|
1 /*********************************************************************** |
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
|
3 Redistribution and use in source and binary forms, with or without |
|
4 modification, are permitted provided that the following conditions |
|
5 are met: |
|
6 - Redistributions of source code must retain the above copyright notice, |
|
7 this list of conditions and the following disclaimer. |
|
8 - Redistributions in binary form must reproduce the above copyright |
|
9 notice, this list of conditions and the following disclaimer in the |
|
10 documentation and/or other materials provided with the distribution. |
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the |
|
12 names of specific contributors, may be used to endorse or promote |
|
13 products derived from this software without specific prior written |
|
14 permission. |
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
25 POSSIBILITY OF SUCH DAMAGE. |
|
26 ***********************************************************************/ |
|
27 |
|
28 #ifdef HAVE_CONFIG_H |
|
29 #include "config.h" |
|
30 #endif |
|
31 |
|
32 #include "main_FIX.h" |
|
33 #include "stack_alloc.h" |
|
34 #include "tuning_parameters.h" |
|
35 |
|
36 /*****************************/ |
|
37 /* Internal function headers */ |
|
38 /*****************************/ |
|
39 |
|
40 typedef struct { |
|
41 opus_int32 Q36_part; |
|
42 opus_int32 Q48_part; |
|
43 } inv_D_t; |
|
44 |
|
45 /* Factorize square matrix A into LDL form */ |
|
46 static OPUS_INLINE void silk_LDL_factorize_FIX( |
|
47 opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */ |
|
48 opus_int M, /* I Size of Matrix */ |
|
49 opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */ |
|
50 inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */ |
|
51 ); |
|
52 |
|
53 /* Solve Lx = b, when L is lower triangular and has ones on the diagonal */ |
|
54 static OPUS_INLINE void silk_LS_SolveFirst_FIX( |
|
55 const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ |
|
56 opus_int M, /* I Dim of Matrix equation */ |
|
57 const opus_int32 *b, /* I b Vector */ |
|
58 opus_int32 *x_Q16 /* O x Vector */ |
|
59 ); |
|
60 |
|
61 /* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */ |
|
62 static OPUS_INLINE void silk_LS_SolveLast_FIX( |
|
63 const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ |
|
64 const opus_int M, /* I Dim of Matrix equation */ |
|
65 const opus_int32 *b, /* I b Vector */ |
|
66 opus_int32 *x_Q16 /* O x Vector */ |
|
67 ); |
|
68 |
|
69 static OPUS_INLINE void silk_LS_divide_Q16_FIX( |
|
70 opus_int32 T[], /* I/O Numenator vector */ |
|
71 inv_D_t *inv_D, /* I 1 / D vector */ |
|
72 opus_int M /* I dimension */ |
|
73 ); |
|
74 |
|
75 /* Solves Ax = b, assuming A is symmetric */ |
|
76 void silk_solve_LDL_FIX( |
|
77 opus_int32 *A, /* I Pointer to symetric square matrix A */ |
|
78 opus_int M, /* I Size of matrix */ |
|
79 const opus_int32 *b, /* I Pointer to b vector */ |
|
80 opus_int32 *x_Q16 /* O Pointer to x solution vector */ |
|
81 ) |
|
82 { |
|
83 VARDECL( opus_int32, L_Q16 ); |
|
84 opus_int32 Y[ MAX_MATRIX_SIZE ]; |
|
85 inv_D_t inv_D[ MAX_MATRIX_SIZE ]; |
|
86 SAVE_STACK; |
