|
1 /* |
|
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license |
|
5 * that can be found in the LICENSE file in the root of the source |
|
6 * tree. An additional intellectual property rights grant can be found |
|
7 * in the file PATENTS. All contributing project authors may |
|
8 * be found in the AUTHORS file in the root of the source tree. |
|
9 */ |
|
10 |
|
11 #include <assert.h> |
|
12 #include <stdio.h> |
|
13 #include <limits.h> |
|
14 |
|
15 #include "vpx/vpx_encoder.h" |
|
16 #include "vpx_mem/vpx_mem.h" |
|
17 |
|
18 #include "vp9/common/vp9_entropymode.h" |
|
19 #include "vp9/common/vp9_entropymv.h" |
|
20 #include "vp9/common/vp9_findnearmv.h" |
|
21 #include "vp9/common/vp9_tile_common.h" |
|
22 #include "vp9/common/vp9_seg_common.h" |
|
23 #include "vp9/common/vp9_pred_common.h" |
|
24 #include "vp9/common/vp9_entropy.h" |
|
25 #include "vp9/common/vp9_mvref_common.h" |
|
26 #include "vp9/common/vp9_treecoder.h" |
|
27 #include "vp9/common/vp9_systemdependent.h" |
|
28 #include "vp9/common/vp9_pragmas.h" |
|
29 |
|
30 #include "vp9/encoder/vp9_mcomp.h" |
|
31 #include "vp9/encoder/vp9_encodemv.h" |
|
32 #include "vp9/encoder/vp9_bitstream.h" |
|
33 #include "vp9/encoder/vp9_segmentation.h" |
|
34 #include "vp9/encoder/vp9_subexp.h" |
|
35 #include "vp9/encoder/vp9_write_bit_buffer.h" |
|
36 |
|
37 |
|
38 #if defined(SECTIONBITS_OUTPUT) |
|
39 unsigned __int64 Sectionbits[500]; |
|
40 #endif |
|
41 |
|
42 #ifdef ENTROPY_STATS |
|
43 int intra_mode_stats[INTRA_MODES] |
|
44 [INTRA_MODES] |
|
45 [INTRA_MODES]; |
|
46 vp9_coeff_stats tree_update_hist[TX_SIZES][BLOCK_TYPES]; |
|
47 |
|
48 extern unsigned int active_section; |
|
49 #endif |
|
50 |
|
51 |
|
52 #ifdef MODE_STATS |
|
53 int64_t tx_count_32x32p_stats[TX_SIZE_CONTEXTS][TX_SIZES]; |
|
54 int64_t tx_count_16x16p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 1]; |
|
55 int64_t tx_count_8x8p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 2]; |
|
56 int64_t switchable_interp_stats[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS]; |
|
57 |
|
58 void init_tx_count_stats() { |
|
59 vp9_zero(tx_count_32x32p_stats); |
|
60 vp9_zero(tx_count_16x16p_stats); |
|
61 vp9_zero(tx_count_8x8p_stats); |
|
62 } |
|
63 |
|
64 void init_switchable_interp_stats() { |
|
65 vp9_zero(switchable_interp_stats); |
|
66 } |
|
67 |
|
68 static void update_tx_count_stats(VP9_COMMON *cm) { |
|
69 int i, j; |
|
70 for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
|
71 for (j = 0; j < TX_SIZES; j++) { |
|
72 tx_count_32x32p_stats[i][j] += cm->fc.tx_count_32x32p[i][j]; |
|
73 } |
|
74 } |
|
75 for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
|
76 for (j = 0; j < TX_SIZES - 1; j++) { |
|
77 tx_count_16x16p_stats[i][j] += cm->fc.tx_count_16x16p[i][j]; |
|
78 } |
|
79 } |
|
80 for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
|
81 for (j = 0; j < TX_SIZES - 2; j++) { |
|
82 tx_count_8x8p_stats[i][j] += cm->fc.tx_count_8x8p[i][j]; |
|
83 } |
|
84 } |
|
85 } |
|
86 |
|
87 static void update_switchable_interp_stats(VP9_COMMON *cm) { |
|
88 int i, j; |
|
89 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) |
|
90 for (j = 0; j < SWITCHABLE_FILTERS; ++j) |
|
91 switchable_interp_stats[i][j] += cm->fc.switchable_interp_count[i][j]; |
|
92 } |
|
93 |
|
94 void write_tx_count_stats() { |
|
95 int i, j; |
|
96 FILE *fp = fopen("tx_count.bin", "wb"); |
|
97 fwrite(tx_count_32x32p_stats, sizeof(tx_count_32x32p_stats), 1, fp); |
|
98 fwrite(tx_count_16x16p_stats, sizeof(tx_count_16x16p_stats), 1, fp); |
|
99 fwrite(tx_count_8x8p_stats, sizeof(tx_count_8x8p_stats), 1, fp); |
|
100 fclose(fp); |
|
101 |
|
102 printf( |
|
103 "vp9_default_tx_count_32x32p[TX_SIZE_CONTEXTS][TX_SIZES] = {\n"); |
|
104 for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
|
105 printf(" { "); |
|
106 for (j = 0; j < TX_SIZES; j++) { |
|
107 printf("%"PRId64", ", tx_count_32x32p_stats[i][j]); |
|
108 } |
|
109 printf("},\n"); |
|
110 } |
|
111 printf("};\n"); |
|
112 printf( |
|
113 "vp9_default_tx_count_16x16p[TX_SIZE_CONTEXTS][TX_SIZES-1] = {\n"); |
|
114 for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
|
115 printf(" { "); |
|
116 for (j = 0; j < TX_SIZES - 1; j++) { |
|
117 printf("%"PRId64", ", tx_count_16x16p_stats[i][j]); |
|
118 } |
|
119 printf("},\n"); |
|
120 } |
|
121 printf("};\n"); |
|
122 printf( |
|
123 "vp9_default_tx_count_8x8p[TX_SIZE_CONTEXTS][TX_SIZES-2] = {\n"); |
|
124 for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
|
125 printf(" { "); |
|
126 for (j = 0; j < TX_SIZES - 2; j++) { |
|
127 printf("%"PRId64", ", tx_count_8x8p_stats[i][j]); |
|
128 } |
|
129 printf("},\n"); |
|
130 } |
|
131 printf("};\n"); |
|
132 } |
|
133 |
|
134 void write_switchable_interp_stats() { |
|
135 int i, j; |
|
136 FILE *fp = fopen("switchable_interp.bin", "wb"); |
|
137 fwrite(switchable_interp_stats, sizeof(switchable_interp_stats), 1, fp); |
|
138 fclose(fp); |
|
139 |
|
140 printf( |
|
141 "vp9_default_switchable_filter_count[SWITCHABLE_FILTER_CONTEXTS]" |
|
142 "[SWITCHABLE_FILTERS] = {\n"); |
|
143 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { |
|
144 printf(" { "); |
|
145 for (j = 0; j < SWITCHABLE_FILTERS; j++) { |
|
146 printf("%"PRId64", ", switchable_interp_stats[i][j]); |
|
147 } |
|
148 printf("},\n"); |
|
149 } |
|
150 printf("};\n"); |
|
151 } |
|
152 #endif |
|
153 |
|
154 static INLINE void write_be32(uint8_t *p, int value) { |
|
155 p[0] = value >> 24; |
|
156 p[1] = value >> 16; |
|
157 p[2] = value >> 8; |
|
158 p[3] = value; |
|
159 } |
|
160 |
|
161 void vp9_encode_unsigned_max(struct vp9_write_bit_buffer *wb, |
|
162 int data, int max) { |
|
163 vp9_wb_write_literal(wb, data, get_unsigned_bits(max)); |
|
164 } |
|
165 |
|
166 static void update_mode(vp9_writer *w, int n, vp9_tree tree, |
|
167 vp9_prob Pcur[/* n-1 */], |
|
168 unsigned int bct[/* n-1 */][2], |
|
169 const unsigned int num_events[/* n */]) { |
|
170 int i = 0; |
|
171 |
|
172 vp9_tree_probs_from_distribution(tree, bct, num_events); |
|
173 for (i = 0; i < n - 1; ++i) |
|
174 vp9_cond_prob_diff_update(w, &Pcur[i], bct[i]); |
|
175 } |
|
176 |
|
177 static void update_mbintra_mode_probs(VP9_COMP* const cpi, |
|
178 vp9_writer* const bc) { |
|
179 VP9_COMMON *const cm = &cpi->common; |
|
180 int j; |
|
181 unsigned int bct[INTRA_MODES - 1][2]; |
|
182 |
|
183 for (j = 0; j < BLOCK_SIZE_GROUPS; j++) |
|
184 update_mode(bc, INTRA_MODES, vp9_intra_mode_tree, |
|
185 cm->fc.y_mode_prob[j], bct, |
|
186 (unsigned int *)cpi->y_mode_count[j]); |
|
187 } |
|
188 |
|
189 static void write_selected_tx_size(const VP9_COMP *cpi, MODE_INFO *m, |
|
190 TX_SIZE tx_size, BLOCK_SIZE bsize, |
|
191 vp9_writer *w) { |
|
192 const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; |
|
193 const MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
|
