|
1 // Copyright 2012 the V8 project authors. All rights reserved. |
|
2 // Redistribution and use in source and binary forms, with or without |
|
3 // modification, are permitted provided that the following conditions are |
|
4 // met: |
|
5 // |
|
6 // * Redistributions of source code must retain the above copyright |
|
7 // notice, this list of conditions and the following disclaimer. |
|
8 // * Redistributions in binary form must reproduce the above |
|
9 // copyright notice, this list of conditions and the following |
|
10 // disclaimer in the documentation and/or other materials provided |
|
11 // with the distribution. |
|
12 // * Neither the name of Google Inc. nor the names of its |
|
13 // contributors may be used to endorse or promote products derived |
|
14 // from this software without specific prior written permission. |
|
15 // |
|
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
27 |
|
28 #ifndef DOUBLE_CONVERSION_DOUBLE_H_ |
|
29 #define DOUBLE_CONVERSION_DOUBLE_H_ |
|
30 |
|
31 #include "diy-fp.h" |
|
32 |
|
33 namespace double_conversion { |
|
34 |
|
35 // We assume that doubles and uint64_t have the same endianness. |
|
36 static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); } |
|
37 static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); } |
|
38 static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); } |
|
39 static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); } |
|
40 |
|
41 // Helper functions for doubles. |
|
42 class Double { |
|
43 public: |
|
44 static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000); |
|
45 static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000); |
|
46 static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF); |
|
47 static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000); |
|
48 static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit. |
|
49 static const int kSignificandSize = 53; |
|
50 |
|
51 Double() : d64_(0) {} |
|
52 explicit Double(double d) : d64_(double_to_uint64(d)) {} |
|
53 explicit Double(uint64_t d64) : d64_(d64) {} |
|
54 explicit Double(DiyFp diy_fp) |
|
55 : d64_(DiyFpToUint64(diy_fp)) {} |
|
56 |
|
57 // The value encoded by this Double must be greater or equal to +0.0. |
|
58 // It must not be special (infinity, or NaN). |
|
59 DiyFp AsDiyFp() const { |
|
60 ASSERT(Sign() > 0); |
|
61 ASSERT(!IsSpecial()); |
|
62 return DiyFp(Significand(), Exponent()); |
|
63 } |
|
64 |
|
65 // The value encoded by this Double must be strictly greater than 0. |
|
66 DiyFp AsNormalizedDiyFp() const { |
|
67 ASSERT(value() > 0.0); |
|
68 uint64_t f = Significand(); |
|
69 int e = Exponent(); |
|
70 |
|
71 // The current double could be a denormal. |
|
72 while ((f & kHiddenBit) == 0) { |
|
73 f <<= 1; |
|
74 e--; |
|
75 } |
|
76 // Do the final shifts in one go. |
|
77 f <<= DiyFp::kSignificandSize - kSignificandSize; |
|
78 e -= DiyFp::kSignificandSize - kSignificandSize; |
|
79 return DiyFp(f, e); |
|
80 } |
|
81 |
|
82 // Returns the double's bit as uint64. |
|
83 uint64_t AsUint64() const { |
|
84 return d64_; |
|
85 } |
|
86 |
|
87 // Returns the next greater double. Returns +infinity on input +infinity. |
|
88 double NextDouble() const { |
|
89 if (d64_ == kInfinity) return Double(kInfinity).value(); |
|
90 if (Sign() < 0 && Significand() == 0) { |
|
91 // -0.0 |
|
92 return 0.0; |
|
93 } |
|
94 if (Sign() < 0) { |
|
95 return Double(d64_ - 1).value(); |
|
96 } else { |
|
97 return Double(d64_ + 1).value(); |
|
98 } |
|
99 } |
|
100 |
|
101 double PreviousDouble() const { |
|
