|
1 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
2 * License, v. 2.0. If a copy of the MPL was not distributed with this file, |
|
3 * You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
4 |
|
5 #include <string> |
|
6 #include <cstring> |
|
7 #include <cstdlib> |
|
8 #include <cstdio> |
|
9 #include <dlfcn.h> |
|
10 #include <unistd.h> |
|
11 #include <algorithm> |
|
12 #include <fcntl.h> |
|
13 #include "ElfLoader.h" |
|
14 #include "CustomElf.h" |
|
15 #include "Mappable.h" |
|
16 #include "Logging.h" |
|
17 #include <inttypes.h> |
|
18 |
|
19 #if defined(ANDROID) |
|
20 #include <sys/syscall.h> |
|
21 |
|
22 #include <android/api-level.h> |
|
23 #if __ANDROID_API__ < 8 |
|
24 /* Android API < 8 doesn't provide sigaltstack */ |
|
25 |
|
26 extern "C" { |
|
27 |
|
28 inline int sigaltstack(const stack_t *ss, stack_t *oss) { |
|
29 return syscall(__NR_sigaltstack, ss, oss); |
|
30 } |
|
31 |
|
32 } /* extern "C" */ |
|
33 #endif /* __ANDROID_API__ */ |
|
34 #endif /* ANDROID */ |
|
35 |
|
36 #ifdef __ARM_EABI__ |
|
37 extern "C" const void * |
|
38 __gnu_Unwind_Find_exidx(void *pc, int *pcount) __attribute__((weak)); |
|
39 #endif |
|
40 |
|
41 using namespace mozilla; |
|
42 |
|
43 /** |
|
44 * dlfcn.h replacements functions |
|
45 */ |
|
46 |
|
47 void * |
|
48 __wrap_dlopen(const char *path, int flags) |
|
49 { |
|
50 RefPtr<LibHandle> handle = ElfLoader::Singleton.Load(path, flags); |
|
51 if (handle) |
|
52 handle->AddDirectRef(); |
|
53 return handle; |
|
54 } |
|
55 |
|
56 const char * |
|
57 __wrap_dlerror(void) |
|
58 { |
|
59 const char *error = ElfLoader::Singleton.lastError; |
|
60 ElfLoader::Singleton.lastError = nullptr; |
|
61 return error; |
|
62 } |
|
63 |
|
64 void * |
|
65 __wrap_dlsym(void *handle, const char *symbol) |
|
66 { |
|
67 if (!handle) { |
|
68 ElfLoader::Singleton.lastError = "dlsym(NULL, sym) unsupported"; |
|
69 return nullptr; |
|
70 } |
|
71 if (handle != RTLD_DEFAULT && handle != RTLD_NEXT) { |
|
72 LibHandle *h = reinterpret_cast<LibHandle *>(handle); |
|
73 return h->GetSymbolPtr(symbol); |
|
74 } |
|
75 return dlsym(handle, symbol); |
|
76 } |
|
77 |
|
78 int |
|
79 __wrap_dlclose(void *handle) |
|
80 { |
|
81 if (!handle) { |
|
82 ElfLoader::Singleton.lastError = "No handle given to dlclose()"; |
|
83 return -1; |
|
84 } |
|
85 reinterpret_cast<LibHandle *>(handle)->ReleaseDirectRef(); |
|
86 return 0; |
|
87 } |
|
88 |
|
89 int |
|
90 __wrap_dladdr(void *addr, Dl_info *info) |
|
91 { |
|
92 RefPtr<LibHandle> handle = ElfLoader::Singleton.GetHandleByPtr(addr); |
|
93 if (!handle) |
|
94 return 0; |
|
95 info->dli_fname = handle->GetPath(); |
|
96 return 1; |
|
97 } |
|
98 |
|
99 int |
|
100 __wrap_dl_iterate_phdr(dl_phdr_cb callback, void *data) |
|
101 { |
|
102 if (!ElfLoader::Singleton.dbg) |
|
103 return -1; |
|
104 |
|
105 for (ElfLoader::DebuggerHelper::iterator it = ElfLoader::Singleton.dbg.begin(); |
|
106 it < ElfLoader::Singleton.dbg.end(); ++it) { |
|
107 dl_phdr_info info; |
|
108 info.dlpi_addr = reinterpret_cast<Elf::Addr>(it->l_addr); |
|
109 info.dlpi_name = it->l_name; |
|
110 info.dlpi_phdr = nullptr; |
|
111 info.dlpi_phnum = 0; |
|
112 |
|
113 // Assuming l_addr points to Elf headers (in most cases, this is true), |
|
114 // get the Phdr location from there. |
|
115 uint8_t mapped; |
|
116 // If the page is not mapped, mincore returns an error. |
|
117 if (!mincore(const_cast<void*>(it->l_addr), PageSize(), &mapped)) { |
|
118 const Elf::Ehdr *ehdr = Elf::Ehdr::validate(it->l_addr); |
|
119 if (ehdr) { |
|
120 info.dlpi_phdr = reinterpret_cast<const Elf::Phdr *>( |
|
121 reinterpret_cast<const char *>(ehdr) + ehdr->e_phoff); |
|
122 info.dlpi_phnum = ehdr->e_phnum; |
|
123 } |
|
124 } |
|
125 |
|
126 int ret = callback(&info, sizeof(dl_phdr_info), data); |
|
127 if (ret) |
|
128 return ret; |
|
129 } |
|
130 return 0; |
|
131 } |
|
132 |
|
133 #ifdef __ARM_EABI__ |
|
134 const void * |
|
135 __wrap___gnu_Unwind_Find_exidx(void *pc, int *pcount) |
|
136 { |
|
137 RefPtr<LibHandle> handle = ElfLoader::Singleton.GetHandleByPtr(pc); |
|
138 if (handle) |
|
139 return handle->FindExidx(pcount); |
|
140 if (__gnu_Unwind_Find_exidx) |
|
141 return __gnu_Unwind_Find_exidx(pc, pcount); |
|
142 *pcount = 0; |
|
143 return nullptr; |
|
144 } |
|
145 #endif |
|
146 |
|
147 /** |
|
148 * faulty.lib public API |
|
149 */ |
|
150 |
|
151 MFBT_API size_t |
|
152 __dl_get_mappable_length(void *handle) { |
|
153 if (!handle) |
|
154 return 0; |
|
155 return reinterpret_cast<LibHandle *>(handle)->GetMappableLength(); |
|
156 } |
|
157 |
|
158 MFBT_API void * |
|
159 __dl_mmap(void *handle, void *addr, size_t length, off_t offset) |
|
160 { |
|
161 if (!handle) |
|
162 return nullptr; |
|
163 return reinterpret_cast<LibHandle *>(handle)->MappableMMap(addr, length, |
|
164 offset); |
|
165 } |
|
166 |
|
167 MFBT_API void |
|
168 __dl_munmap(void *handle, void *addr, size_t length) |
|
169 { |
|
170 if (!handle) |
|
171 return; |
|
172 return reinterpret_cast<LibHandle *>(handle)->MappableMUnmap(addr, length); |
