|
1 /* |
|
2 * Copyright 2013 The LibYuv Project Authors. All rights reserved. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license |
|
5 * that can be found in the LICENSE file in the root of the source |
|
6 * tree. An additional intellectual property rights grant can be found |
|
7 * in the file PATENTS. All contributing project authors may |
|
8 * be found in the AUTHORS file in the root of the source tree. |
|
9 */ |
|
10 |
|
11 #include "libyuv/scale.h" |
|
12 |
|
13 #include <assert.h> |
|
14 #include <string.h> |
|
15 |
|
16 #include "libyuv/cpu_id.h" |
|
17 #include "libyuv/planar_functions.h" // For CopyARGB |
|
18 #include "libyuv/row.h" |
|
19 #include "libyuv/scale_row.h" |
|
20 |
|
21 #ifdef __cplusplus |
|
22 namespace libyuv { |
|
23 extern "C" { |
|
24 #endif |
|
25 |
|
26 static __inline int Abs(int v) { |
|
27 return v >= 0 ? v : -v; |
|
28 } |
|
29 |
|
30 // CPU agnostic row functions |
|
31 void ScaleRowDown2_C(const uint8* src_ptr, ptrdiff_t src_stride, |
|
32 uint8* dst, int dst_width) { |
|
33 int x; |
|
34 for (x = 0; x < dst_width - 1; x += 2) { |
|
35 dst[0] = src_ptr[1]; |
|
36 dst[1] = src_ptr[3]; |
|
37 dst += 2; |
|
38 src_ptr += 4; |
|
39 } |
|
40 if (dst_width & 1) { |
|
41 dst[0] = src_ptr[1]; |
|
42 } |
|
43 } |
|
44 |
|
45 void ScaleRowDown2Linear_C(const uint8* src_ptr, ptrdiff_t src_stride, |
|
46 uint8* dst, int dst_width) { |
|
47 const uint8* s = src_ptr; |
|
48 int x; |
|
49 for (x = 0; x < dst_width - 1; x += 2) { |
|
50 dst[0] = (s[0] + s[1] + 1) >> 1; |
|
51 dst[1] = (s[2] + s[3] + 1) >> 1; |
|
52 dst += 2; |
|
53 s += 4; |
|
54 } |
|
55 if (dst_width & 1) { |
|
56 dst[0] = (s[0] + s[1] + 1) >> 1; |
|
57 } |
|
58 } |
|
59 |
|
60 void ScaleRowDown2Box_C(const uint8* src_ptr, ptrdiff_t src_stride, |
|
61 uint8* dst, int dst_width) { |
|
62 const uint8* s = src_ptr; |
|
63 const uint8* t = src_ptr + src_stride; |
|
64 int x; |
|
65 for (x = 0; x < dst_width - 1; x += 2) { |
|
66 dst[0] = (s[0] + s[1] + t[0] + t[1] + 2) >> 2; |
|
67 dst[1] = (s[2] + s[3] + t[2] + t[3] + 2) >> 2; |
|
68 dst += 2; |
|
69 s += 4; |
|
70 t += 4; |
|
71 } |
|
72 if (dst_width & 1) { |
|
73 dst[0] = (s[0] + s[1] + t[0] + t[1] + 2) >> 2; |
|
74 } |
|
75 } |
|
76 |
|
77 void ScaleRowDown4_C(const uint8* src_ptr, ptrdiff_t src_stride, |
|
78 uint8* dst, int dst_width) { |
|
79 int x; |
|
80 for (x = 0; x < dst_width - 1; x += 2) { |
|
81 dst[0] = src_ptr[2]; |
|
82 dst[1] = src_ptr[6]; |
|
83 dst += 2; |
|
84 src_ptr += 8; |
|
85 } |
|
86 if (dst_width & 1) { |
|
87 dst[0] = src_ptr[2]; |
|
88 } |
|
89 } |
|
90 |
|
91 void ScaleRowDown4Box_C(const uint8* src_ptr, ptrdiff_t src_stride, |
|
92 uint8* dst, int dst_width) { |
|
93 intptr_t stride = src_stride; |
|
94 int x; |
|
95 for (x = 0; x < dst_width - 1; x += 2) { |
|
96 dst[0] = (src_ptr[0] + src_ptr[1] + src_ptr[2] + src_ptr[3] + |
|
97 src_ptr[stride + 0] + src_ptr[stride + 1] + |
|
98 src_ptr[stride + 2] + src_ptr[stride + 3] + |
|
99 src_ptr[stride * 2 + 0] + src_ptr[stride * 2 + 1] + |
|
100 src_ptr[stride * 2 + 2] + src_ptr[stride * 2 + 3] + |
|
101 src_ptr[stride * 3 + 0] + src_ptr[stride * 3 + 1] + |
|
102 src_ptr[stride * 3 + 2] + src_ptr[stride * 3 + 3] + |
|
103 8) >> 4; |
|
104 dst[1] = (src_ptr[4] + src_ptr[5] + src_ptr[6] + src_ptr[7] + |
|
105 src_ptr[stride + 4] + src_ptr[stride + 5] + |