102 if (d64_ == (kInfinity | kSignMask)) return -Double::Infinity(); |
|
103 if (Sign() < 0) { |
|
104 return Double(d64_ + 1).value(); |
|
105 } else { |
|
106 if (Significand() == 0) return -0.0; |
|
107 return Double(d64_ - 1).value(); |
|
108 } |
|
109 } |
|
110 |
|
111 int Exponent() const { |
|
112 if (IsDenormal()) return kDenormalExponent; |
|
113 |
|
114 uint64_t d64 = AsUint64(); |
|
115 int biased_e = |
|
116 static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); |
|
117 return biased_e - kExponentBias; |
|
118 } |
|
119 |
|
120 uint64_t Significand() const { |
|
121 uint64_t d64 = AsUint64(); |
|
122 uint64_t significand = d64 & kSignificandMask; |
|
123 if (!IsDenormal()) { |
|
124 return significand + kHiddenBit; |
|
125 } else { |
|
126 return significand; |
|
127 } |
|
128 } |
|
129 |
|
130 // Returns true if the double is a denormal. |
|
131 bool IsDenormal() const { |
|
132 uint64_t d64 = AsUint64(); |
|
133 return (d64 & kExponentMask) == 0; |
|
134 } |
|
135 |
|
136 // We consider denormals not to be special. |
|
137 // Hence only Infinity and NaN are special. |
|
138 bool IsSpecial() const { |
|
139 uint64_t d64 = AsUint64(); |
|
140 return (d64 & kExponentMask) == kExponentMask; |
|
141 } |
|
142 |
|
143 bool IsNan() const { |
|
144 uint64_t d64 = AsUint64(); |
|
145 return ((d64 & kExponentMask) == kExponentMask) && |
|
146 ((d64 & kSignificandMask) != 0); |
|
147 } |
|
148 |
|
149 bool IsInfinite() const { |
|
150 uint64_t d64 = AsUint64(); |
|
151 return ((d64 & kExponentMask) == kExponentMask) && |
|
152 ((d64 & kSignificandMask) == 0); |
|
153 } |
|
154 |
|
155 int Sign() const { |
|
156 uint64_t d64 = AsUint64(); |
|
157 return (d64 & kSignMask) == 0? 1: -1; |
|
158 } |
|
159 |
|
160 // Precondition: the value encoded by this Double must be greater or equal |
|
161 // than +0.0. |
|
162 DiyFp UpperBoundary() const { |
|
163 ASSERT(Sign() > 0); |
|
164 return DiyFp(Significand() * 2 + 1, Exponent() - 1); |
|
165 } |
|
166 |
|
167 // Computes the two boundaries of this. |
|
168 // The bigger boundary (m_plus) is normalized. The lower boundary has the same |
|
169 // exponent as m_plus. |
|
170 // Precondition: the value encoded by this Double must be greater than 0. |
|
171 void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { |
|
172 ASSERT(value() > 0.0); |
|
173 DiyFp v = this->AsDiyFp(); |
|
174 DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); |
|
175 DiyFp m_minus; |
|
176 if (LowerBoundaryIsCloser()) { |
|
177 m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); |
|
178 } else { |
|
179 m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); |
|
180 } |
|
181 m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); |
|
182 m_minus.set_e(m_plus.e()); |
|
183 *out_m_plus = m_plus; |
|
184 *out_m_minus = m_minus; |
|
185 } |
|
186 |
|
187 bool LowerBoundaryIsCloser() const { |
|
188 // The boundary is closer if the significand is of the form f == 2^p-1 then |
|
189 // the lower boundary is closer. |
|
190 // Think of v = 1000e10 and v- = 9999e9. |
|
191 // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but |
|
192 // at a distance of 1e8. |
|
193 // The only exception is for the smallest normal: the largest denormal is |
|
194 // at the same distance as its successor. |
|
195 // Note: denormals have the same exponent as the smallest normals. |
|
196 bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0); |
|
197 return physical_significand_is_zero && (Exponent() != kDenormalExponent); |
|
198 } |
|
199 |
|
200 double value() const { return uint64_to_double(d64_); } |
|
201 |