|
173 } |
|
174 |
|
175 MFBT_API bool |
|
176 IsSignalHandlingBroken() |
|
177 { |
|
178 return ElfLoader::Singleton.isSignalHandlingBroken(); |
|
179 } |
|
180 |
|
181 namespace { |
|
182 |
|
183 /** |
|
184 * Returns the part after the last '/' for the given path |
|
185 */ |
|
186 const char * |
|
187 LeafName(const char *path) |
|
188 { |
|
189 const char *lastSlash = strrchr(path, '/'); |
|
190 if (lastSlash) |
|
191 return lastSlash + 1; |
|
192 return path; |
|
193 } |
|
194 |
|
195 } /* Anonymous namespace */ |
|
196 |
|
197 /** |
|
198 * LibHandle |
|
199 */ |
|
200 LibHandle::~LibHandle() |
|
201 { |
|
202 free(path); |
|
203 } |
|
204 |
|
205 const char * |
|
206 LibHandle::GetName() const |
|
207 { |
|
208 return path ? LeafName(path) : nullptr; |
|
209 } |
|
210 |
|
211 size_t |
|
212 LibHandle::GetMappableLength() const |
|
213 { |
|
214 if (!mappable) |
|
215 mappable = GetMappable(); |
|
216 if (!mappable) |
|
217 return 0; |
|
218 return mappable->GetLength(); |
|
219 } |
|
220 |
|
221 void * |
|
222 LibHandle::MappableMMap(void *addr, size_t length, off_t offset) const |
|
223 { |
|
224 if (!mappable) |
|
225 mappable = GetMappable(); |
|
226 if (!mappable) |
|
227 return MAP_FAILED; |
|
228 void* mapped = mappable->mmap(addr, length, PROT_READ, MAP_PRIVATE, offset); |
|
229 if (mapped != MAP_FAILED) { |
|
230 /* Ensure the availability of all pages within the mapping */ |
|
231 for (size_t off = 0; off < length; off += PageSize()) { |
|
232 mappable->ensure(reinterpret_cast<char *>(mapped) + off); |
|
233 } |
|
234 } |
|
235 return mapped; |
|
236 } |
|
237 |
|
238 void |
|
239 LibHandle::MappableMUnmap(void *addr, size_t length) const |
|
240 { |
|
241 if (mappable) |
|
242 mappable->munmap(addr, length); |
|
243 } |
|
244 |
|
245 /** |
|
246 * SystemElf |
|
247 */ |
|
248 TemporaryRef<LibHandle> |
|
249 SystemElf::Load(const char *path, int flags) |
|
250 { |
|
251 /* The Android linker returns a handle when the file name matches an |
|
252 * already loaded library, even when the full path doesn't exist */ |
|
253 if (path && path[0] == '/' && (access(path, F_OK) == -1)){ |
|
254 DEBUG_LOG("dlopen(\"%s\", 0x%x) = %p", path, flags, (void *)nullptr); |
|
255 return nullptr; |
|
256 } |
|
257 |
|
258 void *handle = dlopen(path, flags); |
|
259 DEBUG_LOG("dlopen(\"%s\", 0x%x) = %p", path, flags, handle); |
|
260 ElfLoader::Singleton.lastError = dlerror(); |
|
261 if (handle) { |
|
262 SystemElf *elf = new SystemElf(path, handle); |
|
263 ElfLoader::Singleton.Register(elf); |
|
264 return elf; |
|
265 } |
|
266 return nullptr; |
|
267 } |
|
268 |
|
269 SystemElf::~SystemElf() |
|
270 { |
|
271 if (!dlhandle) |
|
272 return; |
|
273 DEBUG_LOG("dlclose(%p [\"%s\"])", dlhandle, GetPath()); |
|
274 dlclose(dlhandle); |
|
275 ElfLoader::Singleton.lastError = dlerror(); |
|
276 ElfLoader::Singleton.Forget(this); |
|
277 } |
|
278 |
|
279 void * |
|
280 SystemElf::GetSymbolPtr(const char *symbol) const |
|
281 { |
|
282 void *sym = dlsym(dlhandle, symbol); |
|
283 DEBUG_LOG("dlsym(%p [\"%s\"], \"%s\") = %p", dlhandle, GetPath(), symbol, sym); |
|
284 ElfLoader::Singleton.lastError = dlerror(); |
|
285 return sym; |
|
286 } |
|
287 |
|
288 Mappable * |
|
289 SystemElf::GetMappable() const |
|
290 { |
|
291 const char *path = GetPath(); |
|
292 if (!path) |
|
293 return nullptr; |
|
294 #ifdef ANDROID |
|
295 /* On Android, if we don't have the full path, try in /system/lib */ |
|
296 const char *name = LeafName(path); |
|
297 std::string systemPath; |
|
298 if (name == path) { |
|
299 systemPath = "/system/lib/"; |
|
300 systemPath += path; |
|
301 path = systemPath.c_str(); |
|
302 } |
|
303 #endif |
|
304 |
|
305 return MappableFile::Create(path); |
|
306 } |
|
307 |
|
308 #ifdef __ARM_EABI__ |
|
309 const void * |
|
310 SystemElf::FindExidx(int *pcount) const |
|
311 { |
|
312 /* TODO: properly implement when ElfLoader::GetHandleByPtr |
|
313 does return SystemElf handles */ |
|
314 *pcount = 0; |
|
315 return nullptr; |
|
316 } |
|
317 #endif |
|
318 |
|
319 /** |
|
320 * ElfLoader |
|
321 */ |
|
322 |
|
323 /* Unique ElfLoader instance */ |
|
324 ElfLoader ElfLoader::Singleton; |
|
325 |
|
326 TemporaryRef<LibHandle> |
|
327 ElfLoader::Load(const char *path, int flags, LibHandle *parent) |
|
328 { |
|
329 /* Ensure logging is initialized or refresh if environment changed. */ |
|
330 Logging::Init(); |
|
331 |
|
332 RefPtr<LibHandle> handle; |
|
333 |
|
334 /* Handle dlopen(nullptr) directly. */ |
|
335 if (!path) { |
|
336 handle = SystemElf::Load(nullptr, flags); |
|
337 return handle; |
|
338 } |
|
339 |
|
340 /* TODO: Handle relative paths correctly */ |
|
341 const char *name = LeafName(path); |
|
342 |
|
343 /* Search the list of handles we already have for a match. When the given |
|
344 * path is not absolute, compare file names, otherwise compare full paths. */ |
|
345 if (name == path) { |
|
346 for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it) |
|
347 if ((*it)->GetName() && (strcmp((*it)->GetName(), name) == 0)) |