|
106 src_ptr[stride + 6] + src_ptr[stride + 7] + |
|
107 src_ptr[stride * 2 + 4] + src_ptr[stride * 2 + 5] + |
|
108 src_ptr[stride * 2 + 6] + src_ptr[stride * 2 + 7] + |
|
109 src_ptr[stride * 3 + 4] + src_ptr[stride * 3 + 5] + |
|
110 src_ptr[stride * 3 + 6] + src_ptr[stride * 3 + 7] + |
|
111 8) >> 4; |
|
112 dst += 2; |
|
113 src_ptr += 8; |
|
114 } |
|
115 if (dst_width & 1) { |
|
116 dst[0] = (src_ptr[0] + src_ptr[1] + src_ptr[2] + src_ptr[3] + |
|
117 src_ptr[stride + 0] + src_ptr[stride + 1] + |
|
118 src_ptr[stride + 2] + src_ptr[stride + 3] + |
|
119 src_ptr[stride * 2 + 0] + src_ptr[stride * 2 + 1] + |
|
120 src_ptr[stride * 2 + 2] + src_ptr[stride * 2 + 3] + |
|
121 src_ptr[stride * 3 + 0] + src_ptr[stride * 3 + 1] + |
|
122 src_ptr[stride * 3 + 2] + src_ptr[stride * 3 + 3] + |
|
123 8) >> 4; |
|
124 } |
|
125 } |
|
126 |
|
127 void ScaleRowDown34_C(const uint8* src_ptr, ptrdiff_t src_stride, |
|
128 uint8* dst, int dst_width) { |
|
129 int x; |
|
130 assert((dst_width % 3 == 0) && (dst_width > 0)); |
|
131 for (x = 0; x < dst_width; x += 3) { |
|
132 dst[0] = src_ptr[0]; |
|
133 dst[1] = src_ptr[1]; |
|
134 dst[2] = src_ptr[3]; |
|
135 dst += 3; |
|
136 src_ptr += 4; |
|
137 } |
|
138 } |
|
139 |
|
140 // Filter rows 0 and 1 together, 3 : 1 |
|
141 void ScaleRowDown34_0_Box_C(const uint8* src_ptr, ptrdiff_t src_stride, |
|
142 uint8* d, int dst_width) { |
|
143 const uint8* s = src_ptr; |
|
144 const uint8* t = src_ptr + src_stride; |
|
145 int x; |
|
146 assert((dst_width % 3 == 0) && (dst_width > 0)); |
|
147 for (x = 0; x < dst_width; x += 3) { |
|
148 uint8 a0 = (s[0] * 3 + s[1] * 1 + 2) >> 2; |
|
149 uint8 a1 = (s[1] * 1 + s[2] * 1 + 1) >> 1; |
|
150 uint8 a2 = (s[2] * 1 + s[3] * 3 + 2) >> 2; |
|
151 uint8 b0 = (t[0] * 3 + t[1] * 1 + 2) >> 2; |
|
152 uint8 b1 = (t[1] * 1 + t[2] * 1 + 1) >> 1; |
|
153 uint8 b2 = (t[2] * 1 + t[3] * 3 + 2) >> 2; |
|
154 d[0] = (a0 * 3 + b0 + 2) >> 2; |
|
155 d[1] = (a1 * 3 + b1 + 2) >> 2; |
|
156 d[2] = (a2 * 3 + b2 + 2) >> 2; |
|
157 d += 3; |
|
158 s += 4; |
|
159 t += 4; |
|
160 } |
|
161 } |
|
162 |
|
163 // Filter rows 1 and 2 together, 1 : 1 |
|
164 void ScaleRowDown34_1_Box_C(const uint8* src_ptr, ptrdiff_t src_stride, |
|
165 uint8* d, int dst_width) { |
|
166 const uint8* s = src_ptr; |
|
167 const uint8* t = src_ptr + src_stride; |
|
168 int x; |
|
169 assert((dst_width % 3 == 0) && (dst_width > 0)); |
|
170 for (x = 0; x < dst_width; x += 3) { |
|
171 uint8 a0 = (s[0] * 3 + s[1] * 1 + 2) >> 2; |
|
172 uint8 a1 = (s[1] * 1 + s[2] * 1 + 1) >> 1; |
|
173 uint8 a2 = (s[2] * 1 + s[3] * 3 + 2) >> 2; |
|
174 uint8 b0 = (t[0] * 3 + t[1] * 1 + 2) >> 2; |
|
175 uint8 b1 = (t[1] * 1 + t[2] * 1 + 1) >> 1; |
|
176 uint8 b2 = (t[2] * 1 + t[3] * 3 + 2) >> 2; |
|
177 d[0] = (a0 + b0 + 1) >> 1; |
|
178 d[1] = (a1 + b1 + 1) >> 1; |
|
179 d[2] = (a2 + b2 + 1) >> 1; |
|
180 d += 3; |
|
181 s += 4; |
|
182 t += 4; |
|
183 } |
|
184 } |
|
185 |
|
186 // Scales a single row of pixels using point sampling. |
|
187 void ScaleCols_C(uint8* dst_ptr, const uint8* src_ptr, |
|
188 int dst_width, int x, int dx) { |
|
189 int j; |
|
190 for (j = 0; j < dst_width - 1; j += 2) { |
|
191 dst_ptr[0] = src_ptr[x >> 16]; |
|
192 x += dx; |
|
193 dst_ptr[1] = src_ptr[x >> 16]; |
|
194 x += dx; |
|
195 dst_ptr += 2; |
|