194 const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd, |
|
195 &cpi->common.fc.tx_probs); |
|
196 vp9_write(w, tx_size != TX_4X4, tx_probs[0]); |
|
197 if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) { |
|
198 vp9_write(w, tx_size != TX_8X8, tx_probs[1]); |
|
199 if (tx_size != TX_8X8 && max_tx_size >= TX_32X32) |
|
200 vp9_write(w, tx_size != TX_16X16, tx_probs[2]); |
|
201 } |
|
202 } |
|
203 |
|
204 static int write_skip_coeff(const VP9_COMP *cpi, int segment_id, MODE_INFO *m, |
|
205 vp9_writer *w) { |
|
206 const MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
|
207 if (vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) { |
|
208 return 1; |
|
209 } else { |
|
210 const int skip_coeff = m->mbmi.skip_coeff; |
|
211 vp9_write(w, skip_coeff, vp9_get_pred_prob_mbskip(&cpi->common, xd)); |
|
212 return skip_coeff; |
|
213 } |
|
214 } |
|
215 |
|
216 void vp9_update_skip_probs(VP9_COMP *cpi, vp9_writer *w) { |
|
217 VP9_COMMON *cm = &cpi->common; |
|
218 int k; |
|
219 |
|
220 for (k = 0; k < MBSKIP_CONTEXTS; ++k) |
|
221 vp9_cond_prob_diff_update(w, &cm->fc.mbskip_probs[k], cm->counts.mbskip[k]); |
|
222 } |
|
223 |
|
224 static void write_intra_mode(vp9_writer *bc, int m, const vp9_prob *p) { |
|
225 write_token(bc, vp9_intra_mode_tree, p, vp9_intra_mode_encodings + m); |
|
226 } |
|
227 |
|
228 static void update_switchable_interp_probs(VP9_COMP *cpi, vp9_writer *w) { |
|
229 VP9_COMMON *const cm = &cpi->common; |
|
230 unsigned int branch_ct[SWITCHABLE_FILTERS - 1][2]; |
|
231 int i, j; |
|
232 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) { |
|
233 vp9_tree_probs_from_distribution(vp9_switchable_interp_tree, branch_ct, |
|
234 cm->counts.switchable_interp[j]); |
|
235 |
|
236 for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) |
|
237 vp9_cond_prob_diff_update(w, &cm->fc.switchable_interp_prob[j][i], |
|
238 branch_ct[i]); |
|
239 } |
|
240 |
|
241 #ifdef MODE_STATS |
|
242 if (!cpi->dummy_packing) |
|
243 update_switchable_interp_stats(cm); |
|
244 #endif |
|
245 } |
|
246 |
|
247 static void update_inter_mode_probs(VP9_COMMON *cm, vp9_writer *w) { |
|
248 int i, j; |
|
249 |
|
250 for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { |
|
251 unsigned int branch_ct[INTER_MODES - 1][2]; |
|
252 vp9_tree_probs_from_distribution(vp9_inter_mode_tree, branch_ct, |
|
253 cm->counts.inter_mode[i]); |
|
254 |
|
255 for (j = 0; j < INTER_MODES - 1; ++j) |
|
256 vp9_cond_prob_diff_update(w, &cm->fc.inter_mode_probs[i][j], |
|
257 branch_ct[j]); |
|
258 } |
|
259 } |
|
260 |
|
261 static void pack_mb_tokens(vp9_writer* const w, |
|
262 TOKENEXTRA **tp, |
|
263 const TOKENEXTRA *const stop) { |
|
264 TOKENEXTRA *p = *tp; |
|
265 |
|
266 while (p < stop && p->token != EOSB_TOKEN) { |
|
267 const int t = p->token; |
|
268 const struct vp9_token *const a = &vp9_coef_encodings[t]; |
|
269 const vp9_extra_bit *const b = &vp9_extra_bits[t]; |
|
270 int i = 0; |
|
271 const vp9_prob *pp; |
|
272 int v = a->value; |
|
273 int n = a->len; |
|
274 vp9_prob probs[ENTROPY_NODES]; |
|
275 |
|
276 if (t >= TWO_TOKEN) { |
|
277 vp9_model_to_full_probs(p->context_tree, probs); |
|
278 pp = probs; |
|
279 } else { |
|
280 pp = p->context_tree; |
|
281 } |
|
282 assert(pp != 0); |
|
283 |
|
284 /* skip one or two nodes */ |
|
285 if (p->skip_eob_node) { |
|
286 n -= p->skip_eob_node; |
|
287 i = 2 * p->skip_eob_node; |
|
288 } |
|
289 |
|
290 do { |
|
291 const int bb = (v >> --n) & 1; |
|
292 vp9_write(w, bb, pp[i >> 1]); |
|
293 i = vp9_coef_tree[i + bb]; |
|
294 } while (n); |
|
295 |
|
296 if (b->base_val) { |
|
297 const int e = p->extra, l = b->len; |
|
298 |
|
299 if (l) { |
|
300 const unsigned char *pb = b->prob; |
|
301 int v = e >> 1; |
|
302 int n = l; /* number of bits in v, assumed nonzero */ |
|
303 int i = 0; |
|
304 |
|
305 do { |
|
306 const int bb = (v >> --n) & 1; |
|
307 vp9_write(w, bb, pb[i >> 1]); |
|
308 i = b->tree[i + bb]; |
|
309 } while (n); |
|
310 } |
|
311 |
|
312 vp9_write_bit(w, e & 1); |
|
313 } |
|
314 ++p; |
|
315 } |
|
316 |
|
317 *tp = p + (p->token == EOSB_TOKEN); |
|
318 } |
|
319 |
|
320 static void write_sb_mv_ref(vp9_writer *w, MB_PREDICTION_MODE mode, |
|
321 const vp9_prob *p) { |
|
322 assert(is_inter_mode(mode)); |
|
323 write_token(w, vp9_inter_mode_tree, p, |
|
324 &vp9_inter_mode_encodings[INTER_OFFSET(mode)]); |
|
325 } |
|
326 |
|
327 |
|
328 static void write_segment_id(vp9_writer *w, const struct segmentation *seg, |
|
329 int segment_id) { |
|
330 if (seg->enabled && seg->update_map) |
|
331 treed_write(w, vp9_segment_tree, seg->tree_probs, segment_id, 3); |
|
332 } |
|
333 |
|
334 // This function encodes the reference frame |
|
335 static void encode_ref_frame(VP9_COMP *cpi, vp9_writer *bc) { |
|
336 VP9_COMMON *const cm = &cpi->common; |
|
337 MACROBLOCK *const x = &cpi->mb; |
|
338 MACROBLOCKD *const xd = &x->e_mbd; |
|
339 MB_MODE_INFO *mi = &xd->mi_8x8[0]->mbmi; |
|
340 const int segment_id = mi->segment_id; |
|
341 int seg_ref_active = vp9_segfeature_active(&cm->seg, segment_id, |
|
342 SEG_LVL_REF_FRAME); |
|
343 // If segment level coding of this signal is disabled... |
|
344 // or the segment allows multiple reference frame options |
|
345 if (!seg_ref_active) { |
|
346 // does the feature use compound prediction or not |
|
347 // (if not specified at the frame/segment level) |
|
348 if (cm->comp_pred_mode == HYBRID_PREDICTION) { |
|
349 vp9_write(bc, mi->ref_frame[1] > INTRA_FRAME, |
|
350 vp9_get_pred_prob_comp_inter_inter(cm, xd)); |
|
351 } else { |
|
352 assert((mi->ref_frame[1] <= INTRA_FRAME) == |
|
353 (cm->comp_pred_mode == SINGLE_PREDICTION_ONLY)); |
|
354 } |
|
355 |
|
356 if (mi->ref_frame[1] > INTRA_FRAME) { |
|
357 vp9_write(bc, mi->ref_frame[0] == GOLDEN_FRAME, |
|
358 vp9_get_pred_prob_comp_ref_p(cm, xd)); |
|
359 } else { |
|
360 vp9_write(bc, mi->ref_frame[0] != LAST_FRAME, |
|
361 vp9_get_pred_prob_single_ref_p1(cm, xd)); |
|
362 if (mi->ref_frame[0] != LAST_FRAME) |
|
363 vp9_write(bc, mi->ref_frame[0] != GOLDEN_FRAME, |
|
364 vp9_get_pred_prob_single_ref_p2(cm, xd)); |
|
365 } |
|
366 } else { |
|
367 assert(mi->ref_frame[1] <= INTRA_FRAME); |
|
368 assert(vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) == |
|
369 mi->ref_frame[0]); |
|
370 } |
|
371 |
|
372 // If using the prediction model we have nothing further to do because |
|
373 // the reference frame is fully coded by the segment. |
|
374 } |
|
375 |
|
376 static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc) { |
|
377 VP9_COMMON *const cm = &cpi->common; |
|
378 const nmv_context *nmvc = &cm->fc.nmvc; |
|
379 MACROBLOCK *const x = &cpi->mb; |
|
380 MACROBLOCKD *const xd = &x->e_mbd; |
|
381 struct segmentation *seg = &cm->seg; |
|
382 MB_MODE_INFO *const mi = &m->mbmi; |
|
383 const MV_REFERENCE_FRAME rf = mi->ref_frame[0]; |
|
