|
1 /*********************************************************************** |
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
|
3 Redistribution and use in source and binary forms, with or without |
|
4 modification, are permitted provided that the following conditions |
|
5 are met: |
|
6 - Redistributions of source code must retain the above copyright notice, |
|
7 this list of conditions and the following disclaimer. |
|
8 - Redistributions in binary form must reproduce the above copyright |
|
9 notice, this list of conditions and the following disclaimer in the |
|
10 documentation and/or other materials provided with the distribution. |
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the |
|
12 names of specific contributors, may be used to endorse or promote |
|
13 products derived from this software without specific prior written |
|
14 permission. |
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
25 POSSIBILITY OF SUCH DAMAGE. |
|
26 ***********************************************************************/ |
|
27 |
|
28 #ifdef HAVE_CONFIG_H |
|
29 #include "config.h" |
|
30 #endif |
|
31 |
|
32 /* conversion between prediction filter coefficients and LSFs */ |
|
33 /* order should be even */ |
|
34 /* a piecewise linear approximation maps LSF <-> cos(LSF) */ |
|
35 /* therefore the result is not accurate LSFs, but the two */ |
|
36 /* functions are accurate inverses of each other */ |
|
37 |
|
38 #include "SigProc_FIX.h" |
|
39 #include "tables.h" |
|
40 |
|
41 #define QA 16 |
|
42 |
|
43 /* helper function for NLSF2A(..) */ |
|
44 static OPUS_INLINE void silk_NLSF2A_find_poly( |
|
45 opus_int32 *out, /* O intermediate polynomial, QA [dd+1] */ |
|
46 const opus_int32 *cLSF, /* I vector of interleaved 2*cos(LSFs), QA [d] */ |
|
47 opus_int dd /* I polynomial order (= 1/2 * filter order) */ |
|
48 ) |
|
49 { |
|
50 opus_int k, n; |
|
51 opus_int32 ftmp; |
|
52 |
|
53 out[0] = silk_LSHIFT( 1, QA ); |
|
54 out[1] = -cLSF[0]; |
|
55 for( k = 1; k < dd; k++ ) { |
|
56 ftmp = cLSF[2*k]; /* QA*/ |
|
57 out[k+1] = silk_LSHIFT( out[k-1], 1 ) - (opus_int32)silk_RSHIFT_ROUND64( silk_SMULL( ftmp, out[k] ), QA ); |
|
58 for( n = k; n > 1; n-- ) { |
|
59 out[n] += out[n-2] - (opus_int32)silk_RSHIFT_ROUND64( silk_SMULL( ftmp, out[n-1] ), QA ); |
|
60 } |
|
61 out[1] -= ftmp; |
|
62 } |
|
63 } |
|
64 |
|
65 /* compute whitening filter coefficients from normalized line spectral frequencies */ |
|
66 void silk_NLSF2A( |
|
67 opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */ |
|
68 const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */ |
|
69 const opus_int d /* I filter order (should be even) */ |
|
70 ) |
|
71 { |
|
72 /* This ordering was found to maximize quality. It improves numerical accuracy of |
|
73 silk_NLSF2A_find_poly() compared to "standard" ordering. */ |
|
74 static const unsigned char ordering16[16] = { |
|
75 0, 15, 8, 7, 4, 11, 12, 3, 2, 13, 10, 5, 6, 9, 14, 1 |
|
76 }; |
|
77 static const unsigned char ordering10[10] = { |
|
78 0, 9, 6, 3, 4, 5, 8, 1, 2, 7 |
|
79 }; |
|
80 const unsigned char *ordering; |
|
81 opus_int k, i, dd; |
|
82 opus_int32 cos_LSF_QA[ SILK_MAX_ORDER_LPC ]; |
|
83 opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ], Q[ SILK_MAX_ORDER_LPC / 2 + 1 ]; |
|
84 opus_int32 Ptmp, Qtmp, f_int, f_frac, cos_val, delta; |
|
85 opus_int32 a32_QA1[ SILK_MAX_ORDER_LPC ]; |
|
86 opus_int32 maxabs, absval, idx=0, sc_Q16; |
|
87 |
|
88 silk_assert( LSF_COS_TAB_SZ_FIX == 128 ); |
|
89 silk_assert( d==10||d==16 ); |