196 } |
|
197 if (dst_width & 1) { |
|
198 dst_ptr[0] = src_ptr[x >> 16]; |
|
199 } |
|
200 } |
|
201 |
|
202 // Scales a single row of pixels up by 2x using point sampling. |
|
203 void ScaleColsUp2_C(uint8* dst_ptr, const uint8* src_ptr, |
|
204 int dst_width, int x, int dx) { |
|
205 int j; |
|
206 for (j = 0; j < dst_width - 1; j += 2) { |
|
207 dst_ptr[1] = dst_ptr[0] = src_ptr[0]; |
|
208 src_ptr += 1; |
|
209 dst_ptr += 2; |
|
210 } |
|
211 if (dst_width & 1) { |
|
212 dst_ptr[0] = src_ptr[0]; |
|
213 } |
|
214 } |
|
215 |
|
216 // (1-f)a + fb can be replaced with a + f(b-a) |
|
217 #define BLENDER(a, b, f) (uint8)((int)(a) + \ |
|
218 ((int)(f) * ((int)(b) - (int)(a)) >> 16)) |
|
219 |
|
220 void ScaleFilterCols_C(uint8* dst_ptr, const uint8* src_ptr, |
|
221 int dst_width, int x, int dx) { |
|
222 int j; |
|
223 for (j = 0; j < dst_width - 1; j += 2) { |
|
224 int xi = x >> 16; |
|
225 int a = src_ptr[xi]; |
|
226 int b = src_ptr[xi + 1]; |
|
227 dst_ptr[0] = BLENDER(a, b, x & 0xffff); |
|
228 x += dx; |
|
229 xi = x >> 16; |
|
230 a = src_ptr[xi]; |
|
231 b = src_ptr[xi + 1]; |
|
232 dst_ptr[1] = BLENDER(a, b, x & 0xffff); |
|
233 x += dx; |
|
234 dst_ptr += 2; |
|
235 } |
|
236 if (dst_width & 1) { |
|
237 int xi = x >> 16; |
|
238 int a = src_ptr[xi]; |
|
239 int b = src_ptr[xi + 1]; |
|
240 dst_ptr[0] = BLENDER(a, b, x & 0xffff); |
|
241 } |
|
242 } |
|
243 |
|
244 void ScaleFilterCols64_C(uint8* dst_ptr, const uint8* src_ptr, |
|
245 int dst_width, int x32, int dx) { |
|
246 int64 x = (int64)(x32); |
|
247 int j; |
|
248 for (j = 0; j < dst_width - 1; j += 2) { |
|
249 int64 xi = x >> 16; |
|
250 int a = src_ptr[xi]; |
|
251 int b = src_ptr[xi + 1]; |
|
252 dst_ptr[0] = BLENDER(a, b, x & 0xffff); |
|
253 x += dx; |
|
254 xi = x >> 16; |
|
255 a = src_ptr[xi]; |
|
256 b = src_ptr[xi + 1]; |
|
257 dst_ptr[1] = BLENDER(a, b, x & 0xffff); |
|
258 x += dx; |
|
259 dst_ptr += 2; |
|
260 } |
|
261 if (dst_width & 1) { |
|
262 int64 xi = x >> 16; |
|
263 int a = src_ptr[xi]; |
|
264 int b = src_ptr[xi + 1]; |
|
265 dst_ptr[0] = BLENDER(a, b, x & 0xffff); |
|
266 } |
|
267 } |
|
268 #undef BLENDER |
|
269 |
|
270 void ScaleRowDown38_C(const uint8* src_ptr, ptrdiff_t src_stride, |
|
271 uint8* dst, int dst_width) { |
|
272 int x; |
|
273 assert(dst_width % 3 == 0); |
|
274 for (x = 0; x < dst_width; x += 3) { |
|
275 dst[0] = src_ptr[0]; |
|
276 dst[1] = src_ptr[3]; |
|
277 dst[2] = src_ptr[6]; |
|
278 dst += 3; |
|
279 src_ptr += 8; |
|
280 } |
|
281 } |
|
282 |
|
283 // 8x3 -> 3x1 |
|
284 void ScaleRowDown38_3_Box_C(const uint8* src_ptr, |
|
285 ptrdiff_t src_stride, |
|
286 uint8* dst_ptr, int dst_width) { |
|
287 intptr_t stride = src_stride; |
|
288 int i; |
|
289 assert((dst_width % 3 == 0) && (dst_width > 0)); |
|
290 for (i = 0; i < dst_width; i += 3) { |
|
291 dst_ptr[0] = (src_ptr[0] + src_ptr[1] + src_ptr[2] + |
|
292 src_ptr[stride + 0] + src_ptr[stride + 1] + |
|
293 src_ptr[stride + 2] + src_ptr[stride * 2 + 0] + |
|
294 src_ptr[stride * 2 + 1] + src_ptr[stride * 2 + 2]) * |
|
295 (65536 / 9) >> 16; |
|
296 dst_ptr[1] = (src_ptr[3] + src_ptr[4] + src_ptr[5] + |
|
297 src_ptr[stride + 3] + src_ptr[stride + 4] + |
|
298 src_ptr[stride + 5] + src_ptr[stride * 2 + 3] + |
|
299 src_ptr[stride * 2 + 4] + src_ptr[stride * 2 + 5]) * |
|
300 (65536 / 9) >> 16; |