|
87 |
|
88 silk_assert( M <= MAX_MATRIX_SIZE ); |
|
89 ALLOC( L_Q16, M * M, opus_int32 ); |
|
90 |
|
91 /*************************************************** |
|
92 Factorize A by LDL such that A = L*D*L', |
|
93 where L is lower triangular with ones on diagonal |
|
94 ****************************************************/ |
|
95 silk_LDL_factorize_FIX( A, M, L_Q16, inv_D ); |
|
96 |
|
97 /**************************************************** |
|
98 * substitute D*L'*x = Y. ie: |
|
99 L*D*L'*x = b => L*Y = b <=> Y = inv(L)*b |
|
100 ******************************************************/ |
|
101 silk_LS_SolveFirst_FIX( L_Q16, M, b, Y ); |
|
102 |
|
103 /**************************************************** |
|
104 D*L'*x = Y <=> L'*x = inv(D)*Y, because D is |
|
105 diagonal just multiply with 1/d_i |
|
106 ****************************************************/ |
|
107 silk_LS_divide_Q16_FIX( Y, inv_D, M ); |
|
108 |
|
109 /**************************************************** |
|
110 x = inv(L') * inv(D) * Y |
|
111 *****************************************************/ |
|
112 silk_LS_SolveLast_FIX( L_Q16, M, Y, x_Q16 ); |
|
113 RESTORE_STACK; |
|
114 } |
|
115 |
|
116 static OPUS_INLINE void silk_LDL_factorize_FIX( |
|
117 opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */ |
|
118 opus_int M, /* I Size of Matrix */ |
|
119 opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */ |
|
120 inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */ |
|
121 ) |
|
122 { |
|
123 opus_int i, j, k, status, loop_count; |
|
124 const opus_int32 *ptr1, *ptr2; |
|
125 opus_int32 diag_min_value, tmp_32, err; |
|
126 opus_int32 v_Q0[ MAX_MATRIX_SIZE ], D_Q0[ MAX_MATRIX_SIZE ]; |
|
127 opus_int32 one_div_diag_Q36, one_div_diag_Q40, one_div_diag_Q48; |
|
128 |
|
129 silk_assert( M <= MAX_MATRIX_SIZE ); |
|
130 |
|
131 status = 1; |
|
132 diag_min_value = silk_max_32( silk_SMMUL( silk_ADD_SAT32( A[ 0 ], A[ silk_SMULBB( M, M ) - 1 ] ), SILK_FIX_CONST( FIND_LTP_COND_FAC, 31 ) ), 1 << 9 ); |
|
133 for( loop_count = 0; loop_count < M && status == 1; loop_count++ ) { |
|
134 status = 0; |
|
135 for( j = 0; j < M; j++ ) { |
|
136 ptr1 = matrix_adr( L_Q16, j, 0, M ); |
|
137 tmp_32 = 0; |
|
138 for( i = 0; i < j; i++ ) { |
|
139 v_Q0[ i ] = silk_SMULWW( D_Q0[ i ], ptr1[ i ] ); /* Q0 */ |
|
140 tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ i ], ptr1[ i ] ); /* Q0 */ |
|
141 } |
|
142 tmp_32 = silk_SUB32( matrix_ptr( A, j, j, M ), tmp_32 ); |
|
143 |
|
144 if( tmp_32 < diag_min_value ) { |
|
145 tmp_32 = silk_SUB32( silk_SMULBB( loop_count + 1, diag_min_value ), tmp_32 ); |
|
146 /* Matrix not positive semi-definite, or ill conditioned */ |
|
147 for( i = 0; i < M; i++ ) { |
|
148 matrix_ptr( A, i, i, M ) = silk_ADD32( matrix_ptr( A, i, i, M ), tmp_32 ); |
|
149 } |
|
150 status = 1; |
|
151 break; |
|
152 } |
|
153 D_Q0[ j ] = tmp_32; /* always < max(Correlation) */ |
|
154 |
|
155 /* two-step division */ |
|
156 one_div_diag_Q36 = silk_INVERSE32_varQ( tmp_32, 36 ); /* Q36 */ |
|
157 one_div_diag_Q40 = silk_LSHIFT( one_div_diag_Q36, 4 ); /* Q40 */ |
|
158 err = silk_SUB32( (opus_int32)1 << 24, silk_SMULWW( tmp_32, one_div_diag_Q40 ) ); /* Q24 */ |
