|
1 /*********************************************************************** |
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
|
3 Redistribution and use in source and binary forms, with or without |
|
4 modification, are permitted provided that the following conditions |
|
5 are met: |
|
6 - Redistributions of source code must retain the above copyright notice, |
|
7 this list of conditions and the following disclaimer. |
|
8 - Redistributions in binary form must reproduce the above copyright |
|
9 notice, this list of conditions and the following disclaimer in the |
|
10 documentation and/or other materials provided with the distribution. |
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the |
|
12 names of specific contributors, may be used to endorse or promote |
|
13 products derived from this software without specific prior written |
|
14 permission. |
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
25 POSSIBILITY OF SUCH DAMAGE. |
|
26 ***********************************************************************/ |
|
27 |
|
28 #ifdef HAVE_CONFIG_H |
|
29 #include "config.h" |
|
30 #endif |
|
31 |
|
32 #include "main.h" |
|
33 #include "stack_alloc.h" |
|
34 |
|
35 typedef struct { |
|
36 opus_int32 sLPC_Q14[ MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH ]; |
|
37 opus_int32 RandState[ DECISION_DELAY ]; |
|
38 opus_int32 Q_Q10[ DECISION_DELAY ]; |
|
39 opus_int32 Xq_Q14[ DECISION_DELAY ]; |
|
40 opus_int32 Pred_Q15[ DECISION_DELAY ]; |
|
41 opus_int32 Shape_Q14[ DECISION_DELAY ]; |
|
42 opus_int32 sAR2_Q14[ MAX_SHAPE_LPC_ORDER ]; |
|
43 opus_int32 LF_AR_Q14; |
|
44 opus_int32 Seed; |
|
45 opus_int32 SeedInit; |
|
46 opus_int32 RD_Q10; |
|
47 } NSQ_del_dec_struct; |
|
48 |
|
49 typedef struct { |
|
50 opus_int32 Q_Q10; |
|
51 opus_int32 RD_Q10; |
|
52 opus_int32 xq_Q14; |
|
53 opus_int32 LF_AR_Q14; |
|
54 opus_int32 sLTP_shp_Q14; |
|
55 opus_int32 LPC_exc_Q14; |
|
56 } NSQ_sample_struct; |
|
57 |
|
58 typedef NSQ_sample_struct NSQ_sample_pair[ 2 ]; |
|
59 |
|
60 static OPUS_INLINE void silk_nsq_del_dec_scale_states( |
|
61 const silk_encoder_state *psEncC, /* I Encoder State */ |
|
62 silk_nsq_state *NSQ, /* I/O NSQ state */ |
|
63 NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ |
|
64 const opus_int32 x_Q3[], /* I Input in Q3 */ |
|
65 opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */ |
|
66 const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */ |
|
67 opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */ |
|
68 opus_int subfr, /* I Subframe number */ |
|
69 opus_int nStatesDelayedDecision, /* I Number of del dec states */ |
|
70 const opus_int LTP_scale_Q14, /* I LTP state scaling */ |
|
71 const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ |
|
72 const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */ |
|
73 const opus_int signal_type, /* I Signal type */ |
|
74 const opus_int decisionDelay /* I Decision delay */ |
|
75 ); |
|
76 |
|
77 /******************************************/ |
|
78 /* Noise shape quantizer for one subframe */ |
|
79 /******************************************/ |
|
80 static OPUS_INLINE void silk_noise_shape_quantizer_del_dec( |
|
81 silk_nsq_state *NSQ, /* I/O NSQ state */ |
|
82 NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ |
|
83 opus_int signalType, /* I Signal type */ |
|
84 const opus_int32 x_Q10[], /* I */ |
|
85 opus_int8 pulses[], /* O */ |
|
86 opus_int16 xq[], /* O */ |
|
87 opus_int32 sLTP_Q15[], /* I/O LTP filter state */ |
|
88 opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */ |
|
89 const opus_int16 a_Q12[], /* I Short term prediction coefs */ |
|
90 const opus_int16 b_Q14[], /* I Long term prediction coefs */ |
|
91 const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */ |
|
92 opus_int lag, /* I Pitch lag */ |
|
93 opus_int32 HarmShapeFIRPacked_Q14, /* I */ |
|
94 opus_int Tilt_Q14, /* I Spectral tilt */ |
|
95 opus_int32 LF_shp_Q14, /* I */ |
|
96 opus_int32 Gain_Q16, /* I */ |
|
97 opus_int Lambda_Q10, /* I */ |
|
98 opus_int offset_Q10, /* I */ |
|
99 opus_int length, /* I Input length */ |
|
100 opus_int subfr, /* I Subframe number */ |
|
