|
1 /*********************************************************************** |
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
|
3 Redistribution and use in source and binary forms, with or without |
|
4 modification, are permitted provided that the following conditions |
|
5 are met: |
|
6 - Redistributions of source code must retain the above copyright notice, |
|
7 this list of conditions and the following disclaimer. |
|
8 - Redistributions in binary form must reproduce the above copyright |
|
9 notice, this list of conditions and the following disclaimer in the |
|
10 documentation and/or other materials provided with the distribution. |
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the |
|
12 names of specific contributors, may be used to endorse or promote |
|
13 products derived from this software without specific prior written |
|
14 permission. |
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
25 POSSIBILITY OF SUCH DAMAGE. |
|
26 ***********************************************************************/ |
|
27 |
|
28 #ifdef HAVE_CONFIG_H |
|
29 #include "config.h" |
|
30 #endif |
|
31 |
|
32 /* |
|
33 * Matrix of resampling methods used: |
|
34 * Fs_out (kHz) |
|
35 * 8 12 16 24 48 |
|
36 * |
|
37 * 8 C UF U UF UF |
|
38 * 12 AF C UF U UF |
|
39 * Fs_in (kHz) 16 D AF C UF UF |
|
40 * 24 AF D AF C U |
|
41 * 48 AF AF AF D C |
|
42 * |
|
43 * C -> Copy (no resampling) |
|
44 * D -> Allpass-based 2x downsampling |
|
45 * U -> Allpass-based 2x upsampling |
|
46 * UF -> Allpass-based 2x upsampling followed by FIR interpolation |
|
47 * AF -> AR2 filter followed by FIR interpolation |
|
48 */ |
|
49 |
|
50 #include "resampler_private.h" |
|
51 |
|
52 /* Tables with delay compensation values to equalize total delay for different modes */ |
|
53 static const opus_int8 delay_matrix_enc[ 5 ][ 3 ] = { |
|
54 /* in \ out 8 12 16 */ |
|
55 /* 8 */ { 6, 0, 3 }, |
|
56 /* 12 */ { 0, 7, 3 }, |
|
57 /* 16 */ { 0, 1, 10 }, |
|
58 /* 24 */ { 0, 2, 6 }, |
|
59 /* 48 */ { 18, 10, 12 } |
|
60 }; |
|
61 |
|
62 static const opus_int8 delay_matrix_dec[ 3 ][ 5 ] = { |
|
63 /* in \ out 8 12 16 24 48 */ |
|
64 /* 8 */ { 4, 0, 2, 0, 0 }, |
|
65 /* 12 */ { 0, 9, 4, 7, 4 }, |
|
66 /* 16 */ { 0, 3, 12, 7, 7 } |
|
67 }; |
|
68 |
|
69 /* Simple way to make [8000, 12000, 16000, 24000, 48000] to [0, 1, 2, 3, 4] */ |
|
70 #define rateID(R) ( ( ( ((R)>>12) - ((R)>16000) ) >> ((R)>24000) ) - 1 ) |
|
71 |
|
72 #define USE_silk_resampler_copy (0) |
|
73 #define USE_silk_resampler_private_up2_HQ_wrapper (1) |
|
74 #define USE_silk_resampler_private_IIR_FIR (2) |
|
75 #define USE_silk_resampler_private_down_FIR (3) |
|
76 |
|
77 /* Initialize/reset the resampler state for a given pair of input/output sampling rates */ |
|
78 opus_int silk_resampler_init( |
|
79 silk_resampler_state_struct *S, /* I/O Resampler state */ |
|
80 opus_int32 Fs_Hz_in, /* I Input sampling rate (Hz) */ |
|
81 opus_int32 Fs_Hz_out, /* I Output sampling rate (Hz) */ |