|
348 return *it; |
|
349 } else { |
|
350 for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it) |
|
351 if ((*it)->GetPath() && (strcmp((*it)->GetPath(), path) == 0)) |
|
352 return *it; |
|
353 } |
|
354 |
|
355 char *abs_path = nullptr; |
|
356 const char *requested_path = path; |
|
357 |
|
358 /* When the path is not absolute and the library is being loaded for |
|
359 * another, first try to load the library from the directory containing |
|
360 * that parent library. */ |
|
361 if ((name == path) && parent) { |
|
362 const char *parentPath = parent->GetPath(); |
|
363 abs_path = new char[strlen(parentPath) + strlen(path)]; |
|
364 strcpy(abs_path, parentPath); |
|
365 char *slash = strrchr(abs_path, '/'); |
|
366 strcpy(slash + 1, path); |
|
367 path = abs_path; |
|
368 } |
|
369 |
|
370 Mappable *mappable = GetMappableFromPath(path); |
|
371 |
|
372 /* Try loading with the custom linker if we have a Mappable */ |
|
373 if (mappable) |
|
374 handle = CustomElf::Load(mappable, path, flags); |
|
375 |
|
376 /* Try loading with the system linker if everything above failed */ |
|
377 if (!handle) |
|
378 handle = SystemElf::Load(path, flags); |
|
379 |
|
380 /* If we didn't have an absolute path and haven't been able to load |
|
381 * a library yet, try in the system search path */ |
|
382 if (!handle && abs_path) |
|
383 handle = SystemElf::Load(name, flags); |
|
384 |
|
385 delete [] abs_path; |
|
386 DEBUG_LOG("ElfLoader::Load(\"%s\", 0x%x, %p [\"%s\"]) = %p", requested_path, flags, |
|
387 reinterpret_cast<void *>(parent), parent ? parent->GetPath() : "", |
|
388 static_cast<void *>(handle)); |
|
389 |
|
390 return handle; |
|
391 } |
|
392 |
|
393 mozilla::TemporaryRef<LibHandle> |
|
394 ElfLoader::GetHandleByPtr(void *addr) |
|
395 { |
|
396 /* Scan the list of handles we already have for a match */ |
|
397 for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it) { |
|
398 if ((*it)->Contains(addr)) |
|
399 return *it; |
|
400 } |
|
401 return nullptr; |
|
402 } |
|
403 |
|
404 Mappable * |
|
405 ElfLoader::GetMappableFromPath(const char *path) |
|
406 { |
|
407 const char *name = LeafName(path); |
|
408 Mappable *mappable = nullptr; |
|
409 RefPtr<Zip> zip; |
|
410 const char *subpath; |
|
411 if ((subpath = strchr(path, '!'))) { |
|
412 char *zip_path = strndup(path, subpath - path); |
|
413 while (*(++subpath) == '/') { } |
|
414 zip = ZipCollection::GetZip(zip_path); |
|
415 Zip::Stream s; |
|
416 if (zip && zip->GetStream(subpath, &s)) { |
|
417 /* When the MOZ_LINKER_EXTRACT environment variable is set to "1", |
|
418 * compressed libraries are going to be (temporarily) extracted as |
|
419 * files, in the directory pointed by the MOZ_LINKER_CACHE |
|
420 * environment variable. */ |
|
421 const char *extract = getenv("MOZ_LINKER_EXTRACT"); |
|
422 if (extract && !strncmp(extract, "1", 2 /* Including '\0' */)) |
|
423 mappable = MappableExtractFile::Create(name, zip, &s); |
|
424 if (!mappable) { |
|
425 if (s.GetType() == Zip::Stream::DEFLATE) { |
|
426 mappable = MappableDeflate::Create(name, zip, &s); |
|
427 } else if (s.GetType() == Zip::Stream::STORE) { |
|
428 mappable = MappableSeekableZStream::Create(name, zip, &s); |
|
429 } |
|
430 } |
|
431 } |
|
432 } |
|
433 /* If we couldn't load above, try with a MappableFile */ |
|
434 if (!mappable && !zip) |
|
435 mappable = MappableFile::Create(path); |
|
436 |
|
437 return mappable; |
|
438 } |
|
439 |
|
440 void |
|
441 ElfLoader::Register(LibHandle *handle) |
|
442 { |
|
443 handles.push_back(handle); |
|
444 if (dbg && !handle->IsSystemElf()) |
|
445 dbg.Add(static_cast<CustomElf *>(handle)); |
|
446 } |
|
447 |
|
448 void |
|
449 ElfLoader::Forget(LibHandle *handle) |
|
450 { |
|
451 /* Ensure logging is initialized or refresh if environment changed. */ |
|
452 Logging::Init(); |
|
453 |
|
454 LibHandleList::iterator it = std::find(handles.begin(), handles.end(), handle); |
|
455 if (it != handles.end()) { |
|
456 DEBUG_LOG("ElfLoader::Forget(%p [\"%s\"])", reinterpret_cast<void *>(handle), |
|
457 handle->GetPath()); |
|
458 if (dbg && !handle->IsSystemElf()) |
|
459 dbg.Remove(static_cast<CustomElf *>(handle)); |
|
460 handles.erase(it); |
|
461 } else { |
|
462 DEBUG_LOG("ElfLoader::Forget(%p [\"%s\"]): Handle not found", |
|
463 reinterpret_cast<void *>(handle), handle->GetPath()); |
|
464 } |
|
465 } |
|
466 |
|
467 ElfLoader::~ElfLoader() |
|
468 { |
|
469 LibHandleList list; |
|
470 /* Build up a list of all library handles with direct (external) references. |
|
471 * We actually skip system library handles because we want to keep at least |
|
472 * some of these open. Most notably, Mozilla codebase keeps a few libgnome |
|
473 * libraries deliberately open because of the mess that libORBit destruction |
|
474 * is. dlclose()ing these libraries actually leads to problems. */ |
|
475 for (LibHandleList::reverse_iterator it = handles.rbegin(); |
|
476 it < handles.rend(); ++it) { |
|
477 if ((*it)->DirectRefCount()) { |
|