101 opus_int shapingLPCOrder, /* I Shaping LPC filter order */ |
|
102 opus_int predictLPCOrder, /* I Prediction filter order */ |
|
103 opus_int warping_Q16, /* I */ |
|
104 opus_int nStatesDelayedDecision, /* I Number of states in decision tree */ |
|
105 opus_int *smpl_buf_idx, /* I Index to newest samples in buffers */ |
|
106 opus_int decisionDelay /* I */ |
|
107 ); |
|
108 |
|
109 void silk_NSQ_del_dec( |
|
110 const silk_encoder_state *psEncC, /* I/O Encoder State */ |
|
111 silk_nsq_state *NSQ, /* I/O NSQ state */ |
|
112 SideInfoIndices *psIndices, /* I/O Quantization Indices */ |
|
113 const opus_int32 x_Q3[], /* I Prefiltered input signal */ |
|
114 opus_int8 pulses[], /* O Quantized pulse signal */ |
|
115 const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */ |
|
116 const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */ |
|
117 const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */ |
|
118 const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */ |
|
119 const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */ |
|
120 const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */ |
|
121 const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */ |
|
122 const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */ |
|
123 const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */ |
|
124 const opus_int LTP_scale_Q14 /* I LTP state scaling */ |
|
125 ) |
|
126 { |
|
127 opus_int i, k, lag, start_idx, LSF_interpolation_flag, Winner_ind, subfr; |
|
128 opus_int last_smple_idx, smpl_buf_idx, decisionDelay; |
|
129 const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13; |
|
130 opus_int16 *pxq; |
|
131 VARDECL( opus_int32, sLTP_Q15 ); |
|
132 VARDECL( opus_int16, sLTP ); |
|
133 opus_int32 HarmShapeFIRPacked_Q14; |
|
134 opus_int offset_Q10; |
|
135 opus_int32 RDmin_Q10, Gain_Q10; |
|
136 VARDECL( opus_int32, x_sc_Q10 ); |
|
137 VARDECL( opus_int32, delayedGain_Q10 ); |
|
138 VARDECL( NSQ_del_dec_struct, psDelDec ); |
|
139 NSQ_del_dec_struct *psDD; |
|
140 SAVE_STACK; |
|
141 |
|
142 /* Set unvoiced lag to the previous one, overwrite later for voiced */ |
|
143 lag = NSQ->lagPrev; |
|
144 |
|
145 silk_assert( NSQ->prev_gain_Q16 != 0 ); |
|
146 |
|
147 /* Initialize delayed decision states */ |
|
148 ALLOC( psDelDec, psEncC->nStatesDelayedDecision, NSQ_del_dec_struct ); |
|
149 silk_memset( psDelDec, 0, psEncC->nStatesDelayedDecision * sizeof( NSQ_del_dec_struct ) ); |
|
150 for( k = 0; k < psEncC->nStatesDelayedDecision; k++ ) { |
|
151 psDD = &psDelDec[ k ]; |
|
152 psDD->Seed = ( k + psIndices->Seed ) & 3; |
|
153 psDD->SeedInit = psDD->Seed; |
|
154 psDD->RD_Q10 = 0; |
|
155 psDD->LF_AR_Q14 = NSQ->sLF_AR_shp_Q14; |
|
156 psDD->Shape_Q14[ 0 ] = NSQ->sLTP_shp_Q14[ psEncC->ltp_mem_length - 1 ]; |
|
157 silk_memcpy( psDD->sLPC_Q14, NSQ->sLPC_Q14, NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) ); |
|
158 silk_memcpy( psDD->sAR2_Q14, NSQ->sAR2_Q14, sizeof( NSQ->sAR2_Q14 ) ); |
|
159 } |
|
160 |
|
161 offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ]; |
|
162 smpl_buf_idx = 0; /* index of oldest samples */ |
|
163 |
|
164 decisionDelay = silk_min_int( DECISION_DELAY, psEncC->subfr_length ); |
|
165 |
|
166 /* For voiced frames limit the decision delay to lower than the pitch lag */ |
|
167 if( psIndices->signalType == TYPE_VOICED ) { |
|
168 for( k = 0; k < psEncC->nb_subfr; k++ ) { |
|
169 decisionDelay = silk_min_int( decisionDelay, pitchL[ k ] - LTP_ORDER / 2 - 1 ); |
|
170 } |
|
171 } else { |
|
172 if( lag > 0 ) { |
|
173 decisionDelay = silk_min_int( decisionDelay, lag - LTP_ORDER / 2 - 1 ); |
|
174 } |
|
175 } |
|
176 |
|
177 if( psIndices->NLSFInterpCoef_Q2 == 4 ) { |
|
178 LSF_interpolation_flag = 0; |
|
179 } else { |
|
180 LSF_interpolation_flag = 1; |
|
181 } |
|
182 |
|
183 ALLOC( sLTP_Q15, |
|
184 psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 ); |
|
185 ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 ); |
|
186 ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 ); |
|
187 ALLOC( delayedGain_Q10, DECISION_DELAY, opus_int32 ); |
|
188 /* Set up pointers to start of sub frame */ |
|