384 const MB_PREDICTION_MODE mode = mi->mode; |
|
385 const int segment_id = mi->segment_id; |
|
386 int skip_coeff; |
|
387 const BLOCK_SIZE bsize = mi->sb_type; |
|
388 const int allow_hp = cm->allow_high_precision_mv; |
|
389 |
|
390 #ifdef ENTROPY_STATS |
|
391 active_section = 9; |
|
392 #endif |
|
393 |
|
394 if (seg->update_map) { |
|
395 if (seg->temporal_update) { |
|
396 const int pred_flag = mi->seg_id_predicted; |
|
397 vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd); |
|
398 vp9_write(bc, pred_flag, pred_prob); |
|
399 if (!pred_flag) |
|
400 write_segment_id(bc, seg, segment_id); |
|
401 } else { |
|
402 write_segment_id(bc, seg, segment_id); |
|
403 } |
|
404 } |
|
405 |
|
406 skip_coeff = write_skip_coeff(cpi, segment_id, m, bc); |
|
407 |
|
408 if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) |
|
409 vp9_write(bc, rf != INTRA_FRAME, |
|
410 vp9_get_pred_prob_intra_inter(cm, xd)); |
|
411 |
|
412 if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && |
|
413 !(rf != INTRA_FRAME && |
|
414 (skip_coeff || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) { |
|
415 write_selected_tx_size(cpi, m, mi->tx_size, bsize, bc); |
|
416 } |
|
417 |
|
418 if (rf == INTRA_FRAME) { |
|
419 #ifdef ENTROPY_STATS |
|
420 active_section = 6; |
|
421 #endif |
|
422 |
|
423 if (bsize >= BLOCK_8X8) { |
|
424 write_intra_mode(bc, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]); |
|
425 } else { |
|
426 int idx, idy; |
|
427 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
|
428 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
|
429 for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { |
|
430 for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { |
|
431 const MB_PREDICTION_MODE bm = m->bmi[idy * 2 + idx].as_mode; |
|
432 write_intra_mode(bc, bm, cm->fc.y_mode_prob[0]); |
|
433 } |
|
434 } |
|
435 } |
|
436 write_intra_mode(bc, mi->uv_mode, cm->fc.uv_mode_prob[mode]); |
|
437 } else { |
|
438 vp9_prob *mv_ref_p; |
|
439 encode_ref_frame(cpi, bc); |
|
440 mv_ref_p = cpi->common.fc.inter_mode_probs[mi->mode_context[rf]]; |
|
441 |
|
442 #ifdef ENTROPY_STATS |
|
443 active_section = 3; |
|
444 #endif |
|
445 |
|
446 // If segment skip is not enabled code the mode. |
|
447 if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { |
|
448 if (bsize >= BLOCK_8X8) { |
|
449 write_sb_mv_ref(bc, mode, mv_ref_p); |
|
450 ++cm->counts.inter_mode[mi->mode_context[rf]] |
|
451 [INTER_OFFSET(mode)]; |
|
452 } |
|
453 } |
|
454 |
|
455 if (cm->mcomp_filter_type == SWITCHABLE) { |
|
456 const int ctx = vp9_get_pred_context_switchable_interp(xd); |
|
457 write_token(bc, vp9_switchable_interp_tree, |
|
458 cm->fc.switchable_interp_prob[ctx], |
|
459 &vp9_switchable_interp_encodings[mi->interp_filter]); |
|
460 } else { |
|
461 assert(mi->interp_filter == cm->mcomp_filter_type); |
|
462 } |
|
463 |
|
464 if (bsize < BLOCK_8X8) { |
|
465 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
|
466 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
|
467 int idx, idy; |
|
468 for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { |
|
469 for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { |
|
470 const int j = idy * 2 + idx; |
|
471 const MB_PREDICTION_MODE blockmode = m->bmi[j].as_mode; |
|
472 write_sb_mv_ref(bc, blockmode, mv_ref_p); |
|
473 ++cm->counts.inter_mode[mi->mode_context[rf]] |
|
474 [INTER_OFFSET(blockmode)]; |
|
475 |
|
476 if (blockmode == NEWMV) { |
|
477 #ifdef ENTROPY_STATS |
|
478 active_section = 11; |
|
479 #endif |
|
480 vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[0].as_mv, |
|
481 &mi->best_mv[0].as_mv, nmvc, allow_hp); |
|
482 |
|
483 if (has_second_ref(mi)) |
|
484 vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[1].as_mv, |
|
485 &mi->best_mv[1].as_mv, nmvc, allow_hp); |
|
486 } |
|
487 } |
|
488 } |
|
489 } else if (mode == NEWMV) { |
|
490 #ifdef ENTROPY_STATS |
|
491 active_section = 5; |
|
492 #endif |
|
493 vp9_encode_mv(cpi, bc, &mi->mv[0].as_mv, |
|
494 &mi->best_mv[0].as_mv, nmvc, allow_hp); |
|
495 |
|
496 if (has_second_ref(mi)) |
|
497 vp9_encode_mv(cpi, bc, &mi->mv[1].as_mv, |
|
498 &mi->best_mv[1].as_mv, nmvc, allow_hp); |
|
499 } |
|
500 } |
|
501 } |
|
502 |
|
503 static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8, |
|
504 vp9_writer *bc) { |
|
505 const VP9_COMMON *const cm = &cpi->common; |
|
506 const MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
|
507 const struct segmentation *const seg = &cm->seg; |
|
508 MODE_INFO *m = mi_8x8[0]; |
|
509 const int ym = m->mbmi.mode; |
|
510 const int segment_id = m->mbmi.segment_id; |
|
511 MODE_INFO *above_mi = mi_8x8[-xd->mode_info_stride]; |
|
512 MODE_INFO *left_mi = xd->left_available ? mi_8x8[-1] : NULL; |
|
513 |
|
514 if (seg->update_map) |
|
515 write_segment_id(bc, seg, m->mbmi.segment_id); |
|
516 |
|
517 write_skip_coeff(cpi, segment_id, m, bc); |
|
518 |
|
519 if (m->mbmi.sb_type >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT) |
|
520 write_selected_tx_size(cpi, m, m->mbmi.tx_size, m->mbmi.sb_type, bc); |
|
521 |
|
522 if (m->mbmi.sb_type >= BLOCK_8X8) { |
|
523 const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, 0); |
|
524 const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, 0); |
|
525 write_intra_mode(bc, ym, vp9_kf_y_mode_prob[A][L]); |
|
526 } else { |
|
527 int idx, idy; |
|
528 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[m->mbmi.sb_type]; |
|
529 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[m->mbmi.sb_type]; |
|
530 for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { |
|
531 for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { |
|
532 int i = idy * 2 + idx; |
|
533 const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, i); |
|
534 const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, i); |
|
535 const int bm = m->bmi[i].as_mode; |
|
536 #ifdef ENTROPY_STATS |
|
537 ++intra_mode_stats[A][L][bm]; |
|
538 #endif |
|
539 write_intra_mode(bc, bm, vp9_kf_y_mode_prob[A][L]); |
|
540 } |
|
541 } |
|
542 } |
|
543 |
|
544 write_intra_mode(bc, m->mbmi.uv_mode, vp9_kf_uv_mode_prob[ym]); |
|
545 } |
|
546 |
|
547 static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile, |
|
548 vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end, |
|
549 int mi_row, int mi_col) { |
|
550 VP9_COMMON *const cm = &cpi->common; |
|
551 MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
|
552 MODE_INFO *m; |
|
553 |
|
554 xd->mi_8x8 = cm->mi_grid_visible + (mi_row * cm->mode_info_stride + mi_col); |
|
555 m = xd->mi_8x8[0]; |
|
556 |
|
557 set_mi_row_col(xd, tile, |
|
558 mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type], |
|
559 mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type], |
|
560 cm->mi_rows, cm->mi_cols); |
|
561 if (frame_is_intra_only(cm)) { |
|
562 write_mb_modes_kf(cpi, xd->mi_8x8, w); |