|
301 dst_ptr[2] = (src_ptr[6] + src_ptr[7] + |
|
302 src_ptr[stride + 6] + src_ptr[stride + 7] + |
|
303 src_ptr[stride * 2 + 6] + src_ptr[stride * 2 + 7]) * |
|
304 (65536 / 6) >> 16; |
|
305 src_ptr += 8; |
|
306 dst_ptr += 3; |
|
307 } |
|
308 } |
|
309 |
|
310 // 8x2 -> 3x1 |
|
311 void ScaleRowDown38_2_Box_C(const uint8* src_ptr, ptrdiff_t src_stride, |
|
312 uint8* dst_ptr, int dst_width) { |
|
313 intptr_t stride = src_stride; |
|
314 int i; |
|
315 assert((dst_width % 3 == 0) && (dst_width > 0)); |
|
316 for (i = 0; i < dst_width; i += 3) { |
|
317 dst_ptr[0] = (src_ptr[0] + src_ptr[1] + src_ptr[2] + |
|
318 src_ptr[stride + 0] + src_ptr[stride + 1] + |
|
319 src_ptr[stride + 2]) * (65536 / 6) >> 16; |
|
320 dst_ptr[1] = (src_ptr[3] + src_ptr[4] + src_ptr[5] + |
|
321 src_ptr[stride + 3] + src_ptr[stride + 4] + |
|
322 src_ptr[stride + 5]) * (65536 / 6) >> 16; |
|
323 dst_ptr[2] = (src_ptr[6] + src_ptr[7] + |
|
324 src_ptr[stride + 6] + src_ptr[stride + 7]) * |
|
325 (65536 / 4) >> 16; |
|
326 src_ptr += 8; |
|
327 dst_ptr += 3; |
|
328 } |
|
329 } |
|
330 |
|
331 void ScaleAddRows_C(const uint8* src_ptr, ptrdiff_t src_stride, |
|
332 uint16* dst_ptr, int src_width, int src_height) { |
|
333 int x; |
|
334 assert(src_width > 0); |
|
335 assert(src_height > 0); |
|
336 for (x = 0; x < src_width; ++x) { |
|
337 const uint8* s = src_ptr + x; |
|
338 unsigned int sum = 0u; |
|
339 int y; |
|
340 for (y = 0; y < src_height; ++y) { |
|
341 sum += s[0]; |
|
342 s += src_stride; |
|
343 } |
|
344 // TODO(fbarchard): Consider limitting height to 256 to avoid overflow. |
|
345 dst_ptr[x] = sum < 65535u ? sum : 65535u; |
|
346 } |
|
347 } |
|
348 |
|
349 void ScaleARGBRowDown2_C(const uint8* src_argb, |
|
350 ptrdiff_t src_stride, |
|
351 uint8* dst_argb, int dst_width) { |
|
352 const uint32* src = (const uint32*)(src_argb); |
|
353 uint32* dst = (uint32*)(dst_argb); |
|
354 |
|
355 int x; |
|
356 for (x = 0; x < dst_width - 1; x += 2) { |
|
357 dst[0] = src[1]; |
|
358 dst[1] = src[3]; |
|
359 src += 4; |
|
360 dst += 2; |
|
361 } |
|
362 if (dst_width & 1) { |
|
363 dst[0] = src[1]; |
|
364 } |
|
365 } |
|
366 |
|
367 void ScaleARGBRowDown2Linear_C(const uint8* src_argb, |
|
368 ptrdiff_t src_stride, |
|
369 uint8* dst_argb, int dst_width) { |
|
370 int x; |
|
371 for (x = 0; x < dst_width; ++x) { |
|
372 dst_argb[0] = (src_argb[0] + src_argb[4] + 1) >> 1; |
|
373 dst_argb[1] = (src_argb[1] + src_argb[5] + 1) >> 1; |
|
374 dst_argb[2] = (src_argb[2] + src_argb[6] + 1) >> 1; |
|
375 dst_argb[3] = (src_argb[3] + src_argb[7] + 1) >> 1; |
|
376 src_argb += 8; |
|
377 dst_argb += 4; |
|
378 } |
|
379 } |
|
380 |
|
381 void ScaleARGBRowDown2Box_C(const uint8* src_argb, ptrdiff_t src_stride, |
|
382 uint8* dst_argb, int dst_width) { |
|
383 int x; |
|
384 for (x = 0; x < dst_width; ++x) { |
|
385 dst_argb[0] = (src_argb[0] + src_argb[4] + |
|
386 src_argb[src_stride] + src_argb[src_stride + 4] + 2) >> 2; |
|
387 dst_argb[1] = (src_argb[1] + src_argb[5] + |
|
388 src_argb[src_stride + 1] + src_argb[src_stride + 5] + 2) >> 2; |
|
389 dst_argb[2] = (src_argb[2] + src_argb[6] + |
|
390 src_argb[src_stride + 2] + src_argb[src_stride + 6] + 2) >> 2; |
|
391 dst_argb[3] = (src_argb[3] + src_argb[7] + |
|
392 src_argb[src_stride + 3] + src_argb[src_stride + 7] + 2) >> 2; |