478 if ((*it)->IsSystemElf()) { |
|
479 static_cast<SystemElf *>(*it)->Forget(); |
|
480 } else { |
|
481 list.push_back(*it); |
|
482 } |
|
483 } |
|
484 } |
|
485 /* Force release all external references to the handles collected above */ |
|
486 for (LibHandleList::iterator it = list.begin(); it < list.end(); ++it) { |
|
487 while ((*it)->ReleaseDirectRef()) { } |
|
488 } |
|
489 /* Remove the remaining system handles. */ |
|
490 if (handles.size()) { |
|
491 list = handles; |
|
492 for (LibHandleList::reverse_iterator it = list.rbegin(); |
|
493 it < list.rend(); ++it) { |
|
494 if ((*it)->IsSystemElf()) { |
|
495 DEBUG_LOG("ElfLoader::~ElfLoader(): Remaining handle for \"%s\" " |
|
496 "[%d direct refs, %d refs total]", (*it)->GetPath(), |
|
497 (*it)->DirectRefCount(), (*it)->refCount()); |
|
498 } else { |
|
499 DEBUG_LOG("ElfLoader::~ElfLoader(): Unexpected remaining handle for \"%s\" " |
|
500 "[%d direct refs, %d refs total]", (*it)->GetPath(), |
|
501 (*it)->DirectRefCount(), (*it)->refCount()); |
|
502 /* Not removing, since it could have references to other libraries, |
|
503 * destroying them as a side effect, and possibly leaving dangling |
|
504 * pointers in the handle list we're scanning */ |
|
505 } |
|
506 } |
|
507 } |
|
508 } |
|
509 |
|
510 void |
|
511 ElfLoader::stats(const char *when) |
|
512 { |
|
513 for (LibHandleList::iterator it = Singleton.handles.begin(); |
|
514 it < Singleton.handles.end(); ++it) |
|
515 if (!(*it)->IsSystemElf()) |
|
516 static_cast<CustomElf *>(*it)->stats(when); |
|
517 } |
|
518 |
|
519 #ifdef __ARM_EABI__ |
|
520 int |
|
521 ElfLoader::__wrap_aeabi_atexit(void *that, ElfLoader::Destructor destructor, |
|
522 void *dso_handle) |
|
523 { |
|
524 Singleton.destructors.push_back( |
|
525 DestructorCaller(destructor, that, dso_handle)); |
|
526 return 0; |
|
527 } |
|
528 #else |
|
529 int |
|
530 ElfLoader::__wrap_cxa_atexit(ElfLoader::Destructor destructor, void *that, |
|
531 void *dso_handle) |
|
532 { |
|
533 Singleton.destructors.push_back( |
|
534 DestructorCaller(destructor, that, dso_handle)); |
|
535 return 0; |
|
536 } |
|
537 #endif |
|
538 |
|
539 void |
|
540 ElfLoader::__wrap_cxa_finalize(void *dso_handle) |
|
541 { |
|
542 /* Call all destructors for the given DSO handle in reverse order they were |
|
543 * registered. */ |
|
544 std::vector<DestructorCaller>::reverse_iterator it; |
|
545 for (it = Singleton.destructors.rbegin(); |
|
546 it < Singleton.destructors.rend(); ++it) { |
|
547 if (it->IsForHandle(dso_handle)) { |
|
548 it->Call(); |
|
549 } |
|
550 } |
|
551 } |
|
552 |
|
553 void |
|
554 ElfLoader::DestructorCaller::Call() |
|
555 { |
|
556 if (destructor) { |
|
557 DEBUG_LOG("ElfLoader::DestructorCaller::Call(%p, %p, %p)", |
|
558 FunctionPtr(destructor), object, dso_handle); |
|
559 destructor(object); |
|
560 destructor = nullptr; |
|
561 } |
|
562 } |
|
563 |
|
564 ElfLoader::DebuggerHelper::DebuggerHelper(): dbg(nullptr) |
|
565 { |
|
566 /* Find ELF auxiliary vectors. |
|
567 * |
|
568 * The kernel stores the following data on the stack when starting a |
|
569 * program: |
|
570 * argc |
|
571 * argv[0] (pointer into argv strings defined below) |
|
572 * argv[1] (likewise) |
|
573 * ... |
|
574 * argv[argc - 1] (likewise) |
|
575 * nullptr |
|
576 * envp[0] (pointer into environment strings defined below) |
|
577 * envp[1] (likewise) |
|
578 * ... |
|
579 * envp[n] (likewise) |
|
580 * nullptr |
|
581 * ... (more NULLs on some platforms such as Android 4.3) |
|
582 * auxv[0] (first ELF auxiliary vector) |
|
583 * auxv[1] (second ELF auxiliary vector) |
|
584 * ... |
|
585 * auxv[p] (last ELF auxiliary vector) |
|
586 * (AT_NULL, nullptr) |
|
587 * padding |
|
588 * argv strings, separated with '\0' |
|
589 * environment strings, separated with '\0' |
|
590 * nullptr |
|
591 * |
|
592 * What we are after are the auxv values defined by the following struct. |
|
593 */ |
|
594 struct AuxVector { |
|
595 Elf::Addr type; |
|
596 Elf::Addr value; |
|
597 }; |
|
598 |
|
599 /* Pointer to the environment variables list */ |
|
600 extern char **environ; |
|
601 |
|
602 /* The environment may have changed since the program started, in which |
|
603 * case the environ variables list isn't the list the kernel put on stack |
|
604 * anymore. But in this new list, variables that didn't change still point |
|
605 * to the strings the kernel put on stack. It is quite unlikely that two |
|
606 * modified environment variables point to two consecutive strings in memory, |
|
607 * so we assume that if two consecutive environment variables point to two |
|
608 * consecutive strings, we found strings the kernel put on stack. */ |
|
609 char **env; |
|
610 for (env = environ; *env; env++) |
|
611 if (*env + strlen(*env) + 1 == env[1]) |
|
612 break; |
|
613 if (!*env) |
|
614 return; |
|
615 |
|
616 /* Next, we scan the stack backwards to find a pointer to one of those |
|
617 * strings we found above, which will give us the location of the original |
|