189 pxq = &NSQ->xq[ psEncC->ltp_mem_length ]; |
|
190 NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length; |
|
191 NSQ->sLTP_buf_idx = psEncC->ltp_mem_length; |
|
192 subfr = 0; |
|
193 for( k = 0; k < psEncC->nb_subfr; k++ ) { |
|
194 A_Q12 = &PredCoef_Q12[ ( ( k >> 1 ) | ( 1 - LSF_interpolation_flag ) ) * MAX_LPC_ORDER ]; |
|
195 B_Q14 = <PCoef_Q14[ k * LTP_ORDER ]; |
|
196 AR_shp_Q13 = &AR2_Q13[ k * MAX_SHAPE_LPC_ORDER ]; |
|
197 |
|
198 /* Noise shape parameters */ |
|
199 silk_assert( HarmShapeGain_Q14[ k ] >= 0 ); |
|
200 HarmShapeFIRPacked_Q14 = silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 ); |
|
201 HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 ); |
|
202 |
|
203 NSQ->rewhite_flag = 0; |
|
204 if( psIndices->signalType == TYPE_VOICED ) { |
|
205 /* Voiced */ |
|
206 lag = pitchL[ k ]; |
|
207 |
|
208 /* Re-whitening */ |
|
209 if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) { |
|
210 if( k == 2 ) { |
|
211 /* RESET DELAYED DECISIONS */ |
|
212 /* Find winner */ |
|
213 RDmin_Q10 = psDelDec[ 0 ].RD_Q10; |
|
214 Winner_ind = 0; |
|
215 for( i = 1; i < psEncC->nStatesDelayedDecision; i++ ) { |
|
216 if( psDelDec[ i ].RD_Q10 < RDmin_Q10 ) { |
|
217 RDmin_Q10 = psDelDec[ i ].RD_Q10; |
|
218 Winner_ind = i; |
|
219 } |
|
220 } |
|
221 for( i = 0; i < psEncC->nStatesDelayedDecision; i++ ) { |
|
222 if( i != Winner_ind ) { |
|
223 psDelDec[ i ].RD_Q10 += ( silk_int32_MAX >> 4 ); |
|
224 silk_assert( psDelDec[ i ].RD_Q10 >= 0 ); |
|
225 } |
|
226 } |
|
227 |
|
228 /* Copy final part of signals from winner state to output and long-term filter states */ |
|
229 psDD = &psDelDec[ Winner_ind ]; |
|
230 last_smple_idx = smpl_buf_idx + decisionDelay; |
|
231 for( i = 0; i < decisionDelay; i++ ) { |
|
232 last_smple_idx = ( last_smple_idx - 1 ) & DECISION_DELAY_MASK; |
|
233 pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 ); |
|
234 pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( |
|
235 silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gains_Q16[ 1 ] ), 14 ) ); |
|
236 NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q14[ last_smple_idx ]; |
|
237 } |
|
238 |
|
239 subfr = 0; |
|
240 } |
|
241 |
|
242 /* Rewhiten with new A coefs */ |
|
243 start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2; |
|
244 silk_assert( start_idx > 0 ); |
|
245 |
|
246 silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ], |
|
247 A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder ); |
|
248 |
|
249 NSQ->sLTP_buf_idx = psEncC->ltp_mem_length; |
|
250 NSQ->rewhite_flag = 1; |
|
251 } |
|
252 } |
|
253 |
|
254 silk_nsq_del_dec_scale_states( psEncC, NSQ, psDelDec, x_Q3, x_sc_Q10, sLTP, sLTP_Q15, k, |
|
255 psEncC->nStatesDelayedDecision, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType, decisionDelay ); |
|
256 |
|
257 silk_noise_shape_quantizer_del_dec( NSQ, psDelDec, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15, |
|
258 delayedGain_Q10, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], |
|
259 Gains_Q16[ k ], Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder, |
|
260 psEncC->predictLPCOrder, psEncC->warping_Q16, psEncC->nStatesDelayedDecision, &smpl_buf_idx, decisionDelay ); |
|
261 |
|
262 x_Q3 += psEncC->subfr_length; |
|
263 pulses += psEncC->subfr_length; |
|
264 pxq += psEncC->subfr_length; |
|
265 } |
|
266 |
|
267 /* Find winner */ |
|
268 RDmin_Q10 = psDelDec[ 0 ].RD_Q10; |
|
269 Winner_ind = 0; |
|
270 for( k = 1; k < psEncC->nStatesDelayedDecision; k++ ) { |
|
271 if( psDelDec[ k ].RD_Q10 < RDmin_Q10 ) { |
|
272 RDmin_Q10 = psDelDec[ k ].RD_Q10; |
|
273 Winner_ind = k; |
|
274 } |
|
275 } |
|
276 |
|
277 /* Copy final part of signals from winner state to output and long-term filter states */ |
|
278 psDD = &psDelDec[ Winner_ind ]; |
|
279 psIndices->Seed = psDD->SeedInit; |
|
280 last_smple_idx = smpl_buf_idx + decisionDelay; |
|
281 Gain_Q10 = silk_RSHIFT32( Gains_Q16[ psEncC->nb_subfr - 1 ], 6 ); |
|
282 for( i = 0; i < decisionDelay; i++ ) { |
|
283 last_smple_idx = ( last_smple_idx - 1 ) & DECISION_DELAY_MASK; |
|
284 pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 ); |