|
90 |
|
91 /* convert LSFs to 2*cos(LSF), using piecewise linear curve from table */ |
|
92 ordering = d == 16 ? ordering16 : ordering10; |
|
93 for( k = 0; k < d; k++ ) { |
|
94 silk_assert(NLSF[k] >= 0 ); |
|
95 |
|
96 /* f_int on a scale 0-127 (rounded down) */ |
|
97 f_int = silk_RSHIFT( NLSF[k], 15 - 7 ); |
|
98 |
|
99 /* f_frac, range: 0..255 */ |
|
100 f_frac = NLSF[k] - silk_LSHIFT( f_int, 15 - 7 ); |
|
101 |
|
102 silk_assert(f_int >= 0); |
|
103 silk_assert(f_int < LSF_COS_TAB_SZ_FIX ); |
|
104 |
|
105 /* Read start and end value from table */ |
|
106 cos_val = silk_LSFCosTab_FIX_Q12[ f_int ]; /* Q12 */ |
|
107 delta = silk_LSFCosTab_FIX_Q12[ f_int + 1 ] - cos_val; /* Q12, with a range of 0..200 */ |
|
108 |
|
109 /* Linear interpolation */ |
|
110 cos_LSF_QA[ordering[k]] = silk_RSHIFT_ROUND( silk_LSHIFT( cos_val, 8 ) + silk_MUL( delta, f_frac ), 20 - QA ); /* QA */ |
|
111 } |
|
112 |
|
113 dd = silk_RSHIFT( d, 1 ); |
|
114 |
|
115 /* generate even and odd polynomials using convolution */ |
|
116 silk_NLSF2A_find_poly( P, &cos_LSF_QA[ 0 ], dd ); |
|
117 silk_NLSF2A_find_poly( Q, &cos_LSF_QA[ 1 ], dd ); |
|
118 |
|
119 /* convert even and odd polynomials to opus_int32 Q12 filter coefs */ |
|
120 for( k = 0; k < dd; k++ ) { |
|
121 Ptmp = P[ k+1 ] + P[ k ]; |
|
122 Qtmp = Q[ k+1 ] - Q[ k ]; |
|
123 |
|
124 /* the Ptmp and Qtmp values at this stage need to fit in int32 */ |
|
125 a32_QA1[ k ] = -Qtmp - Ptmp; /* QA+1 */ |
|
126 a32_QA1[ d-k-1 ] = Qtmp - Ptmp; /* QA+1 */ |
|
127 } |
|
128 |
|
129 /* Limit the maximum absolute value of the prediction coefficients, so that they'll fit in int16 */ |
|
130 for( i = 0; i < 10; i++ ) { |
|
131 /* Find maximum absolute value and its index */ |
|
132 maxabs = 0; |
|
133 for( k = 0; k < d; k++ ) { |
|
134 absval = silk_abs( a32_QA1[k] ); |
|
135 if( absval > maxabs ) { |
|
136 maxabs = absval; |
|
137 idx = k; |
|
138 } |
|
139 } |
|
140 maxabs = silk_RSHIFT_ROUND( maxabs, QA + 1 - 12 ); /* QA+1 -> Q12 */ |
|
141 |
|
142 if( maxabs > silk_int16_MAX ) { |
|
143 /* Reduce magnitude of prediction coefficients */ |
|
144 maxabs = silk_min( maxabs, 163838 ); /* ( silk_int32_MAX >> 14 ) + silk_int16_MAX = 163838 */ |
|
145 sc_Q16 = SILK_FIX_CONST( 0.999, 16 ) - silk_DIV32( silk_LSHIFT( maxabs - silk_int16_MAX, 14 ), |
|
146 silk_RSHIFT32( silk_MUL( maxabs, idx + 1), 2 ) ); |
|
147 silk_bwexpander_32( a32_QA1, d, sc_Q16 ); |
|
148 } else { |
|
149 break; |
|
150 } |
|
151 } |
|
152 |
|
153 if( i == 10 ) { |
|
154 /* Reached the last iteration, clip the coefficients */ |
|
155 for( k = 0; k < d; k++ ) { |
|
156 a_Q12[ k ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ) ); /* QA+1 -> Q12 */ |
|
157 a32_QA1[ k ] = silk_LSHIFT( (opus_int32)a_Q12[ k ], QA + 1 - 12 ); |
|
158 } |
|
159 } else { |
|
160 for( k = 0; k < d; k++ ) { |
|
161 a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */ |
|
162 } |
|
163 } |
|
164 |
|
165 for( i = 0; i < MAX_LPC_STABILIZE_ITERATIONS; i++ ) { |
|
166 if( silk_LPC_inverse_pred_gain( a_Q12, d ) < SILK_FIX_CONST( 1.0 / MAX_PREDICTION_POWER_GAIN, 30 ) ) { |
|
167 /* Prediction coefficients are (too close to) unstable; apply bandwidth expansion */ |
|
168 /* on the unscaled coefficients, convert to Q12 and measure again */ |
|
169 silk_bwexpander_32( a32_QA1, d, 65536 - silk_LSHIFT( 2, i ) ); |
|
170 for( k = 0; k < d; k++ ) { |
|
171 a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */ |
|
172 } |
|
173 } else { |
|
174 break; |
|
175 } |
|
176 } |
|
177 } |
|
178 |