618 * envp list. As we are looking for pointers, we need to look at 32-bits or |
|
619 * 64-bits aligned values, depening on the architecture. */ |
|
620 char **scan = reinterpret_cast<char **>( |
|
621 reinterpret_cast<uintptr_t>(*env) & ~(sizeof(void *) - 1)); |
|
622 while (*env != *scan) |
|
623 scan--; |
|
624 |
|
625 /* Finally, scan forward to find the last environment variable pointer and |
|
626 * thus the first auxiliary vector. */ |
|
627 while (*scan++); |
|
628 |
|
629 /* Some platforms have more NULLs here, so skip them if we encounter them */ |
|
630 while (!*scan) |
|
631 scan++; |
|
632 |
|
633 AuxVector *auxv = reinterpret_cast<AuxVector *>(scan); |
|
634 |
|
635 /* The two values of interest in the auxiliary vectors are AT_PHDR and |
|
636 * AT_PHNUM, which gives us the the location and size of the ELF program |
|
637 * headers. */ |
|
638 Array<Elf::Phdr> phdrs; |
|
639 char *base = nullptr; |
|
640 while (auxv->type) { |
|
641 if (auxv->type == AT_PHDR) { |
|
642 phdrs.Init(reinterpret_cast<Elf::Phdr*>(auxv->value)); |
|
643 /* Assume the base address is the first byte of the same page */ |
|
644 base = reinterpret_cast<char *>(PageAlignedPtr(auxv->value)); |
|
645 } |
|
646 if (auxv->type == AT_PHNUM) |
|
647 phdrs.Init(auxv->value); |
|
648 auxv++; |
|
649 } |
|
650 |
|
651 if (!phdrs) { |
|
652 DEBUG_LOG("Couldn't find program headers"); |
|
653 return; |
|
654 } |
|
655 |
|
656 /* In some cases, the address for the program headers we get from the |
|
657 * auxiliary vectors is not mapped, because of the PT_LOAD segments |
|
658 * definitions in the program executable. Trying to map anonymous memory |
|
659 * with a hint giving the base address will return a different address |
|
660 * if something is mapped there, and the base address otherwise. */ |
|
661 MappedPtr mem(MemoryRange::mmap(base, PageSize(), PROT_NONE, |
|
662 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)); |
|
663 if (mem == base) { |
|
664 /* If program headers aren't mapped, try to map them */ |
|
665 int fd = open("/proc/self/exe", O_RDONLY); |
|
666 if (fd == -1) { |
|
667 DEBUG_LOG("Failed to open /proc/self/exe"); |
|
668 return; |
|
669 } |
|
670 mem.Assign(MemoryRange::mmap(base, PageSize(), PROT_READ, MAP_PRIVATE, |
|
671 fd, 0)); |
|
672 /* If we don't manage to map at the right address, just give up. */ |
|
673 if (mem != base) { |
|
674 DEBUG_LOG("Couldn't read program headers"); |
|
675 return; |
|
676 } |
|
677 } |
|
678 /* Sanity check: the first bytes at the base address should be an ELF |
|
679 * header. */ |
|
680 if (!Elf::Ehdr::validate(base)) { |
|
681 DEBUG_LOG("Couldn't find program base"); |
|
682 return; |
|
683 } |
|
684 |
|
685 /* Search for the program PT_DYNAMIC segment */ |
|
686 Array<Elf::Dyn> dyns; |
|
687 for (Array<Elf::Phdr>::iterator phdr = phdrs.begin(); phdr < phdrs.end(); |
|
688 ++phdr) { |
|
689 /* While the program headers are expected within the first mapped page of |
|
690 * the program executable, the executable PT_LOADs may actually make them |
|
691 * loaded at an address that is not the wanted base address of the |
|
692 * library. We thus need to adjust the base address, compensating for the |
|
693 * virtual address of the PT_LOAD segment corresponding to offset 0. */ |
|
694 if (phdr->p_type == PT_LOAD && phdr->p_offset == 0) |
|
695 base -= phdr->p_vaddr; |
|
696 if (phdr->p_type == PT_DYNAMIC) |
|
697 dyns.Init(base + phdr->p_vaddr, phdr->p_filesz); |
|
698 } |
|
699 if (!dyns) { |
|
700 DEBUG_LOG("Failed to find PT_DYNAMIC section in program"); |
|
701 return; |
|
702 } |
|
703 |
|
704 /* Search for the DT_DEBUG information */ |
|
705 for (Array<Elf::Dyn>::iterator dyn = dyns.begin(); dyn < dyns.end(); ++dyn) { |
|
706 if (dyn->d_tag == DT_DEBUG) { |
|
707 dbg = reinterpret_cast<r_debug *>(dyn->d_un.d_ptr); |
|
708 break; |
|
709 } |
|
710 } |
|
711 DEBUG_LOG("DT_DEBUG points at %p", static_cast<void *>(dbg)); |
|
712 } |
|
713 |
|
714 /** |
|
715 * Helper class to ensure the given pointer is writable within the scope of |
|
716 * an instance. Permissions to the memory page where the pointer lies are |
|
717 * restored to their original value when the instance is destroyed. |
|
718 */ |
|
719 class EnsureWritable |
|
720 { |
|
721 public: |
|
722 template <typename T> |
|
723 EnsureWritable(T *ptr, size_t length_ = sizeof(T)) |
|
724 { |
|
725 MOZ_ASSERT(length_ < PageSize()); |
|
726 prot = -1; |
|
727 page = MAP_FAILED; |
|
728 |
|
729 char *firstPage = PageAlignedPtr(reinterpret_cast<char *>(ptr)); |
|
730 char *lastPageEnd = PageAlignedEndPtr(reinterpret_cast<char *>(ptr) + length_); |
|
731 length = lastPageEnd - firstPage; |
|
732 uintptr_t start = reinterpret_cast<uintptr_t>(firstPage); |
|
733 uintptr_t end; |
|
734 |
|
735 prot = getProt(start, &end); |
|
736 if (prot == -1 || (start + length) > end) |
|
737 MOZ_CRASH(); |
|
738 |
|
739 if (prot & PROT_WRITE) |
|
740 return; |
|
741 |
|
742 page = firstPage; |
|
743 mprotect(page, length, prot | PROT_WRITE); |
|
744 } |
|
745 |
|
746 ~EnsureWritable() |
|
747 { |