|
285 pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( |
|
286 silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gain_Q10 ), 8 ) ); |
|
287 NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q14[ last_smple_idx ]; |
|
288 } |
|
289 silk_memcpy( NSQ->sLPC_Q14, &psDD->sLPC_Q14[ psEncC->subfr_length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) ); |
|
290 silk_memcpy( NSQ->sAR2_Q14, psDD->sAR2_Q14, sizeof( psDD->sAR2_Q14 ) ); |
|
291 |
|
292 /* Update states */ |
|
293 NSQ->sLF_AR_shp_Q14 = psDD->LF_AR_Q14; |
|
294 NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ]; |
|
295 |
|
296 /* Save quantized speech signal */ |
|
297 /* DEBUG_STORE_DATA( enc.pcm, &NSQ->xq[psEncC->ltp_mem_length], psEncC->frame_length * sizeof( opus_int16 ) ) */ |
|
298 silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) ); |
|
299 silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) ); |
|
300 RESTORE_STACK; |
|
301 } |
|
302 |
|
303 /******************************************/ |
|
304 /* Noise shape quantizer for one subframe */ |
|
305 /******************************************/ |
|
306 static OPUS_INLINE void silk_noise_shape_quantizer_del_dec( |
|
307 silk_nsq_state *NSQ, /* I/O NSQ state */ |
|
308 NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ |
|
309 opus_int signalType, /* I Signal type */ |
|
310 const opus_int32 x_Q10[], /* I */ |
|
311 opus_int8 pulses[], /* O */ |
|
312 opus_int16 xq[], /* O */ |
|
313 opus_int32 sLTP_Q15[], /* I/O LTP filter state */ |
|
314 opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */ |
|
315 const opus_int16 a_Q12[], /* I Short term prediction coefs */ |
|
316 const opus_int16 b_Q14[], /* I Long term prediction coefs */ |
|
317 const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */ |
|
318 opus_int lag, /* I Pitch lag */ |
|
319 opus_int32 HarmShapeFIRPacked_Q14, /* I */ |
|
320 opus_int Tilt_Q14, /* I Spectral tilt */ |
|
321 opus_int32 LF_shp_Q14, /* I */ |
|
322 opus_int32 Gain_Q16, /* I */ |
|
323 opus_int Lambda_Q10, /* I */ |
|
324 opus_int offset_Q10, /* I */ |
|
325 opus_int length, /* I Input length */ |
|
326 opus_int subfr, /* I Subframe number */ |
|
327 opus_int shapingLPCOrder, /* I Shaping LPC filter order */ |
|
328 opus_int predictLPCOrder, /* I Prediction filter order */ |
|
329 opus_int warping_Q16, /* I */ |
|
330 opus_int nStatesDelayedDecision, /* I Number of states in decision tree */ |
|
331 opus_int *smpl_buf_idx, /* I Index to newest samples in buffers */ |
|
332 opus_int decisionDelay /* I */ |
|
333 ) |
|
334 { |
|
335 opus_int i, j, k, Winner_ind, RDmin_ind, RDmax_ind, last_smple_idx; |
|
336 opus_int32 Winner_rand_state; |
|
337 opus_int32 LTP_pred_Q14, LPC_pred_Q14, n_AR_Q14, n_LTP_Q14; |
|
338 opus_int32 n_LF_Q14, r_Q10, rr_Q10, rd1_Q10, rd2_Q10, RDmin_Q10, RDmax_Q10; |
|
339 opus_int32 q1_Q0, q1_Q10, q2_Q10, exc_Q14, LPC_exc_Q14, xq_Q14, Gain_Q10; |
|
340 opus_int32 tmp1, tmp2, sLF_AR_shp_Q14; |
|
341 opus_int32 *pred_lag_ptr, *shp_lag_ptr, *psLPC_Q14; |
|
342 VARDECL( NSQ_sample_pair, psSampleState ); |
|
343 NSQ_del_dec_struct *psDD; |
|
344 NSQ_sample_struct *psSS; |
|
345 SAVE_STACK; |
|
346 |
|
347 silk_assert( nStatesDelayedDecision > 0 ); |
|
348 ALLOC( psSampleState, nStatesDelayedDecision, NSQ_sample_pair ); |
|
349 |
|
350 shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ]; |
|
351 pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ]; |
|
352 Gain_Q10 = silk_RSHIFT( Gain_Q16, 6 ); |
|
353 |
|
354 for( i = 0; i < length; i++ ) { |
|
355 /* Perform common calculations used in all states */ |
|
356 |
|
357 /* Long-term prediction */ |
|
358 if( signalType == TYPE_VOICED ) { |
|
359 /* Unrolled loop */ |
|
360 /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */ |
|
361 LTP_pred_Q14 = 2; |
|
362 LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ 0 ], b_Q14[ 0 ] ); |
|
363 LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], b_Q14[ 1 ] ); |
|
364 LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], b_Q14[ 2 ] ); |
|
365 LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], b_Q14[ 3 ] ); |
|
366 LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], b_Q14[ 4 ] ); |