|
159 one_div_diag_Q48 = silk_SMULWW( err, one_div_diag_Q40 ); /* Q48 */ |
|
160 |
|
161 /* Save 1/Ds */ |
|
162 inv_D[ j ].Q36_part = one_div_diag_Q36; |
|
163 inv_D[ j ].Q48_part = one_div_diag_Q48; |
|
164 |
|
165 matrix_ptr( L_Q16, j, j, M ) = 65536; /* 1.0 in Q16 */ |
|
166 ptr1 = matrix_adr( A, j, 0, M ); |
|
167 ptr2 = matrix_adr( L_Q16, j + 1, 0, M ); |
|
168 for( i = j + 1; i < M; i++ ) { |
|
169 tmp_32 = 0; |
|
170 for( k = 0; k < j; k++ ) { |
|
171 tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ k ], ptr2[ k ] ); /* Q0 */ |
|
172 } |
|
173 tmp_32 = silk_SUB32( ptr1[ i ], tmp_32 ); /* always < max(Correlation) */ |
|
174 |
|
175 /* tmp_32 / D_Q0[j] : Divide to Q16 */ |
|
176 matrix_ptr( L_Q16, i, j, M ) = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ), |
|
177 silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) ); |
|
178 |
|
179 /* go to next column */ |
|
180 ptr2 += M; |
|
181 } |
|
182 } |
|
183 } |
|
184 |
|
185 silk_assert( status == 0 ); |
|
186 } |
|
187 |
|
188 static OPUS_INLINE void silk_LS_divide_Q16_FIX( |
|
189 opus_int32 T[], /* I/O Numenator vector */ |
|
190 inv_D_t *inv_D, /* I 1 / D vector */ |
|
191 opus_int M /* I dimension */ |
|
192 ) |
|
193 { |
|
194 opus_int i; |
|
195 opus_int32 tmp_32; |
|
196 opus_int32 one_div_diag_Q36, one_div_diag_Q48; |
|
197 |
|
198 for( i = 0; i < M; i++ ) { |
|
199 one_div_diag_Q36 = inv_D[ i ].Q36_part; |
|
200 one_div_diag_Q48 = inv_D[ i ].Q48_part; |
|
201 |
|
202 tmp_32 = T[ i ]; |
|
203 T[ i ] = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ), silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) ); |
|
204 } |
|
205 } |
|
206 |
|
207 /* Solve Lx = b, when L is lower triangular and has ones on the diagonal */ |
|
208 static OPUS_INLINE void silk_LS_SolveFirst_FIX( |
|
209 const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ |
|
210 opus_int M, /* I Dim of Matrix equation */ |
|
211 const opus_int32 *b, /* I b Vector */ |
|
212 opus_int32 *x_Q16 /* O x Vector */ |
|
213 ) |
|
214 { |
|
215 opus_int i, j; |
|
216 const opus_int32 *ptr32; |
|
217 opus_int32 tmp_32; |
|
218 |
|
219 for( i = 0; i < M; i++ ) { |
|
220 ptr32 = matrix_adr( L_Q16, i, 0, M ); |
|
221 tmp_32 = 0; |
|
222 for( j = 0; j < i; j++ ) { |
|
223 tmp_32 = silk_SMLAWW( tmp_32, ptr32[ j ], x_Q16[ j ] ); |
|
224 } |
|
225 x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 ); |
|
226 } |
|
227 } |
|
228 |
|
229 /* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */ |
|
230 static OPUS_INLINE void silk_LS_SolveLast_FIX( |
|
231 const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ |
|
232 const opus_int M, /* I Dim of Matrix equation */ |
|
233 const opus_int32 *b, /* I b Vector */ |
|
234 opus_int32 *x_Q16 /* O x Vector */ |
|
235 ) |
|
236 { |
|
237 opus_int i, j; |
|
238 const opus_int32 *ptr32; |
|
239 opus_int32 tmp_32; |
|
240 |
|
241 for( i = M - 1; i >= 0; i-- ) { |
|
242 ptr32 = matrix_adr( L_Q16, 0, i, M ); |
|
243 tmp_32 = 0; |
|
244 for( j = M - 1; j > i; j-- ) { |
|
245 tmp_32 = silk_SMLAWW( tmp_32, ptr32[ silk_SMULBB( j, M ) ], x_Q16[ j ] ); |
|
246 } |
|
247 x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 ); |
|
248 } |
|
249 } |