|
393 src_argb += 8; |
|
394 dst_argb += 4; |
|
395 } |
|
396 } |
|
397 |
|
398 void ScaleARGBRowDownEven_C(const uint8* src_argb, ptrdiff_t src_stride, |
|
399 int src_stepx, |
|
400 uint8* dst_argb, int dst_width) { |
|
401 const uint32* src = (const uint32*)(src_argb); |
|
402 uint32* dst = (uint32*)(dst_argb); |
|
403 |
|
404 int x; |
|
405 for (x = 0; x < dst_width - 1; x += 2) { |
|
406 dst[0] = src[0]; |
|
407 dst[1] = src[src_stepx]; |
|
408 src += src_stepx * 2; |
|
409 dst += 2; |
|
410 } |
|
411 if (dst_width & 1) { |
|
412 dst[0] = src[0]; |
|
413 } |
|
414 } |
|
415 |
|
416 void ScaleARGBRowDownEvenBox_C(const uint8* src_argb, |
|
417 ptrdiff_t src_stride, |
|
418 int src_stepx, |
|
419 uint8* dst_argb, int dst_width) { |
|
420 int x; |
|
421 for (x = 0; x < dst_width; ++x) { |
|
422 dst_argb[0] = (src_argb[0] + src_argb[4] + |
|
423 src_argb[src_stride] + src_argb[src_stride + 4] + 2) >> 2; |
|
424 dst_argb[1] = (src_argb[1] + src_argb[5] + |
|
425 src_argb[src_stride + 1] + src_argb[src_stride + 5] + 2) >> 2; |
|
426 dst_argb[2] = (src_argb[2] + src_argb[6] + |
|
427 src_argb[src_stride + 2] + src_argb[src_stride + 6] + 2) >> 2; |
|
428 dst_argb[3] = (src_argb[3] + src_argb[7] + |
|
429 src_argb[src_stride + 3] + src_argb[src_stride + 7] + 2) >> 2; |
|
430 src_argb += src_stepx * 4; |
|
431 dst_argb += 4; |
|
432 } |
|
433 } |
|
434 |
|
435 // Scales a single row of pixels using point sampling. |
|
436 void ScaleARGBCols_C(uint8* dst_argb, const uint8* src_argb, |
|
437 int dst_width, int x, int dx) { |
|
438 const uint32* src = (const uint32*)(src_argb); |
|
439 uint32* dst = (uint32*)(dst_argb); |
|
440 int j; |
|
441 for (j = 0; j < dst_width - 1; j += 2) { |
|
442 dst[0] = src[x >> 16]; |
|
443 x += dx; |
|
444 dst[1] = src[x >> 16]; |
|
445 x += dx; |
|
446 dst += 2; |
|
447 } |
|
448 if (dst_width & 1) { |
|
449 dst[0] = src[x >> 16]; |
|
450 } |
|
451 } |
|
452 |
|
453 void ScaleARGBCols64_C(uint8* dst_argb, const uint8* src_argb, |
|
454 int dst_width, int x32, int dx) { |
|
455 int64 x = (int64)(x32); |
|
456 const uint32* src = (const uint32*)(src_argb); |
|
457 uint32* dst = (uint32*)(dst_argb); |
|
458 int j; |
|
459 for (j = 0; j < dst_width - 1; j += 2) { |
|
460 dst[0] = src[x >> 16]; |
|
461 x += dx; |
|
462 dst[1] = src[x >> 16]; |
|
463 x += dx; |
|
464 dst += 2; |
|
465 } |
|
466 if (dst_width & 1) { |
|
467 dst[0] = src[x >> 16]; |
|
468 } |
|
469 } |
|
470 |
|
471 // Scales a single row of pixels up by 2x using point sampling. |
|
472 void ScaleARGBColsUp2_C(uint8* dst_argb, const uint8* src_argb, |
|
473 int dst_width, int x, int dx) { |
|
474 const uint32* src = (const uint32*)(src_argb); |
|
475 uint32* dst = (uint32*)(dst_argb); |
|
476 int j; |
|
477 for (j = 0; j < dst_width - 1; j += 2) { |
|
478 dst[1] = dst[0] = src[0]; |
|
479 src += 1; |
|
480 dst += 2; |
|
481 } |
|
482 if (dst_width & 1) { |
|
483 dst[0] = src[0]; |
|
484 } |
|
485 } |
|
486 |
|
487 // Mimics SSSE3 blender |
|
488 #define BLENDER1(a, b, f) ((a) * (0x7f ^ f) + (b) * f) >> 7 |
|
489 #define BLENDERC(a, b, f, s) (uint32)( \ |
|
490 BLENDER1(((a) >> s) & 255, ((b) >> s) & 255, f) << s) |
|
491 #define BLENDER(a, b, f) \ |
|
492 BLENDERC(a, b, f, 24) | BLENDERC(a, b, f, 16) | \ |
|
493 BLENDERC(a, b, f, 8) | BLENDERC(a, b, f, 0) |
|
494 |
|