|
563 #ifdef ENTROPY_STATS |
|
564 active_section = 8; |
|
565 #endif |
|
566 } else { |
|
567 pack_inter_mode_mvs(cpi, m, w); |
|
568 #ifdef ENTROPY_STATS |
|
569 active_section = 1; |
|
570 #endif |
|
571 } |
|
572 |
|
573 assert(*tok < tok_end); |
|
574 pack_mb_tokens(w, tok, tok_end); |
|
575 } |
|
576 |
|
577 static void write_partition(VP9_COMP *cpi, int hbs, int mi_row, int mi_col, |
|
578 PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) { |
|
579 VP9_COMMON *const cm = &cpi->common; |
|
580 const int ctx = partition_plane_context(cpi->above_seg_context, |
|
581 cpi->left_seg_context, |
|
582 mi_row, mi_col, bsize); |
|
583 const vp9_prob *const probs = get_partition_probs(cm, ctx); |
|
584 const int has_rows = (mi_row + hbs) < cm->mi_rows; |
|
585 const int has_cols = (mi_col + hbs) < cm->mi_cols; |
|
586 |
|
587 if (has_rows && has_cols) { |
|
588 write_token(w, vp9_partition_tree, probs, &vp9_partition_encodings[p]); |
|
589 } else if (!has_rows && has_cols) { |
|
590 assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); |
|
591 vp9_write(w, p == PARTITION_SPLIT, probs[1]); |
|
592 } else if (has_rows && !has_cols) { |
|
593 assert(p == PARTITION_SPLIT || p == PARTITION_VERT); |
|
594 vp9_write(w, p == PARTITION_SPLIT, probs[2]); |
|
595 } else { |
|
596 assert(p == PARTITION_SPLIT); |
|
597 } |
|
598 } |
|
599 |
|
600 static void write_modes_sb(VP9_COMP *cpi, const TileInfo *const tile, |
|
601 vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end, |
|
602 int mi_row, int mi_col, BLOCK_SIZE bsize) { |
|
603 VP9_COMMON *const cm = &cpi->common; |
|
604 const int bsl = b_width_log2(bsize); |
|
605 const int bs = (1 << bsl) / 4; |
|
606 PARTITION_TYPE partition; |
|
607 BLOCK_SIZE subsize; |
|
608 MODE_INFO *m = cm->mi_grid_visible[mi_row * cm->mode_info_stride + mi_col]; |
|
609 |
|
610 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
|
611 return; |
|
612 |
|
613 partition = partition_lookup[bsl][m->mbmi.sb_type]; |
|
614 write_partition(cpi, bs, mi_row, mi_col, partition, bsize, w); |
|
615 subsize = get_subsize(bsize, partition); |
|
616 if (subsize < BLOCK_8X8) { |
|
617 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
|
618 } else { |
|
619 switch (partition) { |
|
620 case PARTITION_NONE: |
|
621 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
|
622 break; |
|
623 case PARTITION_HORZ: |
|
624 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
|
625 if (mi_row + bs < cm->mi_rows) |
|
626 write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col); |
|
627 break; |
|
628 case PARTITION_VERT: |
|
629 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
|
630 if (mi_col + bs < cm->mi_cols) |
|
631 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs); |
|
632 break; |
|
633 case PARTITION_SPLIT: |
|
634 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize); |
|
635 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs, |
|
636 subsize); |
|
637 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col, |
|
638 subsize); |
|
639 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs, |
|
640 subsize); |
|
641 break; |
|
642 default: |
|
643 assert(0); |
|
644 } |
|
645 } |
|
646 |
|
647 // update partition context |
|
648 if (bsize >= BLOCK_8X8 && |
|
649 (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) |
|
650 update_partition_context(cpi->above_seg_context, cpi->left_seg_context, |
|
651 mi_row, mi_col, subsize, bsize); |
|
652 } |
|
653 |
|
654 static void write_modes(VP9_COMP *cpi, const TileInfo *const tile, |
|
655 vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end) { |
|
656 int mi_row, mi_col; |
|
657 |
|
658 for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; |
|
659 mi_row += MI_BLOCK_SIZE) { |
|
660 vp9_zero(cpi->left_seg_context); |
|
661 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; |
|
662 mi_col += MI_BLOCK_SIZE) |
|
663 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, BLOCK_64X64); |
|
664 } |
|
665 } |
|
666 |
|
667 static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size) { |
|
668 vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[tx_size]; |
|
669 vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size]; |
|
670 unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] = |
|
671 cpi->common.counts.eob_branch[tx_size]; |
|
672 vp9_coeff_stats *coef_branch_ct = cpi->frame_branch_ct[tx_size]; |
|
673 int i, j, k, l, m; |
|
674 |
|
675 for (i = 0; i < BLOCK_TYPES; ++i) { |
|
676 for (j = 0; j < REF_TYPES; ++j) { |
|
677 for (k = 0; k < COEF_BANDS; ++k) { |
|
678 for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { |
|
679 if (l >= 3 && k == 0) |
|
680 continue; |
|
681 vp9_tree_probs_from_distribution(vp9_coef_tree, |
|
682 coef_branch_ct[i][j][k][l], |
|
683 coef_counts[i][j][k][l]); |
|
684 coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] - |
|
685 coef_branch_ct[i][j][k][l][0][0]; |
|
686 for (m = 0; m < UNCONSTRAINED_NODES; ++m) |
|
687 coef_probs[i][j][k][l][m] = get_binary_prob( |
|
688 coef_branch_ct[i][j][k][l][m][0], |
|
689 coef_branch_ct[i][j][k][l][m][1]); |
|
690 #ifdef ENTROPY_STATS |
|
691 if (!cpi->dummy_packing) { |
|
692 int t; |
|
693 for (t = 0; t < MAX_ENTROPY_TOKENS; ++t) |
|
694 context_counters[tx_size][i][j][k][l][t] += |
|
695 coef_counts[i][j][k][l][t]; |
|
696 context_counters[tx_size][i][j][k][l][MAX_ENTROPY_TOKENS] += |
|
697 eob_branch_ct[i][j][k][l]; |
|
698 } |
|
699 #endif |
|
700 } |
|
701 } |
|
702 } |
|
703 } |
|
704 } |
|
705 |
|
706 static void build_coeff_contexts(VP9_COMP *cpi) { |
|
707 TX_SIZE t; |
|
708 for (t = TX_4X4; t <= TX_32X32; t++) |
|
709 build_tree_distribution(cpi, t); |
|
710 } |
|
711 |
|
712 static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi, |
|
713 TX_SIZE tx_size) { |
|
714 vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size]; |
|
715 vp9_coeff_probs_model *old_frame_coef_probs = |
|
716 cpi->common.fc.coef_probs[tx_size]; |
|
717 vp9_coeff_stats *frame_branch_ct = cpi->frame_branch_ct[tx_size]; |
|
718 const vp9_prob upd = DIFF_UPDATE_PROB; |
|
719 const int entropy_nodes_update = UNCONSTRAINED_NODES; |
|
720 int i, j, k, l, t; |
|
721 switch (cpi->sf.use_fast_coef_updates) { |
|
722 case 0: { |
|
723 /* dry run to see if there is any udpate at all needed */ |
|
724 int savings = 0; |
|
725 int update[2] = {0, 0}; |
|
726 for (i = 0; i < BLOCK_TYPES; ++i) { |
|
727 for (j = 0; j < REF_TYPES; ++j) { |
|
728 for (k = 0; k < COEF_BANDS; ++k) { |
|
729 for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { |
|
730 for (t = 0; t < entropy_nodes_update; ++t) { |
|
731 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; |
|
732 const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t]; |
|
733 int s; |
|
734 int u = 0; |
|
735 |
|
736 if (l >= 3 && k == 0) |
|
737 continue; |
|
738 if (t == PIVOT_NODE) |