|
202 // Returns the significand size for a given order of magnitude. |
|
203 // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. |
|
204 // This function returns the number of significant binary digits v will have |
|
205 // once it's encoded into a double. In almost all cases this is equal to |
|
206 // kSignificandSize. The only exceptions are denormals. They start with |
|
207 // leading zeroes and their effective significand-size is hence smaller. |
|
208 static int SignificandSizeForOrderOfMagnitude(int order) { |
|
209 if (order >= (kDenormalExponent + kSignificandSize)) { |
|
210 return kSignificandSize; |
|
211 } |
|
212 if (order <= kDenormalExponent) return 0; |
|
213 return order - kDenormalExponent; |
|
214 } |
|
215 |
|
216 static double Infinity() { |
|
217 return Double(kInfinity).value(); |
|
218 } |
|
219 |
|
220 static double NaN() { |
|
221 return Double(kNaN).value(); |
|
222 } |
|
223 |
|
224 private: |
|
225 static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; |
|
226 static const int kDenormalExponent = -kExponentBias + 1; |
|
227 static const int kMaxExponent = 0x7FF - kExponentBias; |
|
228 static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000); |
|
229 static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000); |
|
230 |
|
231 const uint64_t d64_; |
|
232 |
|
233 static uint64_t DiyFpToUint64(DiyFp diy_fp) { |
|
234 uint64_t significand = diy_fp.f(); |
|
235 int exponent = diy_fp.e(); |
|
236 while (significand > kHiddenBit + kSignificandMask) { |
|
237 significand >>= 1; |
|
238 exponent++; |
|
239 } |
|
240 if (exponent >= kMaxExponent) { |
|
241 return kInfinity; |
|
242 } |
|
243 if (exponent < kDenormalExponent) { |
|
244 return 0; |
|
245 } |
|
246 while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { |
|
247 significand <<= 1; |
|
248 exponent--; |
|
249 } |
|
250 uint64_t biased_exponent; |
|
251 if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { |
|
252 biased_exponent = 0; |
|
253 } else { |
|
254 biased_exponent = static_cast<uint64_t>(exponent + kExponentBias); |
|
255 } |
|
256 return (significand & kSignificandMask) | |
|
257 (biased_exponent << kPhysicalSignificandSize); |
|
258 } |
|
259 }; |
|
260 |
|
261 class Single { |
|
262 public: |
|
263 static const uint32_t kSignMask = 0x80000000; |
|
264 static const uint32_t kExponentMask = 0x7F800000; |
|
265 static const uint32_t kSignificandMask = 0x007FFFFF; |
|
266 static const uint32_t kHiddenBit = 0x00800000; |
|
267 static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit. |
|
268 static const int kSignificandSize = 24; |
|
269 |
|
270 Single() : d32_(0) {} |
|
271 explicit Single(float f) : d32_(float_to_uint32(f)) {} |
|
272 explicit Single(uint32_t d32) : d32_(d32) {} |
|
273 |
|
274 // The value encoded by this Single must be greater or equal to +0.0. |
|
275 // It must not be special (infinity, or NaN). |
|
276 DiyFp AsDiyFp() const { |
|
277 ASSERT(Sign() > 0); |
|
278 ASSERT(!IsSpecial()); |
|
279 return DiyFp(Significand(), Exponent()); |
|
280 } |
|
281 |
|
282 // Returns the single's bit as uint64. |
|
283 uint32_t AsUint32() const { |
|
284 return d32_; |
|
285 } |
|
286 |
|
287 int Exponent() const { |
|
288 if (IsDenormal()) return kDenormalExponent; |
|
289 |
|
290 uint32_t d32 = AsUint32(); |
|
291 int biased_e = |
|
292 static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize); |
|
293 return biased_e - kExponentBias; |
|
294 } |
|
295 |
|
296 uint32_t Significand() const { |
|
297 uint32_t d32 = AsUint32(); |
|
298 uint32_t significand = d32 & kSignificandMask; |