495 void ScaleARGBFilterCols_C(uint8* dst_argb, const uint8* src_argb, |
|
496 int dst_width, int x, int dx) { |
|
497 const uint32* src = (const uint32*)(src_argb); |
|
498 uint32* dst = (uint32*)(dst_argb); |
|
499 int j; |
|
500 for (j = 0; j < dst_width - 1; j += 2) { |
|
501 int xi = x >> 16; |
|
502 int xf = (x >> 9) & 0x7f; |
|
503 uint32 a = src[xi]; |
|
504 uint32 b = src[xi + 1]; |
|
505 dst[0] = BLENDER(a, b, xf); |
|
506 x += dx; |
|
507 xi = x >> 16; |
|
508 xf = (x >> 9) & 0x7f; |
|
509 a = src[xi]; |
|
510 b = src[xi + 1]; |
|
511 dst[1] = BLENDER(a, b, xf); |
|
512 x += dx; |
|
513 dst += 2; |
|
514 } |
|
515 if (dst_width & 1) { |
|
516 int xi = x >> 16; |
|
517 int xf = (x >> 9) & 0x7f; |
|
518 uint32 a = src[xi]; |
|
519 uint32 b = src[xi + 1]; |
|
520 dst[0] = BLENDER(a, b, xf); |
|
521 } |
|
522 } |
|
523 |
|
524 void ScaleARGBFilterCols64_C(uint8* dst_argb, const uint8* src_argb, |
|
525 int dst_width, int x32, int dx) { |
|
526 int64 x = (int64)(x32); |
|
527 const uint32* src = (const uint32*)(src_argb); |
|
528 uint32* dst = (uint32*)(dst_argb); |
|
529 int j; |
|
530 for (j = 0; j < dst_width - 1; j += 2) { |
|
531 int64 xi = x >> 16; |
|
532 int xf = (x >> 9) & 0x7f; |
|
533 uint32 a = src[xi]; |
|
534 uint32 b = src[xi + 1]; |
|
535 dst[0] = BLENDER(a, b, xf); |
|
536 x += dx; |
|
537 xi = x >> 16; |
|
538 xf = (x >> 9) & 0x7f; |
|
539 a = src[xi]; |
|
540 b = src[xi + 1]; |
|
541 dst[1] = BLENDER(a, b, xf); |
|
542 x += dx; |
|
543 dst += 2; |
|
544 } |
|
545 if (dst_width & 1) { |
|
546 int64 xi = x >> 16; |
|
547 int xf = (x >> 9) & 0x7f; |
|
548 uint32 a = src[xi]; |
|
549 uint32 b = src[xi + 1]; |
|
550 dst[0] = BLENDER(a, b, xf); |
|
551 } |
|
552 } |
|
553 #undef BLENDER1 |
|
554 #undef BLENDERC |
|
555 #undef BLENDER |
|
556 |
|
557 // Scale plane vertically with bilinear interpolation. |
|
558 void ScalePlaneVertical(int src_height, |
|
559 int dst_width, int dst_height, |
|
560 int src_stride, int dst_stride, |
|
561 const uint8* src_argb, uint8* dst_argb, |
|
562 int x, int y, int dy, |
|
563 int bpp, enum FilterMode filtering) { |
|
564 // TODO(fbarchard): Allow higher bpp. |
|
565 int dst_width_bytes = dst_width * bpp; |
|
566 void (*InterpolateRow)(uint8* dst_argb, const uint8* src_argb, |
|
567 ptrdiff_t src_stride, int dst_width, int source_y_fraction) = |
|
568 InterpolateRow_C; |
|
569 const int max_y = (src_height > 1) ? ((src_height - 1) << 16) - 1 : 0; |
|
570 int j; |
|
571 assert(bpp >= 1 && bpp <= 4); |
|
572 assert(src_height != 0); |
|
573 assert(dst_width > 0); |
|
574 assert(dst_height > 0); |
|
575 src_argb += (x >> 16) * bpp; |
|
576 #if defined(HAS_INTERPOLATEROW_SSE2) |
|
577 if (TestCpuFlag(kCpuHasSSE2) && dst_width_bytes >= 16) { |
|
578 InterpolateRow = InterpolateRow_Any_SSE2; |
|
579 if (IS_ALIGNED(dst_width_bytes, 16)) { |
|
580 InterpolateRow = InterpolateRow_Unaligned_SSE2; |
|
581 if (IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride, 16) && |
|
582 IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) { |
|
583 InterpolateRow = InterpolateRow_SSE2; |
|
584 } |
|
585 } |
|
586 } |
|
587 #endif |
|
588 #if defined(HAS_INTERPOLATEROW_SSSE3) |
|
589 if (TestCpuFlag(kCpuHasSSSE3) && dst_width_bytes >= 16) { |
|
590 InterpolateRow = InterpolateRow_Any_SSSE3; |
|
591 if (IS_ALIGNED(dst_width_bytes, 16)) { |