|
739 s = vp9_prob_diff_update_savings_search_model( |
|
740 frame_branch_ct[i][j][k][l][0], |
|
741 old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); |
|
742 else |
|
743 s = vp9_prob_diff_update_savings_search( |
|
744 frame_branch_ct[i][j][k][l][t], oldp, &newp, upd); |
|
745 if (s > 0 && newp != oldp) |
|
746 u = 1; |
|
747 if (u) |
|
748 savings += s - (int)(vp9_cost_zero(upd)); |
|
749 else |
|
750 savings -= (int)(vp9_cost_zero(upd)); |
|
751 update[u]++; |
|
752 } |
|
753 } |
|
754 } |
|
755 } |
|
756 } |
|
757 |
|
758 // printf("Update %d %d, savings %d\n", update[0], update[1], savings); |
|
759 /* Is coef updated at all */ |
|
760 if (update[1] == 0 || savings < 0) { |
|
761 vp9_write_bit(bc, 0); |
|
762 return; |
|
763 } |
|
764 vp9_write_bit(bc, 1); |
|
765 for (i = 0; i < BLOCK_TYPES; ++i) { |
|
766 for (j = 0; j < REF_TYPES; ++j) { |
|
767 for (k = 0; k < COEF_BANDS; ++k) { |
|
768 for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { |
|
769 // calc probs and branch cts for this frame only |
|
770 for (t = 0; t < entropy_nodes_update; ++t) { |
|
771 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; |
|
772 vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t; |
|
773 const vp9_prob upd = DIFF_UPDATE_PROB; |
|
774 int s; |
|
775 int u = 0; |
|
776 if (l >= 3 && k == 0) |
|
777 continue; |
|
778 if (t == PIVOT_NODE) |
|
779 s = vp9_prob_diff_update_savings_search_model( |
|
780 frame_branch_ct[i][j][k][l][0], |
|
781 old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); |
|
782 else |
|
783 s = vp9_prob_diff_update_savings_search( |
|
784 frame_branch_ct[i][j][k][l][t], |
|
785 *oldp, &newp, upd); |
|
786 if (s > 0 && newp != *oldp) |
|
787 u = 1; |
|
788 vp9_write(bc, u, upd); |
|
789 #ifdef ENTROPY_STATS |
|
790 if (!cpi->dummy_packing) |
|
791 ++tree_update_hist[tx_size][i][j][k][l][t][u]; |
|
792 #endif |
|
793 if (u) { |
|
794 /* send/use new probability */ |
|
795 vp9_write_prob_diff_update(bc, newp, *oldp); |
|
796 *oldp = newp; |
|
797 } |
|
798 } |
|
799 } |
|
800 } |
|
801 } |
|
802 } |
|
803 return; |
|
804 } |
|
805 |
|
806 case 1: |
|
807 case 2: { |
|
808 const int prev_coef_contexts_to_update = |
|
809 (cpi->sf.use_fast_coef_updates == 2 ? |
|
810 PREV_COEF_CONTEXTS >> 1 : PREV_COEF_CONTEXTS); |
|
811 const int coef_band_to_update = |
|
812 (cpi->sf.use_fast_coef_updates == 2 ? |
|
813 COEF_BANDS >> 1 : COEF_BANDS); |
|
814 int updates = 0; |
|
815 int noupdates_before_first = 0; |
|
816 for (i = 0; i < BLOCK_TYPES; ++i) { |
|
817 for (j = 0; j < REF_TYPES; ++j) { |
|
818 for (k = 0; k < COEF_BANDS; ++k) { |
|
819 for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { |
|
820 // calc probs and branch cts for this frame only |
|
821 for (t = 0; t < entropy_nodes_update; ++t) { |
|
822 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; |
|
823 vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t; |
|
824 int s; |
|
825 int u = 0; |
|
826 if (l >= 3 && k == 0) |
|
827 continue; |
|
828 if (l >= prev_coef_contexts_to_update || |
|
829 k >= coef_band_to_update) { |
|
830 u = 0; |
|
831 } else { |
|
832 if (t == PIVOT_NODE) |
|
833 s = vp9_prob_diff_update_savings_search_model( |
|
834 frame_branch_ct[i][j][k][l][0], |
|
835 old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); |
|
836 else |
|
837 s = vp9_prob_diff_update_savings_search( |
|
838 frame_branch_ct[i][j][k][l][t], |
|
839 *oldp, &newp, upd); |
|
840 if (s > 0 && newp != *oldp) |
|
841 u = 1; |
|
842 } |
|
843 updates += u; |
|
844 if (u == 0 && updates == 0) { |
|
845 noupdates_before_first++; |
|
846 #ifdef ENTROPY_STATS |
|
847 if (!cpi->dummy_packing) |
|
848 ++tree_update_hist[tx_size][i][j][k][l][t][u]; |
|
849 #endif |
|
850 continue; |
|
851 } |
|
852 if (u == 1 && updates == 1) { |
|
853 int v; |
|
854 // first update |
|
855 vp9_write_bit(bc, 1); |
|
856 for (v = 0; v < noupdates_before_first; ++v) |
|
857 vp9_write(bc, 0, upd); |
|
858 } |
|
859 vp9_write(bc, u, upd); |
|
860 #ifdef ENTROPY_STATS |
|
861 if (!cpi->dummy_packing) |
|
862 ++tree_update_hist[tx_size][i][j][k][l][t][u]; |
|
863 #endif |
|
864 if (u) { |
|
865 /* send/use new probability */ |
|
866 vp9_write_prob_diff_update(bc, newp, *oldp); |
|
867 *oldp = newp; |
|
868 } |
|
869 } |
|
870 } |
|
871 } |
|
872 } |
|
873 } |
|
874 if (updates == 0) { |
|
875 vp9_write_bit(bc, 0); // no updates |
|
876 } |
|
877 return; |
|
878 } |
|
879 |
|
880 default: |
|
881 assert(0); |
|
882 } |
|
883 } |
|
884 |
|
885 static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) { |
|
886 const TX_MODE tx_mode = cpi->common.tx_mode; |
|
887 |
|
888 vp9_clear_system_state(); |
|
889 |
|
890 // Build the cofficient contexts based on counts collected in encode loop |
|
891 build_coeff_contexts(cpi); |
|
892 |
|
893 update_coef_probs_common(bc, cpi, TX_4X4); |
|
894 |
|
895 // do not do this if not even allowed |
|
896 if (tx_mode > ONLY_4X4) |
|
897 update_coef_probs_common(bc, cpi, TX_8X8); |
|
898 |
|
899 if (tx_mode > ALLOW_8X8) |
|
900 update_coef_probs_common(bc, cpi, TX_16X16); |
|
901 |
|
902 if (tx_mode > ALLOW_16X16) |
|
903 update_coef_probs_common(bc, cpi, TX_32X32); |
|
904 } |
|
905 |
|
906 static void encode_loopfilter(struct loopfilter *lf, |
|
907 struct vp9_write_bit_buffer *wb) { |
|
908 int i; |
|
909 |
|
910 // Encode the loop filter level and type |
|
911 vp9_wb_write_literal(wb, lf->filter_level, 6); |
|
912 vp9_wb_write_literal(wb, lf->sharpness_level, 3); |
|
913 |
|
914 // Write out loop filter deltas applied at the MB level based on mode or |
|
915 // ref frame (if they are enabled). |
|
916 vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled); |
|
917 |
|
918 if (lf->mode_ref_delta_enabled) { |
|
919 // Do the deltas need to be updated |
|
920 vp9_wb_write_bit(wb, lf->mode_ref_delta_update); |
|
921 if (lf->mode_ref_delta_update) { |
|
922 // Send update |
|
923 for (i = 0; i < MAX_REF_LF_DELTAS; i++) { |
|
924 const int delta = lf->ref_deltas[i]; |
|
925 |
|
926 // Frame level data |
|
927 if (delta != lf->last_ref_deltas[i]) { |
|
928 lf->last_ref_deltas[i] = delta; |
|
929 vp9_wb_write_bit(wb, 1); |
|
930 |
|
931 assert(delta != 0); |
|
932 vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6); |
|
933 vp9_wb_write_bit(wb, delta < 0); |
|
934 } else { |
|
935 vp9_wb_write_bit(wb, 0); |
|
936 } |
|
937 } |
|
938 |
|
939 // Send update |
|
940 for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { |
|
941 const int delta = lf->mode_deltas[i]; |
|
942 if (delta != lf->last_mode_deltas[i]) { |
|
943 lf->last_mode_deltas[i] = delta; |
|
944 vp9_wb_write_bit(wb, 1); |
|
945 |
|
946 assert(delta != 0); |
|
947 vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6); |
|
948 vp9_wb_write_bit(wb, delta < 0); |
|
949 } else { |
|
950 vp9_wb_write_bit(wb, 0); |
|
951 } |
|
952 } |
|
