|
1 /* adler32.c -- compute the Adler-32 checksum of a data stream |
|
2 * Copyright (C) 1995-2011 Mark Adler |
|
3 * For conditions of distribution and use, see copyright notice in zlib.h |
|
4 */ |
|
5 |
|
6 /* @(#) $Id$ */ |
|
7 |
|
8 #include "zutil.h" |
|
9 |
|
10 #define local static |
|
11 |
|
12 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); |
|
13 |
|
14 #define BASE 65521 /* largest prime smaller than 65536 */ |
|
15 #define NMAX 5552 |
|
16 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ |
|
17 |
|
18 #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} |
|
19 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); |
|
20 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); |
|
21 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); |
|
22 #define DO16(buf) DO8(buf,0); DO8(buf,8); |
|
23 |
|
24 /* use NO_DIVIDE if your processor does not do division in hardware -- |
|
25 try it both ways to see which is faster */ |
|
26 #ifdef NO_DIVIDE |
|
27 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 |
|
28 (thank you to John Reiser for pointing this out) */ |
|
29 # define CHOP(a) \ |
|
30 do { \ |
|
31 unsigned long tmp = a >> 16; \ |
|
32 a &= 0xffffUL; \ |
|
33 a += (tmp << 4) - tmp; \ |
|
34 } while (0) |
|
35 # define MOD28(a) \ |
|
36 do { \ |
|
37 CHOP(a); \ |
|
38 if (a >= BASE) a -= BASE; \ |
|
39 } while (0) |
|
40 # define MOD(a) \ |
|
41 do { \ |
|
42 CHOP(a); \ |
|
43 MOD28(a); \ |
|
44 } while (0) |
|
45 # define MOD63(a) \ |
|
46 do { /* this assumes a is not negative */ \ |
|
47 z_off64_t tmp = a >> 32; \ |
|
48 a &= 0xffffffffL; \ |
|
49 a += (tmp << 8) - (tmp << 5) + tmp; \ |
|
50 tmp = a >> 16; \ |
|
51 a &= 0xffffL; \ |
|
52 a += (tmp << 4) - tmp; \ |
|
53 tmp = a >> 16; \ |
|
54 a &= 0xffffL; \ |
|
55 a += (tmp << 4) - tmp; \ |
|
56 if (a >= BASE) a -= BASE; \ |
|
57 } while (0) |
|
58 #else |
|
59 # define MOD(a) a %= BASE |
|
60 # define MOD28(a) a %= BASE |
|
61 # define MOD63(a) a %= BASE |
|
62 #endif |
|
63 |
|
64 /* ========================================================================= */ |
|
65 uLong ZEXPORT adler32(adler, buf, len) |
|
66 uLong adler; |
|
67 const Bytef *buf; |
|
68 uInt len; |
|
69 { |
|
70 unsigned long sum2; |
|
71 unsigned n; |
|
72 |
|
73 /* split Adler-32 into component sums */ |
|
74 sum2 = (adler >> 16) & 0xffff; |
|
75 adler &= 0xffff; |
|
76 |
|
77 /* in case user likes doing a byte at a time, keep it fast */ |
|
78 if (len == 1) { |
|
79 adler += buf[0]; |
|
80 if (adler >= BASE) |
|
81 adler -= BASE; |
|
82 sum2 += adler; |
|
83 if (sum2 >= BASE) |
|
84 sum2 -= BASE; |
|
85 return adler | (sum2 << 16); |
|
86 } |
|
87 |
|
88 /* initial Adler-32 value (deferred check for len == 1 speed) */ |
|
89 if (buf == Z_NULL) |
|
90 return 1L; |
|
91 |
|
92 /* in case short lengths are provided, keep it somewhat fast */ |
|
93 if (len < 16) { |
|
94 while (len--) { |
|
95 adler += *buf++; |
|
96 sum2 += adler; |
|
97 } |
|
98 if (adler >= BASE) |
|
99 adler -= BASE; |
|
100 MOD28(sum2); /* only added so many BASE's */ |
|
101 return adler | (sum2 << 16); |
|
102 } |
|
103 |
|
104 /* do length NMAX blocks -- requires just one modulo operation */ |
|
105 while (len >= NMAX) { |
|
106 len -= NMAX; |
|
107 n = NMAX / 16; /* NMAX is divisible by 16 */ |
|
108 do { |
|
109 DO16(buf); /* 16 sums unrolled */ |
|
110 buf += 16; |
|
111 } while (--n); |
|
112 MOD(adler); |
|
113 MOD(sum2); |
|
114 } |
|
115 |
|
116 /* do remaining bytes (less than NMAX, still just one modulo) */ |
|
117 if (len) { /* avoid modulos if none remaining */ |
|
118 while (len >= 16) { |
|
119 len -= 16; |
|
120 DO16(buf); |
|
121 buf += 16; |
|
122 } |
|
123 while (len--) { |
|
124 adler += *buf++; |
|
125 sum2 += adler; |
|
126 } |
|
127 MOD(adler); |
|
128 MOD(sum2); |
|
129 } |
|
130 |
|
131 /* return recombined sums */ |
|
132 return adler | (sum2 << 16); |
|
133 } |
|
134 |
|
135 /* ========================================================================= */ |
|
136 local uLong adler32_combine_(adler1, adler2, len2) |
|
137 uLong adler1; |
|
138 uLong adler2; |
|
139 z_off64_t len2; |
|
140 { |
|
141 unsigned long sum1; |
|
142 unsigned long sum2; |
|
143 unsigned rem; |
|
144 |
|
145 /* for negative len, return invalid adler32 as a clue for debugging */ |
|
146 if (len2 < 0) |
|
147 return 0xffffffffUL; |
|
148 |
|
149 /* the derivation of this formula is left as an exercise for the reader */ |
|
150 MOD63(len2); /* assumes len2 >= 0 */ |
|
151 rem = (unsigned)len2; |
|
152 sum1 = adler1 & 0xffff; |
|
153 sum2 = rem * sum1; |
|
154 MOD(sum2); |
|
155 sum1 += (adler2 & 0xffff) + BASE - 1; |
|
156 sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; |
|
157 if (sum1 >= BASE) sum1 -= BASE; |
|
158 if (sum1 >= BASE) sum1 -= BASE; |
|
159 if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); |
|
160 if (sum2 >= BASE) sum2 -= BASE; |
|
161 return sum1 | (sum2 << 16); |
|
162 } |
|
163 |
|
164 /* ========================================================================= */ |
|
165 uLong ZEXPORT adler32_combine(adler1, adler2, len2) |
|
166 uLong adler1; |
|
167 uLong adler2; |
|
168 z_off_t len2; |
|
169 { |
|
170 return adler32_combine_(adler1, adler2, len2); |
|
171 } |
|
172 |
|
173 uLong ZEXPORT adler32_combine64(adler1, adler2, len2) |
|
174 uLong adler1; |
|
175 uLong adler2; |
|
176 z_off64_t len2; |
|
177 { |
|
178 return adler32_combine_(adler1, adler2, len2); |
|
179 } |