|
1 /*********************************************************************** |
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
|
3 Redistribution and use in source and binary forms, with or without |
|
4 modification, are permitted provided that the following conditions |
|
5 are met: |
|
6 - Redistributions of source code must retain the above copyright notice, |
|
7 this list of conditions and the following disclaimer. |
|
8 - Redistributions in binary form must reproduce the above copyright |
|
9 notice, this list of conditions and the following disclaimer in the |
|
10 documentation and/or other materials provided with the distribution. |
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the |
|
12 names of specific contributors, may be used to endorse or promote |
|
13 products derived from this software without specific prior written |
|
14 permission. |
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
25 POSSIBILITY OF SUCH DAMAGE. |
|
26 ***********************************************************************/ |
|
27 |
|
28 #ifdef HAVE_CONFIG_H |
|
29 #include "config.h" |
|
30 #endif |
|
31 |
|
32 #include "SigProc_FIX.h" |
|
33 #include "define.h" |
|
34 #include "tuning_parameters.h" |
|
35 #include "pitch.h" |
|
36 |
|
37 #define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */ |
|
38 |
|
39 #define QA 25 |
|
40 #define N_BITS_HEAD_ROOM 2 |
|
41 #define MIN_RSHIFTS -16 |
|
42 #define MAX_RSHIFTS (32 - QA) |
|
43 |
|
44 /* Compute reflection coefficients from input signal */ |
|
45 void silk_burg_modified( |
|
46 opus_int32 *res_nrg, /* O Residual energy */ |
|
47 opus_int *res_nrg_Q, /* O Residual energy Q value */ |
|
48 opus_int32 A_Q16[], /* O Prediction coefficients (length order) */ |
|
49 const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */ |
|
50 const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */ |
|
51 const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */ |
|
52 const opus_int nb_subfr, /* I Number of subframes stacked in x */ |
|
53 const opus_int D, /* I Order */ |
|
54 int arch /* I Run-time architecture */ |
|
55 ) |
|
56 { |
|
57 opus_int k, n, s, lz, rshifts, rshifts_extra, reached_max_gain; |
|
58 opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2; |
|
59 const opus_int16 *x_ptr; |
|
60 opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ]; |
|
61 opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ]; |
|
62 opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ]; |
|
63 opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ]; |
|
64 opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ]; |
|
65 opus_int32 xcorr[ SILK_MAX_ORDER_LPC ]; |
|
66 |
|
67 silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); |
|
68 |
|
69 /* Compute autocorrelations, added over subframes */ |
|
70 silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length ); |
|
71 if( rshifts > MAX_RSHIFTS ) { |
|
72 C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS ); |
|
73 silk_assert( C0 > 0 ); |
|
74 rshifts = MAX_RSHIFTS; |
|
75 } else { |
|
76 lz = silk_CLZ32( C0 ) - 1; |
|
77 rshifts_extra = N_BITS_HEAD_ROOM - lz; |
|
78 if( rshifts_extra > 0 ) { |
|
79 rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts ); |
|
80 C0 = silk_RSHIFT32( C0, rshifts_extra ); |
|
81 } else { |
|
82 rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts ); |
|
83 C0 = silk_LSHIFT32( C0, -rshifts_extra ); |
|
84 } |
|
85 rshifts += rshifts_extra; |
|
86 } |
|
87 CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */ |
|
88 silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) ); |
|
89 if( rshifts > 0 ) { |
|
90 for( s = 0; s < nb_subfr; s++ ) { |
|
91 x_ptr = x + s * subfr_length; |
|
92 for( n = 1; n < D + 1; n++ ) { |
|
93 C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64( |
|
94 silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n ), rshifts ); |
|
95 } |
|
96 } |
|
97 } else { |
|
98 for( s = 0; s < nb_subfr; s++ ) { |
|
99 int i; |
|
100 opus_int32 d; |
|
101 x_ptr = x + s * subfr_length; |
|
102 celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch ); |
|
103 for( n = 1; n < D + 1; n++ ) { |
|
104 for ( i = n + subfr_length - D, d = 0; i < subfr_length; i++ ) |
|
105 d = MAC16_16( d, x_ptr[ i ], x_ptr[ i - n ] ); |
|
106 xcorr[ n - 1 ] += d; |
|
107 } |
|
108 for( n = 1; n < D + 1; n++ ) { |
|
109 C_first_row[ n - 1 ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts ); |
|
110 } |
|
111 } |
|
112 } |
|
113 silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) ); |
|
114 |
|
115 /* Initialize */ |
|
116 CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */ |
|
117 |
|
118 invGain_Q30 = (opus_int32)1 << 30; |
|
119 reached_max_gain = 0; |
|
120 for( n = 0; n < D; n++ ) { |
|
121 /* Update first row of correlation matrix (without first element) */ |
|
122 /* Update last row of correlation matrix (without last element, stored in reversed order) */ |
|
123 /* Update C * Af */ |
|
124 /* Update C * flipud(Af) (stored in reversed order) */ |
|
125 if( rshifts > -2 ) { |
|
126 for( s = 0; s < nb_subfr; s++ ) { |
|
127 x_ptr = x + s * subfr_length; |
|
128 x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */ |
|
129 x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts) */ |
|
130 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */ |
|
131 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */ |
|
132 for( k = 0; k < n; k++ ) { |
|
133 C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */ |
|
134 C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */ |
|
135 Atmp_QA = Af_QA[ k ]; |
|
136 tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */ |
|
137 tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */ |
|
138 } |
|
139 tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */ |
|
140 tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */ |
|
141 for( k = 0; k <= n; k++ ) { |
|
142 CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */ |
|
143 CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */ |
|
144 } |
|
145 } |
|
146 } else { |
|
147 for( s = 0; s < nb_subfr; s++ ) { |
|
148 x_ptr = x + s * subfr_length; |
|
149 x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */ |
|
150 x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */ |
|
151 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */ |
|
152 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */ |
|
153 for( k = 0; k < n; k++ ) { |
|
154 C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */ |
|
155 C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */ |
|
156 Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */ |
|
157 tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */ |
|
158 tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */ |
|
159 } |
|
160 tmp1 = -tmp1; /* Q17 */ |
|
161 tmp2 = -tmp2; /* Q17 */ |
|
162 for( k = 0; k <= n; k++ ) { |
|
163 CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1, |
|
164 silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */ |
|
165 CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2, |
|
166 silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */ |
|
167 } |
|
168 } |
|
169 } |
|
170 |
|
171 /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ |
|
172 tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */ |
|
173 tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */ |
|
174 num = 0; /* Q( -rshifts ) */ |
|
175 nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */ |
|
176 for( k = 0; k < n; k++ ) { |
|
177 Atmp_QA = Af_QA[ k ]; |
|
178 lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1; |
|
179 lz = silk_min( 32 - QA, lz ); |
|
180 Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */ |
|
181 |
|
182 tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ |
|
183 tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ |
|
184 num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ |
|
185 nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ), |
|
186 Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */ |
|
187 } |
|
188 CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */ |
|
189 CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */ |
|
190 num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */ |
|
191 num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */ |
|
192 |
|
193 /* Calculate the next order reflection (parcor) coefficient */ |
|
194 if( silk_abs( num ) < nrg ) { |
|
195 rc_Q31 = silk_DIV32_varQ( num, nrg, 31 ); |
|
196 } else { |
|
197 rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN; |
|
198 } |
|
199 |
|
200 /* Update inverse prediction gain */ |
|
201 tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 ); |
|
202 tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 ); |
|
203 if( tmp1 <= minInvGain_Q30 ) { |
|
204 /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */ |
|
205 tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */ |
|
206 rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */ |
|
207 /* Newton-Raphson iteration */ |
|
208 rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */ |
|
209 rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */ |
|
210 if( num < 0 ) { |
|
211 /* Ensure adjusted reflection coefficients has the original sign */ |
|
212 rc_Q31 = -rc_Q31; |
|
213 } |
|
214 invGain_Q30 = minInvGain_Q30; |
|
215 reached_max_gain = 1; |
|
216 } else { |
|
217 invGain_Q30 = tmp1; |
|
218 } |
|
219 |
|
220 /* Update the AR coefficients */ |
|
221 for( k = 0; k < (n + 1) >> 1; k++ ) { |
|
222 tmp1 = Af_QA[ k ]; /* QA */ |
|
223 tmp2 = Af_QA[ n - k - 1 ]; /* QA */ |
|
224 Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */ |
|
225 Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */ |
|
226 } |
|
227 Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */ |
|
228 |
|
229 if( reached_max_gain ) { |
|
230 /* Reached max prediction gain; set remaining coefficients to zero and exit loop */ |
|
231 for( k = n + 1; k < D; k++ ) { |
|
232 Af_QA[ k ] = 0; |
|
233 } |
|
234 break; |
|
235 } |
|
236 |
|
237 /* Update C * Af and C * Ab */ |
|
238 for( k = 0; k <= n + 1; k++ ) { |
|
239 tmp1 = CAf[ k ]; /* Q( -rshifts ) */ |
|
240 tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */ |
|
241 CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */ |
|
242 CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */ |
|
243 } |
|
244 } |
|
245 |
|
246 if( reached_max_gain ) { |
|
247 for( k = 0; k < D; k++ ) { |
|
248 /* Scale coefficients */ |
|
249 A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); |
|
250 } |
|
251 /* Subtract energy of preceding samples from C0 */ |
|
252 if( rshifts > 0 ) { |
|
253 for( s = 0; s < nb_subfr; s++ ) { |
|
254 x_ptr = x + s * subfr_length; |
|
255 C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D ), rshifts ); |
|
256 } |
|
257 } else { |
|
258 for( s = 0; s < nb_subfr; s++ ) { |
|
259 x_ptr = x + s * subfr_length; |
|
260 C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D ), -rshifts ); |
|
261 } |
|
262 } |
|
263 /* Approximate residual energy */ |
|
264 *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 ); |
|
265 *res_nrg_Q = -rshifts; |
|
266 } else { |
|
267 /* Return residual energy */ |
|
268 nrg = CAf[ 0 ]; /* Q( -rshifts ) */ |
|
269 tmp1 = (opus_int32)1 << 16; /* Q16 */ |
|
270 for( k = 0; k < D; k++ ) { |
|
271 Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */ |
|
272 nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */ |
|
273 tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */ |
|
274 A_Q16[ k ] = -Atmp1; |
|
275 } |
|
276 *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ), -tmp1 );/* Q( -rshifts ) */ |
|
277 *res_nrg_Q = -rshifts; |
|
278 } |
|
279 } |