953 } |
|
954 } |
|
955 } |
|
956 |
|
957 static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) { |
|
958 if (delta_q != 0) { |
|
959 vp9_wb_write_bit(wb, 1); |
|
960 vp9_wb_write_literal(wb, abs(delta_q), 4); |
|
961 vp9_wb_write_bit(wb, delta_q < 0); |
|
962 } else { |
|
963 vp9_wb_write_bit(wb, 0); |
|
964 } |
|
965 } |
|
966 |
|
967 static void encode_quantization(VP9_COMMON *cm, |
|
968 struct vp9_write_bit_buffer *wb) { |
|
969 vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); |
|
970 write_delta_q(wb, cm->y_dc_delta_q); |
|
971 write_delta_q(wb, cm->uv_dc_delta_q); |
|
972 write_delta_q(wb, cm->uv_ac_delta_q); |
|
973 } |
|
974 |
|
975 |
|
976 static void encode_segmentation(VP9_COMP *cpi, |
|
977 struct vp9_write_bit_buffer *wb) { |
|
978 int i, j; |
|
979 |
|
980 struct segmentation *seg = &cpi->common.seg; |
|
981 |
|
982 vp9_wb_write_bit(wb, seg->enabled); |
|
983 if (!seg->enabled) |
|
984 return; |
|
985 |
|
986 // Segmentation map |
|
987 vp9_wb_write_bit(wb, seg->update_map); |
|
988 if (seg->update_map) { |
|
989 // Select the coding strategy (temporal or spatial) |
|
990 vp9_choose_segmap_coding_method(cpi); |
|
991 // Write out probabilities used to decode unpredicted macro-block segments |
|
992 for (i = 0; i < SEG_TREE_PROBS; i++) { |
|
993 const int prob = seg->tree_probs[i]; |
|
994 const int update = prob != MAX_PROB; |
|
995 vp9_wb_write_bit(wb, update); |
|
996 if (update) |
|
997 vp9_wb_write_literal(wb, prob, 8); |
|
998 } |
|
999 |
|
1000 // Write out the chosen coding method. |
|
1001 vp9_wb_write_bit(wb, seg->temporal_update); |
|
1002 if (seg->temporal_update) { |
|
1003 for (i = 0; i < PREDICTION_PROBS; i++) { |
|
1004 const int prob = seg->pred_probs[i]; |
|
1005 const int update = prob != MAX_PROB; |
|
1006 vp9_wb_write_bit(wb, update); |
|
1007 if (update) |
|
1008 vp9_wb_write_literal(wb, prob, 8); |
|
1009 } |
|
1010 } |
|
1011 } |
|
1012 |
|
1013 // Segmentation data |
|
1014 vp9_wb_write_bit(wb, seg->update_data); |
|
1015 if (seg->update_data) { |
|
1016 vp9_wb_write_bit(wb, seg->abs_delta); |
|
1017 |
|
1018 for (i = 0; i < MAX_SEGMENTS; i++) { |
|
1019 for (j = 0; j < SEG_LVL_MAX; j++) { |
|
1020 const int active = vp9_segfeature_active(seg, i, j); |
|
1021 vp9_wb_write_bit(wb, active); |
|
1022 if (active) { |
|
1023 const int data = vp9_get_segdata(seg, i, j); |
|
1024 const int data_max = vp9_seg_feature_data_max(j); |
|
1025 |
|
1026 if (vp9_is_segfeature_signed(j)) { |
|
1027 vp9_encode_unsigned_max(wb, abs(data), data_max); |
|
1028 vp9_wb_write_bit(wb, data < 0); |
|
1029 } else { |
|
1030 vp9_encode_unsigned_max(wb, data, data_max); |
|
1031 } |
|
1032 } |
|
1033 } |
|
1034 } |
|
1035 } |
|
1036 } |
|
1037 |
|
1038 |
|
1039 static void encode_txfm_probs(VP9_COMP *cpi, vp9_writer *w) { |
|
1040 VP9_COMMON *const cm = &cpi->common; |
|
1041 |
|
1042 // Mode |
|
1043 vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2); |
|
1044 if (cm->tx_mode >= ALLOW_32X32) |
|
1045 vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT); |
|
1046 |
|
1047 // Probabilities |
|
1048 if (cm->tx_mode == TX_MODE_SELECT) { |
|
1049 int i, j; |
|
1050 unsigned int ct_8x8p[TX_SIZES - 3][2]; |
|
1051 unsigned int ct_16x16p[TX_SIZES - 2][2]; |
|
1052 unsigned int ct_32x32p[TX_SIZES - 1][2]; |
|
1053 |
|
1054 |
|
1055 for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
|
1056 tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p); |
|
1057 for (j = 0; j < TX_SIZES - 3; j++) |
|
1058 vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]); |
|
1059 } |
|
1060 |
|
1061 for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
|
1062 tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p); |
|
1063 for (j = 0; j < TX_SIZES - 2; j++) |
|
1064 vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j], |
|
1065 ct_16x16p[j]); |
|
1066 } |
|
1067 |
|
1068 for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
|
1069 tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p); |
|
1070 for (j = 0; j < TX_SIZES - 1; j++) |
|
1071 vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j], |
|
1072 ct_32x32p[j]); |
|
1073 } |
|
1074 #ifdef MODE_STATS |
|
1075 if (!cpi->dummy_packing) |
|
1076 update_tx_count_stats(cm); |
|
1077 #endif |
|
1078 } |
|
1079 } |
|
1080 |
|
1081 static void write_interp_filter_type(INTERPOLATION_TYPE type, |
|
1082 struct vp9_write_bit_buffer *wb) { |
|
1083 const int type_to_literal[] = { 1, 0, 2, 3 }; |
|
1084 |
|
1085 vp9_wb_write_bit(wb, type == SWITCHABLE); |
|
1086 if (type != SWITCHABLE) |
|
1087 vp9_wb_write_literal(wb, type_to_literal[type], 2); |
|
1088 } |
|
1089 |
|
1090 static void fix_mcomp_filter_type(VP9_COMP *cpi) { |
|
1091 VP9_COMMON *const cm = &cpi->common; |
|
1092 |
|
1093 if (cm->mcomp_filter_type == SWITCHABLE) { |
|
1094 // Check to see if only one of the filters is actually used |
|
1095 int count[SWITCHABLE_FILTERS]; |
|
1096 int i, j, c = 0; |
|
1097 for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
|
1098 count[i] = 0; |
|
1099 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) |
|
1100 count[i] += cm->counts.switchable_interp[j][i]; |
|
1101 c += (count[i] > 0); |
|
1102 } |
|
1103 if (c == 1) { |
|
1104 // Only one filter is used. So set the filter at frame level |
|
1105 for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
|
1106 if (count[i]) { |
|
1107 cm->mcomp_filter_type = i; |
|
1108 break; |
|
1109 } |
|
1110 } |
|
1111 } |
|
1112 } |
|
1113 } |
|
1114 |
|
1115 static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) { |
|
1116 int min_log2_tile_cols, max_log2_tile_cols, ones; |
|
1117 vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); |
|
1118 |
|
1119 // columns |
|
1120 ones = cm->log2_tile_cols - min_log2_tile_cols; |
|
1121 while (ones--) |
|
1122 vp9_wb_write_bit(wb, 1); |
|
1123 |
|
1124 if (cm->log2_tile_cols < max_log2_tile_cols) |
|
1125 vp9_wb_write_bit(wb, 0); |
|
1126 |
|
1127 // rows |
|
1128 vp9_wb_write_bit(wb, cm->log2_tile_rows != 0); |
|
1129 if (cm->log2_tile_rows != 0) |
|
1130 vp9_wb_write_bit(wb, cm->log2_tile_rows != 1); |
|
1131 } |
|
1132 |
|
1133 static int get_refresh_mask(VP9_COMP *cpi) { |
|
1134 // Should the GF or ARF be updated using the transmitted frame or buffer |
|
1135 #if CONFIG_MULTIPLE_ARF |
|
1136 if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame && |
|
1137 !cpi->refresh_alt_ref_frame) { |
|
1138 #else |
|
1139 if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame && |
|
1140 !cpi->use_svc) { |
|
1141 #endif |
|
1142 // Preserve the previously existing golden frame and update the frame in |
|
1143 // the alt ref slot instead. This is highly specific to the use of |
|
1144 // alt-ref as a forward reference, and this needs to be generalized as |
|
1145 // other uses are implemented (like RTC/temporal scaling) |
|
1146 // |
|