|
748 if (page != MAP_FAILED) { |
|
749 mprotect(page, length, prot); |
|
750 } |
|
751 } |
|
752 |
|
753 private: |
|
754 int getProt(uintptr_t addr, uintptr_t *end) |
|
755 { |
|
756 /* The interesting part of the /proc/self/maps format looks like: |
|
757 * startAddr-endAddr rwxp */ |
|
758 int result = 0; |
|
759 AutoCloseFILE f(fopen("/proc/self/maps", "r")); |
|
760 while (f) { |
|
761 unsigned long long startAddr, endAddr; |
|
762 char perms[5]; |
|
763 if (fscanf(f, "%llx-%llx %4s %*1024[^\n] ", &startAddr, &endAddr, perms) != 3) |
|
764 return -1; |
|
765 if (addr < startAddr || addr >= endAddr) |
|
766 continue; |
|
767 if (perms[0] == 'r') |
|
768 result |= PROT_READ; |
|
769 else if (perms[0] != '-') |
|
770 return -1; |
|
771 if (perms[1] == 'w') |
|
772 result |= PROT_WRITE; |
|
773 else if (perms[1] != '-') |
|
774 return -1; |
|
775 if (perms[2] == 'x') |
|
776 result |= PROT_EXEC; |
|
777 else if (perms[2] != '-') |
|
778 return -1; |
|
779 *end = endAddr; |
|
780 return result; |
|
781 } |
|
782 return -1; |
|
783 } |
|
784 |
|
785 int prot; |
|
786 void *page; |
|
787 size_t length; |
|
788 }; |
|
789 |
|
790 /** |
|
791 * The system linker maintains a doubly linked list of library it loads |
|
792 * for use by the debugger. Unfortunately, it also uses the list pointers |
|
793 * in a lot of operations and adding our data in the list is likely to |
|
794 * trigger crashes when the linker tries to use data we don't provide or |
|
795 * that fall off the amount data we allocated. Fortunately, the linker only |
|
796 * traverses the list forward and accesses the head of the list from a |
|
797 * private pointer instead of using the value in the r_debug structure. |
|
798 * This means we can safely add members at the beginning of the list. |
|
799 * Unfortunately, gdb checks the coherency of l_prev values, so we have |
|
800 * to adjust the l_prev value for the first element the system linker |
|
801 * knows about. Fortunately, it doesn't use l_prev, and the first element |
|
802 * is not ever going to be released before our elements, since it is the |
|
803 * program executable, so the system linker should not be changing |
|
804 * r_debug::r_map. |
|
805 */ |
|
806 void |
|
807 ElfLoader::DebuggerHelper::Add(ElfLoader::link_map *map) |
|
808 { |
|
809 if (!dbg->r_brk) |
|
810 return; |
|
811 dbg->r_state = r_debug::RT_ADD; |
|
812 dbg->r_brk(); |
|
813 map->l_prev = nullptr; |
|
814 map->l_next = dbg->r_map; |
|
815 if (!firstAdded) { |
|
816 firstAdded = map; |
|
817 /* When adding a library for the first time, r_map points to data |
|
818 * handled by the system linker, and that data may be read-only */ |
|
819 EnsureWritable w(&dbg->r_map->l_prev); |
|
820 dbg->r_map->l_prev = map; |
|
821 } else |
|
822 dbg->r_map->l_prev = map; |
|
823 dbg->r_map = map; |
|
824 dbg->r_state = r_debug::RT_CONSISTENT; |
|
825 dbg->r_brk(); |
|
826 } |
|
827 |
|
828 void |
|
829 ElfLoader::DebuggerHelper::Remove(ElfLoader::link_map *map) |
|
830 { |
|
831 if (!dbg->r_brk) |
|
832 return; |
|
833 dbg->r_state = r_debug::RT_DELETE; |
|
834 dbg->r_brk(); |
|
835 if (dbg->r_map == map) |
|
836 dbg->r_map = map->l_next; |
|
837 else |
|
838 map->l_prev->l_next = map->l_next; |
|
839 if (map == firstAdded) { |
|
840 firstAdded = map->l_prev; |
|
841 /* When removing the first added library, its l_next is going to be |
|
842 * data handled by the system linker, and that data may be read-only */ |
|
843 EnsureWritable w(&map->l_next->l_prev); |
|
844 map->l_next->l_prev = map->l_prev; |
|
845 } else |
|
846 map->l_next->l_prev = map->l_prev; |
|
847 dbg->r_state = r_debug::RT_CONSISTENT; |
|
848 dbg->r_brk(); |
|
849 } |
|
850 |
|
851 #if defined(ANDROID) |
|
852 /* As some system libraries may be calling signal() or sigaction() to |
|
853 * set a SIGSEGV handler, effectively breaking MappableSeekableZStream, |
|
854 * or worse, restore our SIGSEGV handler with wrong flags (which using |
|
855 * signal() will do), we want to hook into the system's sigaction() to |
|
856 * replace it with our own wrapper instead, so that our handler is never |
|
857 * replaced. We used to only do that with libraries this linker loads, |
|
858 * but it turns out at least one system library does call signal() and |
|
859 * breaks us (libsc-a3xx.so on the Samsung Galaxy S4). |
|
860 * As libc's signal (bsd_signal/sysv_signal, really) calls sigaction |
|
861 * under the hood, instead of calling the signal system call directly, |
|
862 * we only need to hook sigaction. This is true for both bionic and |
|
863 * glibc. |
|
864 */ |
|
865 |
|
866 /* libc's sigaction */ |
|
867 extern "C" int |
|
868 sigaction(int signum, const struct sigaction *act, |
|
869 struct sigaction *oldact); |
|
870 |
|
871 /* Simple reimplementation of sigaction. This is roughly equivalent |
|
872 * to the assembly that comes in bionic, but not quite equivalent to |
|
873 * glibc's implementation, so we only use this on Android. */ |
|
874 int |
|
875 sys_sigaction(int signum, const struct sigaction *act, |