|
367 LTP_pred_Q14 = silk_LSHIFT( LTP_pred_Q14, 1 ); /* Q13 -> Q14 */ |
|
368 pred_lag_ptr++; |
|
369 } else { |
|
370 LTP_pred_Q14 = 0; |
|
371 } |
|
372 |
|
373 /* Long-term shaping */ |
|
374 if( lag > 0 ) { |
|
375 /* Symmetric, packed FIR coefficients */ |
|
376 n_LTP_Q14 = silk_SMULWB( silk_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 ); |
|
377 n_LTP_Q14 = silk_SMLAWT( n_LTP_Q14, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 ); |
|
378 n_LTP_Q14 = silk_SUB_LSHIFT32( LTP_pred_Q14, n_LTP_Q14, 2 ); /* Q12 -> Q14 */ |
|
379 shp_lag_ptr++; |
|
380 } else { |
|
381 n_LTP_Q14 = 0; |
|
382 } |
|
383 |
|
384 for( k = 0; k < nStatesDelayedDecision; k++ ) { |
|
385 /* Delayed decision state */ |
|
386 psDD = &psDelDec[ k ]; |
|
387 |
|
388 /* Sample state */ |
|
389 psSS = psSampleState[ k ]; |
|
390 |
|
391 /* Generate dither */ |
|
392 psDD->Seed = silk_RAND( psDD->Seed ); |
|
393 |
|
394 /* Pointer used in short term prediction and shaping */ |
|
395 psLPC_Q14 = &psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 + i ]; |
|
396 /* Short-term prediction */ |
|
397 silk_assert( predictLPCOrder == 10 || predictLPCOrder == 16 ); |
|
398 /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */ |
|
399 LPC_pred_Q14 = silk_RSHIFT( predictLPCOrder, 1 ); |
|
400 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ 0 ], a_Q12[ 0 ] ); |
|
401 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -1 ], a_Q12[ 1 ] ); |
|
402 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -2 ], a_Q12[ 2 ] ); |
|
403 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -3 ], a_Q12[ 3 ] ); |
|
404 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -4 ], a_Q12[ 4 ] ); |
|
405 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -5 ], a_Q12[ 5 ] ); |
|
406 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -6 ], a_Q12[ 6 ] ); |
|
407 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -7 ], a_Q12[ 7 ] ); |
|
408 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -8 ], a_Q12[ 8 ] ); |
|
409 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -9 ], a_Q12[ 9 ] ); |
|
410 if( predictLPCOrder == 16 ) { |
|
411 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -10 ], a_Q12[ 10 ] ); |
|
412 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -11 ], a_Q12[ 11 ] ); |
|
413 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -12 ], a_Q12[ 12 ] ); |
|
414 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -13 ], a_Q12[ 13 ] ); |
|
415 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -14 ], a_Q12[ 14 ] ); |
|
416 LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -15 ], a_Q12[ 15 ] ); |
|
417 } |
|
418 LPC_pred_Q14 = silk_LSHIFT( LPC_pred_Q14, 4 ); /* Q10 -> Q14 */ |
|
419 |
|
420 /* Noise shape feedback */ |
|
421 silk_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */ |
|
422 /* Output of lowpass section */ |
|
423 tmp2 = silk_SMLAWB( psLPC_Q14[ 0 ], psDD->sAR2_Q14[ 0 ], warping_Q16 ); |
|
424 /* Output of allpass section */ |
|
425 tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ 0 ], psDD->sAR2_Q14[ 1 ] - tmp2, warping_Q16 ); |
|
426 psDD->sAR2_Q14[ 0 ] = tmp2; |
|
427 n_AR_Q14 = silk_RSHIFT( shapingLPCOrder, 1 ); |
|
428 n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp2, AR_shp_Q13[ 0 ] ); |
|
429 /* Loop over allpass sections */ |
|
430 for( j = 2; j < shapingLPCOrder; j += 2 ) { |
|
431 /* Output of allpass section */ |
|
432 tmp2 = silk_SMLAWB( psDD->sAR2_Q14[ j - 1 ], psDD->sAR2_Q14[ j + 0 ] - tmp1, warping_Q16 ); |
|
433 psDD->sAR2_Q14[ j - 1 ] = tmp1; |
|
434 n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp1, AR_shp_Q13[ j - 1 ] ); |
|
435 /* Output of allpass section */ |
|
436 tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ j + 0 ], psDD->sAR2_Q14[ j + 1 ] - tmp2, warping_Q16 ); |
|
437 psDD->sAR2_Q14[ j + 0 ] = tmp2; |
|
438 n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp2, AR_shp_Q13[ j ] ); |
|
439 } |
|
440 psDD->sAR2_Q14[ shapingLPCOrder - 1 ] = tmp1; |
|
441 n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp1, AR_shp_Q13[ shapingLPCOrder - 1 ] ); |
|
442 |
|