|
82 opus_int forEnc /* I If 1: encoder; if 0: decoder */ |
|
83 ) |
|
84 { |
|
85 opus_int up2x; |
|
86 |
|
87 /* Clear state */ |
|
88 silk_memset( S, 0, sizeof( silk_resampler_state_struct ) ); |
|
89 |
|
90 /* Input checking */ |
|
91 if( forEnc ) { |
|
92 if( ( Fs_Hz_in != 8000 && Fs_Hz_in != 12000 && Fs_Hz_in != 16000 && Fs_Hz_in != 24000 && Fs_Hz_in != 48000 ) || |
|
93 ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 ) ) { |
|
94 silk_assert( 0 ); |
|
95 return -1; |
|
96 } |
|
97 S->inputDelay = delay_matrix_enc[ rateID( Fs_Hz_in ) ][ rateID( Fs_Hz_out ) ]; |
|
98 } else { |
|
99 if( ( Fs_Hz_in != 8000 && Fs_Hz_in != 12000 && Fs_Hz_in != 16000 ) || |
|
100 ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 && Fs_Hz_out != 24000 && Fs_Hz_out != 48000 ) ) { |
|
101 silk_assert( 0 ); |
|
102 return -1; |
|
103 } |
|
104 S->inputDelay = delay_matrix_dec[ rateID( Fs_Hz_in ) ][ rateID( Fs_Hz_out ) ]; |
|
105 } |
|
106 |
|
107 S->Fs_in_kHz = silk_DIV32_16( Fs_Hz_in, 1000 ); |
|
108 S->Fs_out_kHz = silk_DIV32_16( Fs_Hz_out, 1000 ); |
|
109 |
|
110 /* Number of samples processed per batch */ |
|
111 S->batchSize = S->Fs_in_kHz * RESAMPLER_MAX_BATCH_SIZE_MS; |
|
112 |
|
113 /* Find resampler with the right sampling ratio */ |
|
114 up2x = 0; |
|
115 if( Fs_Hz_out > Fs_Hz_in ) { |
|
116 /* Upsample */ |
|
117 if( Fs_Hz_out == silk_MUL( Fs_Hz_in, 2 ) ) { /* Fs_out : Fs_in = 2 : 1 */ |
|
118 /* Special case: directly use 2x upsampler */ |
|
119 S->resampler_function = USE_silk_resampler_private_up2_HQ_wrapper; |
|
120 } else { |
|
121 /* Default resampler */ |
|
122 S->resampler_function = USE_silk_resampler_private_IIR_FIR; |
|
123 up2x = 1; |
|
124 } |
|
125 } else if ( Fs_Hz_out < Fs_Hz_in ) { |
|
126 /* Downsample */ |
|
127 S->resampler_function = USE_silk_resampler_private_down_FIR; |
|
128 if( silk_MUL( Fs_Hz_out, 4 ) == silk_MUL( Fs_Hz_in, 3 ) ) { /* Fs_out : Fs_in = 3 : 4 */ |
|
129 S->FIR_Fracs = 3; |
|
130 S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR0; |
|
131 S->Coefs = silk_Resampler_3_4_COEFS; |
|
132 } else if( silk_MUL( Fs_Hz_out, 3 ) == silk_MUL( Fs_Hz_in, 2 ) ) { /* Fs_out : Fs_in = 2 : 3 */ |
|
133 S->FIR_Fracs = 2; |
|
134 S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR0; |
|
135 S->Coefs = silk_Resampler_2_3_COEFS; |
|
136 } else if( silk_MUL( Fs_Hz_out, 2 ) == Fs_Hz_in ) { /* Fs_out : Fs_in = 1 : 2 */ |
|
137 S->FIR_Fracs = 1; |
|
138 S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR1; |
|
139 S->Coefs = silk_Resampler_1_2_COEFS; |
|
140 } else if( silk_MUL( Fs_Hz_out, 3 ) == Fs_Hz_in ) { /* Fs_out : Fs_in = 1 : 3 */ |
|
141 S->FIR_Fracs = 1; |
|
142 S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2; |
|
143 S->Coefs = silk_Resampler_1_3_COEFS; |
|
144 } else if( silk_MUL( Fs_Hz_out, 4 ) == Fs_Hz_in ) { /* Fs_out : Fs_in = 1 : 4 */ |
|
145 S->FIR_Fracs = 1; |
|
146 S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2; |