|
876 struct sigaction *oldact) |
|
877 { |
|
878 return syscall(__NR_sigaction, signum, act, oldact); |
|
879 } |
|
880 |
|
881 /* Replace the first instructions of the given function with a jump |
|
882 * to the given new function. */ |
|
883 template <typename T> |
|
884 static bool |
|
885 Divert(T func, T new_func) |
|
886 { |
|
887 void *ptr = FunctionPtr(func); |
|
888 uintptr_t addr = reinterpret_cast<uintptr_t>(ptr); |
|
889 |
|
890 #if defined(__i386__) |
|
891 // A 32-bit jump is a 5 bytes instruction. |
|
892 EnsureWritable w(ptr, 5); |
|
893 *reinterpret_cast<unsigned char *>(addr) = 0xe9; // jmp |
|
894 *reinterpret_cast<intptr_t *>(addr + 1) = |
|
895 reinterpret_cast<uintptr_t>(new_func) - addr - 5; // target displacement |
|
896 return true; |
|
897 #elif defined(__arm__) |
|
898 const unsigned char trampoline[] = { |
|
899 // .thumb |
|
900 0x46, 0x04, // nop |
|
901 0x78, 0x47, // bx pc |
|
902 0x46, 0x04, // nop |
|
903 // .arm |
|
904 0x04, 0xf0, 0x1f, 0xe5, // ldr pc, [pc, #-4] |
|
905 // .word <new_func> |
|
906 }; |
|
907 const unsigned char *start; |
|
908 if (addr & 0x01) { |
|
909 /* Function is thumb, the actual address of the code is without the |
|
910 * least significant bit. */ |
|
911 addr--; |
|
912 /* The arm part of the trampoline needs to be 32-bit aligned */ |
|
913 if (addr & 0x02) |
|
914 start = trampoline; |
|
915 else |
|
916 start = trampoline + 2; |
|
917 } else { |
|
918 /* Function is arm, we only need the arm part of the trampoline */ |
|
919 start = trampoline + 6; |
|
920 } |
|
921 |
|
922 size_t len = sizeof(trampoline) - (start - trampoline); |
|
923 EnsureWritable w(reinterpret_cast<void *>(addr), len + sizeof(void *)); |
|
924 memcpy(reinterpret_cast<void *>(addr), start, len); |
|
925 *reinterpret_cast<void **>(addr + len) = FunctionPtr(new_func); |
|
926 cacheflush(addr, addr + len + sizeof(void *), 0); |
|
927 return true; |
|
928 #else |
|
929 return false; |
|
930 #endif |
|
931 } |
|
932 #else |
|
933 #define sys_sigaction sigaction |
|
934 template <typename T> |
|
935 static bool |
|
936 Divert(T func, T new_func) |
|
937 { |
|
938 return false; |
|
939 } |
|
940 #endif |
|
941 |
|
942 namespace { |
|
943 |
|
944 /* Clock that only accounts for time spent in the current process. */ |
|
945 static uint64_t ProcessTimeStamp_Now() |
|
946 { |
|
947 struct timespec ts; |
|
948 int rv = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); |
|
949 |
|
950 if (rv != 0) { |
|
951 return 0; |
|
952 } |
|
953 |
|
954 uint64_t baseNs = (uint64_t)ts.tv_sec * 1000000000; |
|
955 return baseNs + (uint64_t)ts.tv_nsec; |
|
956 } |
|
957 |
|
958 } |
|
959 |
|
960 /* Data structure used to pass data to the temporary signal handler, |
|
961 * as well as triggering a test crash. */ |
|
962 struct TmpData { |
|
963 volatile int crash_int; |
|
964 volatile uint64_t crash_timestamp; |
|
965 }; |
|
966 |
|
967 SEGVHandler::SEGVHandler() |
|
968 : registeredHandler(false), signalHandlingBroken(false) |
|
969 , signalHandlingSlow(false) |
|
970 { |
|
971 /* Initialize oldStack.ss_flags to an invalid value when used to set |
|
972 * an alternative stack, meaning we haven't got information about the |
|
973 * original alternative stack and thus don't mean to restore it */ |
|
974 oldStack.ss_flags = SS_ONSTACK; |
|
975 if (!Divert(sigaction, __wrap_sigaction)) |
|
976 return; |
|
977 |
|
978 /* Get the current segfault signal handler. */ |
|
979 sys_sigaction(SIGSEGV, nullptr, &this->action); |
|
980 |
|
981 /* Some devices don't provide useful information to their SIGSEGV handlers, |
|
982 * making it impossible for on-demand decompression to work. To check if |
|
983 * we're on such a device, setup a temporary handler and deliberately |
|
984 * trigger a segfault. The handler will set signalHandlingBroken if the |
|
985 * provided information is bogus. |
|
986 * Some other devices have a kernel option enabled that makes SIGSEGV handler |
|
987 * have an overhead so high that it affects how on-demand decompression |
|
988 * performs. The handler will also set signalHandlingSlow if the triggered |
|
989 * SIGSEGV took too much time. */ |
|
990 struct sigaction action; |
|
991 action.sa_sigaction = &SEGVHandler::test_handler; |
|
992 sigemptyset(&action.sa_mask); |
|
993 action.sa_flags = SA_SIGINFO | SA_NODEFER; |
|
994 action.sa_restorer = nullptr; |
|
995 stackPtr.Assign(MemoryRange::mmap(nullptr, PageSize(), |
|
996 PROT_READ | PROT_WRITE, |
|
997 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)); |
|
998 if (stackPtr.get() == MAP_FAILED) |
|
999 return; |
|
1000 if (sys_sigaction(SIGSEGV, &action, nullptr)) |
|
1001 return; |
|
1002 |
|
1003 TmpData *data = reinterpret_cast<TmpData*>(stackPtr.get()); |
|
1004 data->crash_timestamp = ProcessTimeStamp_Now(); |
|
1005 mprotect(stackPtr, stackPtr.GetLength(), PROT_NONE); |
|
1006 data->crash_int = 123; |
|
1007 /* Restore the original segfault signal handler. */ |
|
1008 sys_sigaction(SIGSEGV, &this->action, nullptr); |
|