443 n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 1 ); /* Q11 -> Q12 */ |
|
444 n_AR_Q14 = silk_SMLAWB( n_AR_Q14, psDD->LF_AR_Q14, Tilt_Q14 ); /* Q12 */ |
|
445 n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 2 ); /* Q12 -> Q14 */ |
|
446 |
|
447 n_LF_Q14 = silk_SMULWB( psDD->Shape_Q14[ *smpl_buf_idx ], LF_shp_Q14 ); /* Q12 */ |
|
448 n_LF_Q14 = silk_SMLAWT( n_LF_Q14, psDD->LF_AR_Q14, LF_shp_Q14 ); /* Q12 */ |
|
449 n_LF_Q14 = silk_LSHIFT( n_LF_Q14, 2 ); /* Q12 -> Q14 */ |
|
450 |
|
451 /* Input minus prediction plus noise feedback */ |
|
452 /* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP */ |
|
453 tmp1 = silk_ADD32( n_AR_Q14, n_LF_Q14 ); /* Q14 */ |
|
454 tmp2 = silk_ADD32( n_LTP_Q14, LPC_pred_Q14 ); /* Q13 */ |
|
455 tmp1 = silk_SUB32( tmp2, tmp1 ); /* Q13 */ |
|
456 tmp1 = silk_RSHIFT_ROUND( tmp1, 4 ); /* Q10 */ |
|
457 |
|
458 r_Q10 = silk_SUB32( x_Q10[ i ], tmp1 ); /* residual error Q10 */ |
|
459 |
|
460 /* Flip sign depending on dither */ |
|
461 if ( psDD->Seed < 0 ) { |
|
462 r_Q10 = -r_Q10; |
|
463 } |
|
464 r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 ); |
|
465 |
|
466 /* Find two quantization level candidates and measure their rate-distortion */ |
|
467 q1_Q10 = silk_SUB32( r_Q10, offset_Q10 ); |
|
468 q1_Q0 = silk_RSHIFT( q1_Q10, 10 ); |
|
469 if( q1_Q0 > 0 ) { |
|
470 q1_Q10 = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 ); |
|
471 q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 ); |
|
472 q2_Q10 = silk_ADD32( q1_Q10, 1024 ); |
|
473 rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 ); |
|
474 rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 ); |
|
475 } else if( q1_Q0 == 0 ) { |
|
476 q1_Q10 = offset_Q10; |
|
477 q2_Q10 = silk_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 ); |
|
478 rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 ); |
|
479 rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 ); |
|
480 } else if( q1_Q0 == -1 ) { |
|
481 q2_Q10 = offset_Q10; |
|
482 q1_Q10 = silk_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 ); |
|
483 rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 ); |
|
484 rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 ); |
|
485 } else { /* q1_Q0 < -1 */ |
|
486 q1_Q10 = silk_ADD32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 ); |
|
487 q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 ); |
|
488 q2_Q10 = silk_ADD32( q1_Q10, 1024 ); |
|
489 rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 ); |
|
490 rd2_Q10 = silk_SMULBB( -q2_Q10, Lambda_Q10 ); |
|
491 } |
|
492 rr_Q10 = silk_SUB32( r_Q10, q1_Q10 ); |
|
493 rd1_Q10 = silk_RSHIFT( silk_SMLABB( rd1_Q10, rr_Q10, rr_Q10 ), 10 ); |
|
494 rr_Q10 = silk_SUB32( r_Q10, q2_Q10 ); |
|
495 rd2_Q10 = silk_RSHIFT( silk_SMLABB( rd2_Q10, rr_Q10, rr_Q10 ), 10 ); |
|
496 |
|
497 if( rd1_Q10 < rd2_Q10 ) { |
|
498 psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 ); |
|
499 psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 ); |
|
500 psSS[ 0 ].Q_Q10 = q1_Q10; |
|
501 psSS[ 1 ].Q_Q10 = q2_Q10; |
|
502 } else { |
|
503 psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 ); |
|
504 psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 ); |
|
505 psSS[ 0 ].Q_Q10 = q2_Q10; |
|
506 psSS[ 1 ].Q_Q10 = q1_Q10; |
|
507 } |
|
508 |
|
509 /* Update states for best quantization */ |
|
510 |
|
511 /* Quantized excitation */ |
|
512 exc_Q14 = silk_LSHIFT32( psSS[ 0 ].Q_Q10, 4 ); |
|
513 if ( psDD->Seed < 0 ) { |
|
514 exc_Q14 = -exc_Q14; |
|
515 } |
|
516 |
|
517 /* Add predictions */ |
|
518 LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 ); |
|
519 xq_Q14 = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 ); |
|
520 |
|
521 /* Update states */ |
|
522 sLF_AR_shp_Q14 = silk_SUB32( xq_Q14, n_AR_Q14 ); |
|
523 psSS[ 0 ].sLTP_shp_Q14 = silk_SUB32( sLF_AR_shp_Q14, n_LF_Q14 ); |
|
524 psSS[ 0 ].LF_AR_Q14 = sLF_AR_shp_Q14; |
|
525 psSS[ 0 ].LPC_exc_Q14 = LPC_exc_Q14; |
|
526 psSS[ 0 ].xq_Q14 = xq_Q14; |
|
527 |
|
528 /* Update states for second best quantization */ |
|
529 |
|
530 /* Quantized excitation */ |
|
531 exc_Q14 = silk_LSHIFT32( psSS[ 1 ].Q_Q10, 4 ); |
|
532 if ( psDD->Seed < 0 ) { |
