never repeat spectral content within one band */ |
|
1460 effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); |
|
1461 fold_start = lowband_offset; |
|
1462 while(M*eBands[--fold_start] > effective_lowband+norm_offset); |
|
1463 fold_end = lowband_offset-1; |
|
1464 while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); |
|
1465 x_cm = y_cm = 0; |
|
1466 fold_i = fold_start; do { |
|
1467 x_cm |= collapse_masks[fold_i*C+0]; |
|
1468 y_cm |= collapse_masks[fold_i*C+C-1]; |
|
1469 } while (++fold_i<fold_end); |
|
1470 } |
|
1471 /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost |
|
1472 always) be non-zero. */ |
|
1473 else |
|
1474 x_cm = y_cm = (1<<B)-1; |
|
1475 |
|
1476 if (dual_stereo && i==intensity) |
|
1477 { |
|
1478 int j; |
|
1479 |
|
1480 /* Switch off dual stereo to do intensity. */ |
|
1481 dual_stereo = 0; |
|
1482 if (resynth) |
|
1483 for (j=0;j<M*eBands[i]-norm_offset;j++) |
|
1484 norm[j] = HALF32(norm[j]+norm2[j]); |
|
1485 } |
|
1486 if (dual_stereo) |
|
1487 { |
|
1488 x_cm = quant_band(&ctx, X, N, b/2, B, |
|
1489 effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
|
1490 last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm); |
|
1491 y_cm = quant_band(&ctx, Y, N, b/2, B, |
|
1492 effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, |
|
1493 last?NULL:norm2+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, y_cm); |
|
1494 } else { |
|
1495 if (Y!=NULL) |
|
1496 { |
|
1497 x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
|
1498 effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
|
1499 last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm); |
|
1500 } else { |
|
1501 x_cm = quant_band(&ctx, X, N, b, B, |
|
1502 effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
|
1503 last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm); |
|
1504 } |
|
1505 y_cm = x_cm; |
|
1506 } |
|
1507 collapse_masks[i*C+0] = (unsigned char)x_cm; |
|
1508 collapse_masks[i*C+C-1] = (unsigned char)y_cm; |
|
1509 balance += pulses[i] + tell; |
|
1510 |
|
1511 /* Update the folding position only as long as we have 1 bit/sample depth. */ |
|
1512 update_lowband = b>(N<<BITRES); |
|
1513 } |
|
1514 *seed = ctx.seed; |
|
1515 |
|
1516 RESTORE_STACK; |
|
1517 } |
|
1518 |