|
592 InterpolateRow = InterpolateRow_Unaligned_SSSE3; |
|
593 if (IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride, 16) && |
|
594 IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) { |
|
595 InterpolateRow = InterpolateRow_SSSE3; |
|
596 } |
|
597 } |
|
598 } |
|
599 #endif |
|
600 #if defined(HAS_INTERPOLATEROW_AVX2) |
|
601 if (TestCpuFlag(kCpuHasAVX2) && dst_width_bytes >= 32) { |
|
602 InterpolateRow = InterpolateRow_Any_AVX2; |
|
603 if (IS_ALIGNED(dst_width_bytes, 32)) { |
|
604 InterpolateRow = InterpolateRow_AVX2; |
|
605 } |
|
606 } |
|
607 #endif |
|
608 #if defined(HAS_INTERPOLATEROW_NEON) |
|
609 if (TestCpuFlag(kCpuHasNEON) && dst_width_bytes >= 16) { |
|
610 InterpolateRow = InterpolateRow_Any_NEON; |
|
611 if (IS_ALIGNED(dst_width_bytes, 16)) { |
|
612 InterpolateRow = InterpolateRow_NEON; |
|
613 } |
|
614 } |
|
615 #endif |
|
616 #if defined(HAS_INTERPOLATEROWS_MIPS_DSPR2) |
|
617 if (TestCpuFlag(kCpuHasMIPS_DSPR2) && dst_width_bytes >= 4 && |
|
618 IS_ALIGNED(src_argb, 4) && IS_ALIGNED(src_stride, 4) && |
|
619 IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride, 4)) { |
|
620 InterpolateRow = InterpolateRow_Any_MIPS_DSPR2; |
|
621 if (IS_ALIGNED(dst_width_bytes, 4)) { |
|
622 InterpolateRow = InterpolateRow_MIPS_DSPR2; |
|
623 } |
|
624 } |
|
625 #endif |
|
626 for (j = 0; j < dst_height; ++j) { |
|
627 int yi; |
|
628 int yf; |
|
629 if (y > max_y) { |
|
630 y = max_y; |
|
631 } |
|
632 yi = y >> 16; |
|
633 yf = filtering ? ((y >> 8) & 255) : 0; |
|
634 InterpolateRow(dst_argb, src_argb + yi * src_stride, |
|
635 src_stride, dst_width_bytes, yf); |
|
636 dst_argb += dst_stride; |
|
637 y += dy; |
|
638 } |
|
639 } |
|
640 |
|
641 // Simplify the filtering based on scale factors. |
|
642 enum FilterMode ScaleFilterReduce(int src_width, int src_height, |
|
643 int dst_width, int dst_height, |
|
644 enum FilterMode filtering) { |
|
645 if (src_width < 0) { |
|
646 src_width = -src_width; |
|
647 } |
|
648 if (src_height < 0) { |
|
649 src_height = -src_height; |
|
650 } |
|
651 if (filtering == kFilterBox) { |
|
652 // If scaling both axis to 0.5 or larger, switch from Box to Bilinear. |
|
653 if (dst_width * 2 >= src_width && dst_height * 2 >= src_height) { |
|
654 filtering = kFilterBilinear; |
|
655 } |
|
656 // If scaling to larger, switch from Box to Bilinear. |
|
657 if (dst_width >= src_width || dst_height >= src_height) { |
|
658 filtering = kFilterBilinear; |
|
659 } |
|
660 } |
|
661 if (filtering == kFilterBilinear) { |
|
662 if (src_height == 1) { |
|
663 filtering = kFilterLinear; |
|
664 } |
|
665 // TODO(fbarchard): Detect any odd scale factor and reduce to Linear. |
|
666 if (dst_height == src_height || dst_height * 3 == src_height) { |
|
667 filtering = kFilterLinear; |
|
668 } |
|
669 // TODO(fbarchard): Remove 1 pixel wide filter restriction, which is to |
|
670 // avoid reading 2 pixels horizontally that causes memory exception. |
|
671 if (src_width == 1) { |
|
672 filtering = kFilterNone; |
|
673 } |
|
674 } |
|
675 if (filtering == kFilterLinear) { |
|
676 if (src_width == 1) { |
|
677 filtering = kFilterNone; |
|
678 } |
|
679 // TODO(fbarchard): Detect any odd scale factor and reduce to None. |
|
680 if (dst_width == src_width || dst_width * 3 == src_width) { |
|