|
533 exc_Q14 = -exc_Q14; |
|
534 } |
|
535 |
|
536 |
|
537 /* Add predictions */ |
|
538 LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 ); |
|
539 xq_Q14 = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 ); |
|
540 |
|
541 /* Update states */ |
|
542 sLF_AR_shp_Q14 = silk_SUB32( xq_Q14, n_AR_Q14 ); |
|
543 psSS[ 1 ].sLTP_shp_Q14 = silk_SUB32( sLF_AR_shp_Q14, n_LF_Q14 ); |
|
544 psSS[ 1 ].LF_AR_Q14 = sLF_AR_shp_Q14; |
|
545 psSS[ 1 ].LPC_exc_Q14 = LPC_exc_Q14; |
|
546 psSS[ 1 ].xq_Q14 = xq_Q14; |
|
547 } |
|
548 |
|
549 *smpl_buf_idx = ( *smpl_buf_idx - 1 ) & DECISION_DELAY_MASK; /* Index to newest samples */ |
|
550 last_smple_idx = ( *smpl_buf_idx + decisionDelay ) & DECISION_DELAY_MASK; /* Index to decisionDelay old samples */ |
|
551 |
|
552 /* Find winner */ |
|
553 RDmin_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10; |
|
554 Winner_ind = 0; |
|
555 for( k = 1; k < nStatesDelayedDecision; k++ ) { |
|
556 if( psSampleState[ k ][ 0 ].RD_Q10 < RDmin_Q10 ) { |
|
557 RDmin_Q10 = psSampleState[ k ][ 0 ].RD_Q10; |
|
558 Winner_ind = k; |
|
559 } |
|
560 } |
|
561 |
|
562 /* Increase RD values of expired states */ |
|
563 Winner_rand_state = psDelDec[ Winner_ind ].RandState[ last_smple_idx ]; |
|
564 for( k = 0; k < nStatesDelayedDecision; k++ ) { |
|
565 if( psDelDec[ k ].RandState[ last_smple_idx ] != Winner_rand_state ) { |
|
566 psSampleState[ k ][ 0 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 0 ].RD_Q10, silk_int32_MAX >> 4 ); |
|
567 psSampleState[ k ][ 1 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 1 ].RD_Q10, silk_int32_MAX >> 4 ); |
|
568 silk_assert( psSampleState[ k ][ 0 ].RD_Q10 >= 0 ); |
|
569 } |
|
570 } |
|
571 |
|
572 /* Find worst in first set and best in second set */ |
|
573 RDmax_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10; |
|
574 RDmin_Q10 = psSampleState[ 0 ][ 1 ].RD_Q10; |
|
575 RDmax_ind = 0; |
|
576 RDmin_ind = 0; |
|
577 for( k = 1; k < nStatesDelayedDecision; k++ ) { |
|
578 /* find worst in first set */ |
|
579 if( psSampleState[ k ][ 0 ].RD_Q10 > RDmax_Q10 ) { |
|
580 RDmax_Q10 = psSampleState[ k ][ 0 ].RD_Q10; |
|
581 RDmax_ind = k; |
|
582 } |
|
583 /* find best in second set */ |
|
584 if( psSampleState[ k ][ 1 ].RD_Q10 < RDmin_Q10 ) { |
|
585 RDmin_Q10 = psSampleState[ k ][ 1 ].RD_Q10; |
|
586 RDmin_ind = k; |
|
587 } |
|
588 } |
|
589 |
|
590 /* Replace a state if best from second set outperforms worst in first set */ |
|
591 if( RDmin_Q10 < RDmax_Q10 ) { |
|
592 silk_memcpy( ( (opus_int32 *)&psDelDec[ RDmax_ind ] ) + i, |
|
593 ( (opus_int32 *)&psDelDec[ RDmin_ind ] ) + i, sizeof( NSQ_del_dec_struct ) - i * sizeof( opus_int32) ); |
|
594 silk_memcpy( &psSampleState[ RDmax_ind ][ 0 ], &psSampleState[ RDmin_ind ][ 1 ], sizeof( NSQ_sample_struct ) ); |
|
595 } |
|
596 |
|
597 /* Write samples from winner to output and long-term filter states */ |
|
598 psDD = &psDelDec[ Winner_ind ]; |
|
599 if( subfr > 0 || i >= decisionDelay ) { |
|
600 pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 ); |
|
601 xq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( |
|
602 silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], delayedGain_Q10[ last_smple_idx ] ), 8 ) ); |
|
603 NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay ] = psDD->Shape_Q14[ last_smple_idx ]; |
|
604 sLTP_Q15[ NSQ->sLTP_buf_idx - decisionDelay ] = psDD->Pred_Q15[ last_smple_idx ]; |
|
605 } |
|
606 NSQ->sLTP_shp_buf_idx++; |
|
607 NSQ->sLTP_buf_idx++; |
|
608 |
|
609 /* Update states */ |
|
610 for( k = 0; k < nStatesDelayedDecision; k++ ) { |
|
611 psDD = &psDelDec[ k ]; |
|
612 psSS = &psSampleState[ k ][ 0 ]; |
|
613 psDD->LF_AR_Q14 = psSS->LF_AR_Q14; |
|
614 psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH + i ] = psSS->xq_Q14; |
|
615 psDD->Xq_Q14[ *smpl_buf_idx ] = psSS->xq_Q14; |
|
616 psDD->Q_Q10[ *smpl_buf_idx ] = psSS->Q_Q10; |
|
617 psDD->Pred_Q15[ *smpl_buf_idx ] = silk_LSHIFT32( psSS->LPC_exc_Q14, 1 ); |
|
618 psDD->Shape_Q14[ *smpl_buf_idx ] = psSS->sLTP_shp_Q14; |
|
619 psDD->Seed = silk_ADD32_ovflw( psDD->Seed, silk_RSHIFT_ROUND( psSS->Q_Q10, 10 ) ); |
|