1009 stackPtr.Assign(MAP_FAILED, 0); |
|
1010 if (signalHandlingBroken || signalHandlingSlow) |
|
1011 return; |
|
1012 |
|
1013 /* Setup an alternative stack if the already existing one is not big |
|
1014 * enough, or if there is none. */ |
|
1015 if (sigaltstack(nullptr, &oldStack) == 0) { |
|
1016 if (oldStack.ss_flags == SS_ONSTACK) |
|
1017 oldStack.ss_flags = 0; |
|
1018 if (!oldStack.ss_sp || oldStack.ss_size < stackSize) { |
|
1019 stackPtr.Assign(MemoryRange::mmap(nullptr, stackSize, |
|
1020 PROT_READ | PROT_WRITE, |
|
1021 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)); |
|
1022 if (stackPtr.get() == MAP_FAILED) |
|
1023 return; |
|
1024 stack_t stack; |
|
1025 stack.ss_sp = stackPtr; |
|
1026 stack.ss_size = stackSize; |
|
1027 stack.ss_flags = 0; |
|
1028 if (sigaltstack(&stack, nullptr) != 0) |
|
1029 return; |
|
1030 } |
|
1031 } |
|
1032 /* Register our own handler, and store the already registered one in |
|
1033 * SEGVHandler's struct sigaction member */ |
|
1034 action.sa_sigaction = &SEGVHandler::handler; |
|
1035 action.sa_flags = SA_SIGINFO | SA_NODEFER | SA_ONSTACK; |
|
1036 registeredHandler = !sys_sigaction(SIGSEGV, &action, nullptr); |
|
1037 } |
|
1038 |
|
1039 SEGVHandler::~SEGVHandler() |
|
1040 { |
|
1041 /* Restore alternative stack for signals */ |
|
1042 if (oldStack.ss_flags != SS_ONSTACK) |
|
1043 sigaltstack(&oldStack, nullptr); |
|
1044 /* Restore original signal handler */ |
|
1045 if (registeredHandler) |
|
1046 sys_sigaction(SIGSEGV, &this->action, nullptr); |
|
1047 } |
|
1048 |
|
1049 /* Test handler for a deliberately triggered SIGSEGV that determines whether |
|
1050 * useful information is provided to signal handlers, particularly whether |
|
1051 * si_addr is filled in properly, and whether the segfault handler is called |
|
1052 * quickly enough. */ |
|
1053 void SEGVHandler::test_handler(int signum, siginfo_t *info, void *context) |
|
1054 { |
|
1055 SEGVHandler &that = ElfLoader::Singleton; |
|
1056 if (signum != SIGSEGV || |
|
1057 info == nullptr || info->si_addr != that.stackPtr.get()) |
|
1058 that.signalHandlingBroken = true; |
|
1059 mprotect(that.stackPtr, that.stackPtr.GetLength(), PROT_READ | PROT_WRITE); |
|
1060 TmpData *data = reinterpret_cast<TmpData*>(that.stackPtr.get()); |
|
1061 uint64_t latency = ProcessTimeStamp_Now() - data->crash_timestamp; |
|
1062 DEBUG_LOG("SEGVHandler latency: %" PRIu64, latency); |
|
1063 /* See bug 886736 for timings on different devices, 150 µs is reasonably above |
|
1064 * the latency on "working" devices and seems to be reasonably fast to incur |
|
1065 * a huge overhead to on-demand decompression. */ |
|
1066 if (latency > 150000) |
|
1067 that.signalHandlingSlow = true; |
|
1068 } |
|
1069 |
|
1070 /* TODO: "properly" handle signal masks and flags */ |
|
1071 void SEGVHandler::handler(int signum, siginfo_t *info, void *context) |
|
1072 { |
|
1073 //ASSERT(signum == SIGSEGV); |
|
1074 DEBUG_LOG("Caught segmentation fault @%p", info->si_addr); |
|
1075 |
|
1076 /* Check whether we segfaulted in the address space of a CustomElf. We're |
|
1077 * only expecting that to happen as an access error. */ |
|
1078 if (info->si_code == SEGV_ACCERR) { |
|
1079 mozilla::RefPtr<LibHandle> handle = |
|
1080 ElfLoader::Singleton.GetHandleByPtr(info->si_addr); |
|
1081 if (handle && !handle->IsSystemElf()) { |
|
1082 DEBUG_LOG("Within the address space of a CustomElf"); |
|
1083 CustomElf *elf = static_cast<CustomElf *>(static_cast<LibHandle *>(handle)); |
|
1084 if (elf->mappable->ensure(info->si_addr)) |
|
1085 return; |
|
1086 } |
|
1087 } |
|
1088 |
|
1089 /* Redispatch to the registered handler */ |
|
1090 SEGVHandler &that = ElfLoader::Singleton; |
|
1091 if (that.action.sa_flags & SA_SIGINFO) { |
|
1092 DEBUG_LOG("Redispatching to registered handler @%p", |
|
1093 FunctionPtr(that.action.sa_sigaction)); |
|
1094 that.action.sa_sigaction(signum, info, context); |
|
1095 } else if (that.action.sa_handler == SIG_DFL) { |
|
1096 DEBUG_LOG("Redispatching to default handler"); |
|
1097 /* Reset the handler to the default one, and trigger it. */ |
|
1098 sys_sigaction(signum, &that.action, nullptr); |
|
1099 raise(signum); |
|
1100 } else if (that.action.sa_handler != SIG_IGN) { |
|
1101 DEBUG_LOG("Redispatching to registered handler @%p", |
|
1102 FunctionPtr(that.action.sa_handler)); |
|
1103 that.action.sa_handler(signum); |
|
1104 } else { |
|
1105 DEBUG_LOG("Ignoring"); |
|
1106 } |
|
1107 } |
|
1108 |
|
1109 int |
|
1110 SEGVHandler::__wrap_sigaction(int signum, const struct sigaction *act, |
|
1111 struct sigaction *oldact) |
|
1112 { |
|
1113 SEGVHandler &that = ElfLoader::Singleton; |
|
1114 |
|
1115 /* Use system sigaction() function for all but SIGSEGV signals. */ |
|
1116 if (!that.registeredHandler || (signum != SIGSEGV)) |
|
1117 return sys_sigaction(signum, act, oldact); |
|
1118 |
|
1119 if (oldact) |
|
1120 *oldact = that.action; |
|
1121 if (act) |
|
1122 that.action = *act; |
|
1123 return 0; |
|
1124 } |
|
1125 |
|
1126 Logging Logging::Singleton; |