|
299 if (!IsDenormal()) { |
|
300 return significand + kHiddenBit; |
|
301 } else { |
|
302 return significand; |
|
303 } |
|
304 } |
|
305 |
|
306 // Returns true if the single is a denormal. |
|
307 bool IsDenormal() const { |
|
308 uint32_t d32 = AsUint32(); |
|
309 return (d32 & kExponentMask) == 0; |
|
310 } |
|
311 |
|
312 // We consider denormals not to be special. |
|
313 // Hence only Infinity and NaN are special. |
|
314 bool IsSpecial() const { |
|
315 uint32_t d32 = AsUint32(); |
|
316 return (d32 & kExponentMask) == kExponentMask; |
|
317 } |
|
318 |
|
319 bool IsNan() const { |
|
320 uint32_t d32 = AsUint32(); |
|
321 return ((d32 & kExponentMask) == kExponentMask) && |
|
322 ((d32 & kSignificandMask) != 0); |
|
323 } |
|
324 |
|
325 bool IsInfinite() const { |
|
326 uint32_t d32 = AsUint32(); |
|
327 return ((d32 & kExponentMask) == kExponentMask) && |
|
328 ((d32 & kSignificandMask) == 0); |
|
329 } |
|
330 |
|
331 int Sign() const { |
|
332 uint32_t d32 = AsUint32(); |
|
333 return (d32 & kSignMask) == 0? 1: -1; |
|
334 } |
|
335 |
|
336 // Computes the two boundaries of this. |
|
337 // The bigger boundary (m_plus) is normalized. The lower boundary has the same |
|
338 // exponent as m_plus. |
|
339 // Precondition: the value encoded by this Single must be greater than 0. |
|
340 void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { |
|
341 ASSERT(value() > 0.0); |
|
342 DiyFp v = this->AsDiyFp(); |
|
343 DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); |
|
344 DiyFp m_minus; |
|
345 if (LowerBoundaryIsCloser()) { |
|
346 m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); |
|
347 } else { |
|
348 m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); |
|
349 } |
|
350 m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); |
|
351 m_minus.set_e(m_plus.e()); |
|
352 *out_m_plus = m_plus; |
|
353 *out_m_minus = m_minus; |
|
354 } |
|
355 |
|
356 // Precondition: the value encoded by this Single must be greater or equal |
|
357 // than +0.0. |
|
358 DiyFp UpperBoundary() const { |
|
359 ASSERT(Sign() > 0); |
|
360 return DiyFp(Significand() * 2 + 1, Exponent() - 1); |
|
361 } |
|
362 |
|
363 bool LowerBoundaryIsCloser() const { |
|
364 // The boundary is closer if the significand is of the form f == 2^p-1 then |
|
365 // the lower boundary is closer. |
|
366 // Think of v = 1000e10 and v- = 9999e9. |
|
367 // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but |
|
368 // at a distance of 1e8. |
|
369 // The only exception is for the smallest normal: the largest denormal is |
|
370 // at the same distance as its successor. |
|
371 // Note: denormals have the same exponent as the smallest normals. |
|
372 bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0); |
|
373 return physical_significand_is_zero && (Exponent() != kDenormalExponent); |
|
374 } |
|
375 |
|
376 float value() const { return uint32_to_float(d32_); } |
|
377 |
|
378 static float Infinity() { |
|
379 return Single(kInfinity).value(); |
|
380 } |
|
381 |
|
382 static float NaN() { |
|
383 return Single(kNaN).value(); |
|
384 } |
|
385 |
|
386 private: |
|
387 static const int kExponentBias = 0x7F + kPhysicalSignificandSize; |
|
388 static const int kDenormalExponent = -kExponentBias + 1; |
|
389 static const int kMaxExponent = 0xFF - kExponentBias; |
|
390 static const uint32_t kInfinity = 0x7F800000; |
|
391 static const uint32_t kNaN = 0x7FC00000; |
|
392 |
|
393 const uint32_t d32_; |
|
394 }; |
|
395 |
|
396 } // namespace double_conversion |
|
397 |
|
398 #endif // DOUBLE_CONVERSION_DOUBLE_H_ |