620 psDD->RandState[ *smpl_buf_idx ] = psDD->Seed; |
|
621 psDD->RD_Q10 = psSS->RD_Q10; |
|
622 } |
|
623 delayedGain_Q10[ *smpl_buf_idx ] = Gain_Q10; |
|
624 } |
|
625 /* Update LPC states */ |
|
626 for( k = 0; k < nStatesDelayedDecision; k++ ) { |
|
627 psDD = &psDelDec[ k ]; |
|
628 silk_memcpy( psDD->sLPC_Q14, &psDD->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) ); |
|
629 } |
|
630 RESTORE_STACK; |
|
631 } |
|
632 |
|
633 static OPUS_INLINE void silk_nsq_del_dec_scale_states( |
|
634 const silk_encoder_state *psEncC, /* I Encoder State */ |
|
635 silk_nsq_state *NSQ, /* I/O NSQ state */ |
|
636 NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ |
|
637 const opus_int32 x_Q3[], /* I Input in Q3 */ |
|
638 opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */ |
|
639 const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */ |
|
640 opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */ |
|
641 opus_int subfr, /* I Subframe number */ |
|
642 opus_int nStatesDelayedDecision, /* I Number of del dec states */ |
|
643 const opus_int LTP_scale_Q14, /* I LTP state scaling */ |
|
644 const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ |
|
645 const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */ |
|
646 const opus_int signal_type, /* I Signal type */ |
|
647 const opus_int decisionDelay /* I Decision delay */ |
|
648 ) |
|
649 { |
|
650 opus_int i, k, lag; |
|
651 opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q23; |
|
652 NSQ_del_dec_struct *psDD; |
|
653 |
|
654 lag = pitchL[ subfr ]; |
|
655 inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 ); |
|
656 silk_assert( inv_gain_Q31 != 0 ); |
|
657 |
|
658 /* Calculate gain adjustment factor */ |
|
659 if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) { |
|
660 gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 ); |
|
661 } else { |
|
662 gain_adj_Q16 = (opus_int32)1 << 16; |
|
663 } |
|
664 |
|
665 /* Scale input */ |
|
666 inv_gain_Q23 = silk_RSHIFT_ROUND( inv_gain_Q31, 8 ); |
|
667 for( i = 0; i < psEncC->subfr_length; i++ ) { |
|
668 x_sc_Q10[ i ] = silk_SMULWW( x_Q3[ i ], inv_gain_Q23 ); |
|
669 } |
|
670 |
|
671 /* Save inverse gain */ |
|
672 NSQ->prev_gain_Q16 = Gains_Q16[ subfr ]; |
|
673 |
|
674 /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */ |
|
675 if( NSQ->rewhite_flag ) { |
|
676 if( subfr == 0 ) { |
|
677 /* Do LTP downscaling */ |
|
678 inv_gain_Q31 = silk_LSHIFT( silk_SMULWB( inv_gain_Q31, LTP_scale_Q14 ), 2 ); |
|
679 } |
|
680 for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) { |
|
681 silk_assert( i < MAX_FRAME_LENGTH ); |
|
682 sLTP_Q15[ i ] = silk_SMULWB( inv_gain_Q31, sLTP[ i ] ); |
|
683 } |
|
684 } |
|
685 |
|
686 /* Adjust for changing gain */ |
|
687 if( gain_adj_Q16 != (opus_int32)1 << 16 ) { |
|
688 /* Scale long-term shaping state */ |
|
689 for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i++ ) { |
|
690 NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] ); |
|
691 } |
|
692 |
|
693 /* Scale long-term prediction state */ |
|
694 if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) { |
|
695 for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx - decisionDelay; i++ ) { |
|
696 sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] ); |
|
697 } |
|
698 } |
|
699 |
|
700 for( k = 0; k < nStatesDelayedDecision; k++ ) { |
|
701 psDD = &psDelDec[ k ]; |
|
702 |
|
703 /* Scale scalar states */ |
|
704 psDD->LF_AR_Q14 = silk_SMULWW( gain_adj_Q16, psDD->LF_AR_Q14 ); |
|
705 |
|
706 /* Scale short-term prediction and shaping states */ |
|
707 for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) { |
|
708 psDD->sLPC_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->sLPC_Q14[ i ] ); |
|
709 } |
|
710 for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) { |
|
711 psDD->sAR2_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->sAR2_Q14[ i ] ); |
|
712 } |
|
713 for( i = 0; i < DECISION_DELAY; i++ ) { |
|
714 psDD->Pred_Q15[ i ] = silk_SMULWW( gain_adj_Q16, psDD->Pred_Q15[ i ] ); |
|
715 psDD->Shape_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->Shape_Q14[ i ] ); |
|
716 } |
|
717 } |
|
718 } |
|
719 } |