1147 // gld_fb_idx and alt_fb_idx need to be swapped for future frames, but |
|
1148 // that happens in vp9_onyx_if.c:update_reference_frames() so that it can |
|
1149 // be done outside of the recode loop. |
|
1150 return (cpi->refresh_last_frame << cpi->lst_fb_idx) | |
|
1151 (cpi->refresh_golden_frame << cpi->alt_fb_idx); |
|
1152 } else { |
|
1153 int arf_idx = cpi->alt_fb_idx; |
|
1154 #if CONFIG_MULTIPLE_ARF |
|
1155 // Determine which ARF buffer to use to encode this ARF frame. |
|
1156 if (cpi->multi_arf_enabled) { |
|
1157 int sn = cpi->sequence_number; |
|
1158 arf_idx = (cpi->frame_coding_order[sn] < 0) ? |
|
1159 cpi->arf_buffer_idx[sn + 1] : |
|
1160 cpi->arf_buffer_idx[sn]; |
|
1161 } |
|
1162 #endif |
|
1163 return (cpi->refresh_last_frame << cpi->lst_fb_idx) | |
|
1164 (cpi->refresh_golden_frame << cpi->gld_fb_idx) | |
|
1165 (cpi->refresh_alt_ref_frame << arf_idx); |
|
1166 } |
|
1167 } |
|
1168 |
|
1169 static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) { |
|
1170 VP9_COMMON *const cm = &cpi->common; |
|
1171 vp9_writer residual_bc; |
|
1172 |
|
1173 int tile_row, tile_col; |
|
1174 TOKENEXTRA *tok[4][1 << 6], *tok_end; |
|
1175 size_t total_size = 0; |
|
1176 const int tile_cols = 1 << cm->log2_tile_cols; |
|
1177 const int tile_rows = 1 << cm->log2_tile_rows; |
|
1178 |
|
1179 vpx_memset(cpi->above_seg_context, 0, sizeof(*cpi->above_seg_context) * |
|
1180 mi_cols_aligned_to_sb(cm->mi_cols)); |
|
1181 |
|
1182 tok[0][0] = cpi->tok; |
|
1183 for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
|
1184 if (tile_row) |
|
1185 tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] + |
|
1186 cpi->tok_count[tile_row - 1][tile_cols - 1]; |
|
1187 |
|
1188 for (tile_col = 1; tile_col < tile_cols; tile_col++) |
|
1189 tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] + |
|
1190 cpi->tok_count[tile_row][tile_col - 1]; |
|
1191 } |
|
1192 |
|
1193 for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
|
1194 for (tile_col = 0; tile_col < tile_cols; tile_col++) { |
|
1195 TileInfo tile; |
|
1196 |
|
1197 vp9_tile_init(&tile, cm, tile_row, tile_col); |
|
1198 tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col]; |
|
1199 |
|
1200 if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) |
|
1201 vp9_start_encode(&residual_bc, data_ptr + total_size + 4); |
|
1202 else |
|
1203 vp9_start_encode(&residual_bc, data_ptr + total_size); |
|
1204 |
|
1205 write_modes(cpi, &tile, &residual_bc, &tok[tile_row][tile_col], tok_end); |
|
1206 assert(tok[tile_row][tile_col] == tok_end); |
|
1207 vp9_stop_encode(&residual_bc); |
|
1208 if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) { |
|
1209 // size of this tile |
|
1210 write_be32(data_ptr + total_size, residual_bc.pos); |
|
1211 total_size += 4; |
|
1212 } |
|
1213 |
|
1214 total_size += residual_bc.pos; |
|
1215 } |
|
1216 } |
|
1217 |
|
1218 return total_size; |
|
1219 } |
|
1220 |
|
1221 static void write_display_size(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) { |
|
1222 VP9_COMMON *const cm = &cpi->common; |
|
1223 |
|
1224 const int scaling_active = cm->width != cm->display_width || |
|
1225 cm->height != cm->display_height; |
|
1226 vp9_wb_write_bit(wb, scaling_active); |
|
1227 if (scaling_active) { |
|
1228 vp9_wb_write_literal(wb, cm->display_width - 1, 16); |
|
1229 vp9_wb_write_literal(wb, cm->display_height - 1, 16); |
|
1230 } |
|
1231 } |
|
1232 |
|
1233 static void write_frame_size(VP9_COMP *cpi, |
|
1234 struct vp9_write_bit_buffer *wb) { |
|
1235 VP9_COMMON *const cm = &cpi->common; |
|
1236 vp9_wb_write_literal(wb, cm->width - 1, 16); |
|
1237 vp9_wb_write_literal(wb, cm->height - 1, 16); |
|
1238 |
|
1239 write_display_size(cpi, wb); |
|
1240 } |
|
1241 |
|
1242 static void write_frame_size_with_refs(VP9_COMP *cpi, |
|
1243 struct vp9_write_bit_buffer *wb) { |
|
1244 VP9_COMMON *const cm = &cpi->common; |
|
1245 int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx, |
|
1246 cpi->alt_fb_idx}; |
|
1247 int i, found = 0; |
|
1248 |
|
1249 for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { |
|
1250 YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[cm->ref_frame_map[refs[i]]]; |
|
1251 found = cm->width == cfg->y_crop_width && |
|
1252 cm->height == cfg->y_crop_height; |
|
1253 |
|
1254 // TODO(ivan): This prevents a bug while more than 3 buffers are used. Do it |
|
1255 // in a better way. |
|
1256 if (cpi->use_svc) { |
|
1257 found = 0; |
|
1258 } |
|
1259 vp9_wb_write_bit(wb, found); |
|
1260 if (found) { |
|
1261 break; |
|
1262 } |
|
1263 } |
|
1264 |
|
1265 if (!found) { |
|
1266 vp9_wb_write_literal(wb, cm->width - 1, 16); |
|
1267 vp9_wb_write_literal(wb, cm->height - 1, 16); |
|
1268 } |
|
1269 |
|
1270 write_display_size(cpi, wb); |
|
1271 } |
|
1272 |
|
1273 static void write_sync_code(struct vp9_write_bit_buffer *wb) { |
|
1274 vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8); |
|
1275 vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8); |
|
1276 vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8); |
|
1277 } |
|
1278 |
|
1279 static void write_uncompressed_header(VP9_COMP *cpi, |
|
1280 struct vp9_write_bit_buffer *wb) { |
|
1281 VP9_COMMON *const cm = &cpi->common; |
|
1282 |
|
1283 vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2); |
|
1284 |
|
1285 // bitstream version. |
|
1286 // 00 - profile 0. 4:2:0 only |
|
1287 // 10 - profile 1. adds 4:4:4, 4:2:2, alpha |
|
1288 vp9_wb_write_bit(wb, cm->version); |
|
1289 vp9_wb_write_bit(wb, 0); |
|
1290 |
|
1291 vp9_wb_write_bit(wb, 0); |
|
1292 vp9_wb_write_bit(wb, cm->frame_type); |
|
1293 vp9_wb_write_bit(wb, cm->show_frame); |
|
1294 vp9_wb_write_bit(wb, cm->error_resilient_mode); |
|
1295 |
|
1296 if (cm->frame_type == KEY_FRAME) { |
|
1297 const COLOR_SPACE cs = UNKNOWN; |
|
1298 write_sync_code(wb); |
|
1299 vp9_wb_write_literal(wb, cs, 3); |
|
1300 if (cs != SRGB) { |
|
1301 vp9_wb_write_bit(wb, 0); // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] |
|
1302 if (cm->version == 1) { |
|
1303 vp9_wb_write_bit(wb, cm->subsampling_x); |
|
1304 vp9_wb_write_bit(wb, cm->subsampling_y); |
|
1305 vp9_wb_write_bit(wb, 0); // has extra plane |
|
1306 } |
|
1307 } else { |
|
1308 assert(cm->version == 1); |
|
1309 vp9_wb_write_bit(wb, 0); // has extra plane |
|
1310 } |
|
1311 |
|
1312 write_frame_size(cpi, wb); |
|
1313 } else { |
|
1314 const int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx, |
|
1315 cpi->alt_fb_idx}; |
|
1316 if (!cm->show_frame) |
|
1317 vp9_wb_write_bit(wb, cm->intra_only); |
|
1318 |
|
1319 if (!cm->error_resilient_mode) |
|
1320 vp9_wb_write_literal(wb, cm->reset_frame_context, 2); |
|
1321 |
|
1322 if (cm->intra_only) { |
|
1323 write_sync_code(wb); |
|
1324 |
|
1325 vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES); |
|
1326 write_frame_size(cpi, wb); |
|
1327 } else { |