681 filtering = kFilterNone; |
|
682 } |
|
683 } |
|
684 return filtering; |
|
685 } |
|
686 |
|
687 // Divide num by div and return as 16.16 fixed point result. |
|
688 int FixedDiv_C(int num, int div) { |
|
689 return (int)(((int64)(num) << 16) / div); |
|
690 } |
|
691 |
|
692 // Divide num by div and return as 16.16 fixed point result. |
|
693 int FixedDiv1_C(int num, int div) { |
|
694 return (int)((((int64)(num) << 16) - 0x00010001) / |
|
695 (div - 1)); |
|
696 } |
|
697 |
|
698 #define CENTERSTART(dx, s) (dx < 0) ? -((-dx >> 1) + s) : ((dx >> 1) + s) |
|
699 |
|
700 // Compute slope values for stepping. |
|
701 void ScaleSlope(int src_width, int src_height, |
|
702 int dst_width, int dst_height, |
|
703 enum FilterMode filtering, |
|
704 int* x, int* y, int* dx, int* dy) { |
|
705 assert(x != NULL); |
|
706 assert(y != NULL); |
|
707 assert(dx != NULL); |
|
708 assert(dy != NULL); |
|
709 assert(src_width != 0); |
|
710 assert(src_height != 0); |
|
711 assert(dst_width > 0); |
|
712 assert(dst_height > 0); |
|
713 // Check for 1 pixel and avoid FixedDiv overflow. |
|
714 if (dst_width == 1 && src_width >= 32768) { |
|
715 dst_width = src_width; |
|
716 } |
|
717 if (dst_height == 1 && src_height >= 32768) { |
|
718 dst_height = src_height; |
|
719 } |
|
720 if (filtering == kFilterBox) { |
|
721 // Scale step for point sampling duplicates all pixels equally. |
|
722 *dx = FixedDiv(Abs(src_width), dst_width); |
|
723 *dy = FixedDiv(src_height, dst_height); |
|
724 *x = 0; |
|
725 *y = 0; |
|
726 } else if (filtering == kFilterBilinear) { |
|
727 // Scale step for bilinear sampling renders last pixel once for upsample. |
|
728 if (dst_width <= Abs(src_width)) { |
|
729 *dx = FixedDiv(Abs(src_width), dst_width); |
|
730 *x = CENTERSTART(*dx, -32768); // Subtract 0.5 (32768) to center filter. |
|
731 } else if (dst_width > 1) { |
|
732 *dx = FixedDiv1(Abs(src_width), dst_width); |
|
733 *x = 0; |
|
734 } |
|
735 if (dst_height <= src_height) { |
|
736 *dy = FixedDiv(src_height, dst_height); |
|
737 *y = CENTERSTART(*dy, -32768); // Subtract 0.5 (32768) to center filter. |
|
738 } else if (dst_height > 1) { |
|
739 *dy = FixedDiv1(src_height, dst_height); |
|
740 *y = 0; |
|
741 } |
|
742 } else if (filtering == kFilterLinear) { |
|
743 // Scale step for bilinear sampling renders last pixel once for upsample. |
|
744 if (dst_width <= Abs(src_width)) { |
|
745 *dx = FixedDiv(Abs(src_width), dst_width); |
|
746 *x = CENTERSTART(*dx, -32768); // Subtract 0.5 (32768) to center filter. |
|
747 } else if (dst_width > 1) { |
|
748 *dx = FixedDiv1(Abs(src_width), dst_width); |
|
749 *x = 0; |
|
750 } |
|
751 *dy = FixedDiv(src_height, dst_height); |
|
752 *y = *dy >> 1; |
|
753 } else { |
|
754 // Scale step for point sampling duplicates all pixels equally. |
|
755 *dx = FixedDiv(Abs(src_width), dst_width); |
|
756 *dy = FixedDiv(src_height, dst_height); |
|
757 *x = CENTERSTART(*dx, 0); |
|
758 *y = CENTERSTART(*dy, 0); |
|
759 } |
|
760 // Negative src_width means horizontally mirror. |
|
761 if (src_width < 0) { |
|
762 *x += (dst_width - 1) * *dx; |
|
763 *dx = -*dx; |
|
764 // src_width = -src_width; // Caller must do this. |
|
765 } |
|
766 } |
|
767 #undef CENTERSTART |
|
768 |
|
769 #ifdef __cplusplus |
|
770 } // extern "C" |
|
771 } // namespace libyuv |
|
772 #endif |