|
147 S->Coefs = silk_Resampler_1_4_COEFS; |
|
148 } else if( silk_MUL( Fs_Hz_out, 6 ) == Fs_Hz_in ) { /* Fs_out : Fs_in = 1 : 6 */ |
|
149 S->FIR_Fracs = 1; |
|
150 S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2; |
|
151 S->Coefs = silk_Resampler_1_6_COEFS; |
|
152 } else { |
|
153 /* None available */ |
|
154 silk_assert( 0 ); |
|
155 return -1; |
|
156 } |
|
157 } else { |
|
158 /* Input and output sampling rates are equal: copy */ |
|
159 S->resampler_function = USE_silk_resampler_copy; |
|
160 } |
|
161 |
|
162 /* Ratio of input/output samples */ |
|
163 S->invRatio_Q16 = silk_LSHIFT32( silk_DIV32( silk_LSHIFT32( Fs_Hz_in, 14 + up2x ), Fs_Hz_out ), 2 ); |
|
164 /* Make sure the ratio is rounded up */ |
|
165 while( silk_SMULWW( S->invRatio_Q16, Fs_Hz_out ) < silk_LSHIFT32( Fs_Hz_in, up2x ) ) { |
|
166 S->invRatio_Q16++; |
|
167 } |
|
168 |
|
169 return 0; |
|
170 } |
|
171 |
|
172 /* Resampler: convert from one sampling rate to another */ |
|
173 /* Input and output sampling rate are at most 48000 Hz */ |
|
174 opus_int silk_resampler( |
|
175 silk_resampler_state_struct *S, /* I/O Resampler state */ |
|
176 opus_int16 out[], /* O Output signal */ |
|
177 const opus_int16 in[], /* I Input signal */ |
|
178 opus_int32 inLen /* I Number of input samples */ |
|
179 ) |
|
180 { |
|
181 opus_int nSamples; |
|
182 |
|
183 /* Need at least 1 ms of input data */ |
|
184 silk_assert( inLen >= S->Fs_in_kHz ); |
|
185 /* Delay can't exceed the 1 ms of buffering */ |
|
186 silk_assert( S->inputDelay <= S->Fs_in_kHz ); |
|
187 |
|
188 nSamples = S->Fs_in_kHz - S->inputDelay; |
|
189 |
|
190 /* Copy to delay buffer */ |
|
191 silk_memcpy( &S->delayBuf[ S->inputDelay ], in, nSamples * sizeof( opus_int16 ) ); |
|
192 |
|
193 switch( S->resampler_function ) { |
|
194 case USE_silk_resampler_private_up2_HQ_wrapper: |
|
195 silk_resampler_private_up2_HQ_wrapper( S, out, S->delayBuf, S->Fs_in_kHz ); |
|
196 silk_resampler_private_up2_HQ_wrapper( S, &out[ S->Fs_out_kHz ], &in[ nSamples ], inLen - S->Fs_in_kHz ); |
|
197 break; |
|
198 case USE_silk_resampler_private_IIR_FIR: |
|
199 silk_resampler_private_IIR_FIR( S, out, S->delayBuf, S->Fs_in_kHz ); |
|
200 silk_resampler_private_IIR_FIR( S, &out[ S->Fs_out_kHz ], &in[ nSamples ], inLen - S->Fs_in_kHz ); |
|
201 break; |
|
202 case USE_silk_resampler_private_down_FIR: |
|
203 silk_resampler_private_down_FIR( S, out, S->delayBuf, S->Fs_in_kHz ); |
|
204 silk_resampler_private_down_FIR( S, &out[ S->Fs_out_kHz ], &in[ nSamples ], inLen - S->Fs_in_kHz ); |
|
205 break; |
|
206 default: |
|
207 silk_memcpy( out, S->delayBuf, S->Fs_in_kHz * sizeof( opus_int16 ) ); |
|
208 silk_memcpy( &out[ S->Fs_out_kHz ], &in[ nSamples ], ( inLen - S->Fs_in_kHz ) * sizeof( opus_int16 ) ); |
|
209 } |
|
210 |
|
211 /* Copy to delay buffer */ |
|
212 silk_memcpy( S->delayBuf, &in[ inLen - S->inputDelay ], S->inputDelay * sizeof( opus_int16 ) ); |
|
213 |
|
214 return 0; |
|
215 } |