|
1328 int i; |
|
1329 vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES); |
|
1330 for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { |
|
1331 vp9_wb_write_literal(wb, refs[i], NUM_REF_FRAMES_LOG2); |
|
1332 vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[LAST_FRAME + i]); |
|
1333 } |
|
1334 |
|
1335 write_frame_size_with_refs(cpi, wb); |
|
1336 |
|
1337 vp9_wb_write_bit(wb, cm->allow_high_precision_mv); |
|
1338 |
|
1339 fix_mcomp_filter_type(cpi); |
|
1340 write_interp_filter_type(cm->mcomp_filter_type, wb); |
|
1341 } |
|
1342 } |
|
1343 |
|
1344 if (!cm->error_resilient_mode) { |
|
1345 vp9_wb_write_bit(wb, cm->refresh_frame_context); |
|
1346 vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode); |
|
1347 } |
|
1348 |
|
1349 vp9_wb_write_literal(wb, cm->frame_context_idx, NUM_FRAME_CONTEXTS_LOG2); |
|
1350 |
|
1351 encode_loopfilter(&cm->lf, wb); |
|
1352 encode_quantization(cm, wb); |
|
1353 encode_segmentation(cpi, wb); |
|
1354 |
|
1355 write_tile_info(cm, wb); |
|
1356 } |
|
1357 |
|
1358 static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) { |
|
1359 VP9_COMMON *const cm = &cpi->common; |
|
1360 MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
|
1361 FRAME_CONTEXT *const fc = &cm->fc; |
|
1362 vp9_writer header_bc; |
|
1363 |
|
1364 vp9_start_encode(&header_bc, data); |
|
1365 |
|
1366 if (xd->lossless) |
|
1367 cm->tx_mode = ONLY_4X4; |
|
1368 else |
|
1369 encode_txfm_probs(cpi, &header_bc); |
|
1370 |
|
1371 update_coef_probs(cpi, &header_bc); |
|
1372 |
|
1373 #ifdef ENTROPY_STATS |
|
1374 active_section = 2; |
|
1375 #endif |
|
1376 |
|
1377 vp9_update_skip_probs(cpi, &header_bc); |
|
1378 |
|
1379 if (!frame_is_intra_only(cm)) { |
|
1380 int i; |
|
1381 #ifdef ENTROPY_STATS |
|
1382 active_section = 1; |
|
1383 #endif |
|
1384 |
|
1385 update_inter_mode_probs(cm, &header_bc); |
|
1386 vp9_zero(cm->counts.inter_mode); |
|
1387 |
|
1388 if (cm->mcomp_filter_type == SWITCHABLE) |
|
1389 update_switchable_interp_probs(cpi, &header_bc); |
|
1390 |
|
1391 for (i = 0; i < INTRA_INTER_CONTEXTS; i++) |
|
1392 vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i], |
|
1393 cpi->intra_inter_count[i]); |
|
1394 |
|
1395 if (cm->allow_comp_inter_inter) { |
|
1396 const int comp_pred_mode = cpi->common.comp_pred_mode; |
|
1397 const int use_compound_pred = comp_pred_mode != SINGLE_PREDICTION_ONLY; |
|
1398 const int use_hybrid_pred = comp_pred_mode == HYBRID_PREDICTION; |
|
1399 |
|
1400 vp9_write_bit(&header_bc, use_compound_pred); |
|
1401 if (use_compound_pred) { |
|
1402 vp9_write_bit(&header_bc, use_hybrid_pred); |
|
1403 if (use_hybrid_pred) |
|
1404 for (i = 0; i < COMP_INTER_CONTEXTS; i++) |
|
1405 vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i], |
|
1406 cpi->comp_inter_count[i]); |
|
1407 } |
|
1408 } |
|
1409 |
|
1410 if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) { |
|
1411 for (i = 0; i < REF_CONTEXTS; i++) { |
|
1412 vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0], |
|
1413 cpi->single_ref_count[i][0]); |
|
1414 vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1], |
|
1415 cpi->single_ref_count[i][1]); |
|
1416 } |
|
1417 } |
|
1418 |
|
1419 if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) |
|
1420 for (i = 0; i < REF_CONTEXTS; i++) |
|
1421 vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i], |
|
1422 cpi->comp_ref_count[i]); |
|
1423 |
|
1424 update_mbintra_mode_probs(cpi, &header_bc); |
|
1425 |
|
1426 for (i = 0; i < PARTITION_CONTEXTS; ++i) { |
|
1427 unsigned int bct[PARTITION_TYPES - 1][2]; |
|
1428 update_mode(&header_bc, PARTITION_TYPES, vp9_partition_tree, |
|
1429 fc->partition_prob[i], bct, |
|
1430 (unsigned int *)cpi->partition_count[i]); |
|
1431 } |
|
1432 |
|
1433 vp9_write_nmv_probs(cpi, cm->allow_high_precision_mv, &header_bc); |
|
1434 } |
|
1435 |
|
1436 vp9_stop_encode(&header_bc); |
|
1437 assert(header_bc.pos <= 0xffff); |
|
1438 |
|
1439 return header_bc.pos; |
|
1440 } |
|
1441 |
|
1442 void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) { |
|
1443 uint8_t *data = dest; |
|
1444 size_t first_part_size; |
|
1445 struct vp9_write_bit_buffer wb = {data, 0}; |
|
1446 struct vp9_write_bit_buffer saved_wb; |
|
1447 |
|
1448 write_uncompressed_header(cpi, &wb); |
|
1449 saved_wb = wb; |
|
1450 vp9_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size |
|
1451 |
|
1452 data += vp9_rb_bytes_written(&wb); |
|
1453 |
|
1454 vp9_compute_update_table(); |
|
1455 |
|
1456 #ifdef ENTROPY_STATS |
|
1457 if (cm->frame_type == INTER_FRAME) |
|
1458 active_section = 0; |
|
1459 else |
|
1460 active_section = 7; |
|
1461 #endif |
|
1462 |
|
1463 vp9_clear_system_state(); // __asm emms; |
|
1464 |
|
1465 first_part_size = write_compressed_header(cpi, data); |
|
1466 data += first_part_size; |
|
1467 vp9_wb_write_literal(&saved_wb, first_part_size, 16); |
|
1468 |
|
1469 data += encode_tiles(cpi, data); |
|
1470 |
|
1471 *size = data - dest; |
|
1472 } |
|
1473 |
|
1474 #ifdef ENTROPY_STATS |
|
1475 static void print_tree_update_for_type(FILE *f, |
|
1476 vp9_coeff_stats *tree_update_hist, |
|
1477 int block_types, const char *header) { |
|
1478 int i, j, k, l, m; |
|
1479 |
|
1480 fprintf(f, "const vp9_coeff_prob %s = {\n", header); |
|
1481 for (i = 0; i < block_types; i++) { |
|
1482 fprintf(f, " { \n"); |
|
1483 for (j = 0; j < REF_TYPES; j++) { |
|
1484 fprintf(f, " { \n"); |
|
1485 for (k = 0; k < COEF_BANDS; k++) { |
|
1486 fprintf(f, " {\n"); |
|
1487 for (l = 0; l < PREV_COEF_CONTEXTS; l++) { |
|
1488 fprintf(f, " {"); |
|
1489 for (m = 0; m < ENTROPY_NODES; m++) { |
|
1490 fprintf(f, "%3d, ", |
|
1491 get_binary_prob(tree_update_hist[i][j][k][l][m][0], |
|
1492 tree_update_hist[i][j][k][l][m][1])); |
|
1493 } |
|
1494 fprintf(f, "},\n"); |
|
1495 } |
|
1496 fprintf(f, "},\n"); |
|
1497 } |
|
1498 fprintf(f, " },\n"); |
|
1499 } |
|
1500 fprintf(f, " },\n"); |
|
1501 } |
|
1502 fprintf(f, "};\n"); |
|
1503 } |
|
1504 |
|
1505 void print_tree_update_probs() { |
|
1506 FILE *f = fopen("coefupdprob.h", "w"); |
|
1507 fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n"); |
|
1508 |
|
1509 print_tree_update_for_type(f, tree_update_hist[TX_4X4], BLOCK_TYPES, |
|
1510 "vp9_coef_update_probs_4x4[BLOCK_TYPES]"); |
|
1511 print_tree_update_for_type(f, tree_update_hist[TX_8X8], BLOCK_TYPES, |
|
1512 "vp9_coef_update_probs_8x8[BLOCK_TYPES]"); |
|
1513 print_tree_update_for_type(f, tree_update_hist[TX_16X16], BLOCK_TYPES, |
|
1514 "vp9_coef_update_probs_16x16[BLOCK_TYPES]"); |
|
1515 print_tree_update_for_type(f, tree_update_hist[TX_32X32], BLOCK_TYPES, |
|
1516 "vp9_coef_update_probs_32x32[BLOCK_TYPES]"); |
|
1517 |
|
1518 fclose(f); |
|
1519 f = fopen("treeupdate.bin", "wb"); |
|
1520 fwrite(tree_update_hist, sizeof(tree_update_hist), 1, f); |
|
1521 fclose(f); |
|
1522 } |
|
1523 #endif |