|
1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- |
|
2 * |
|
3 * This Source Code Form is subject to the terms of the Mozilla Public |
|
4 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
6 #include "nsCrypto.h" |
|
7 #include "nsNSSComponent.h" |
|
8 #include "secmod.h" |
|
9 |
|
10 #include "nsReadableUtils.h" |
|
11 #include "nsCRT.h" |
|
12 #include "nsXPIDLString.h" |
|
13 #include "nsISaveAsCharset.h" |
|
14 #include "nsNativeCharsetUtils.h" |
|
15 #include "nsServiceManagerUtils.h" |
|
16 |
|
17 #ifndef MOZ_DISABLE_CRYPTOLEGACY |
|
18 #include "nsKeygenHandler.h" |
|
19 #include "nsKeygenThread.h" |
|
20 #include "nsNSSCertificate.h" |
|
21 #include "nsNSSCertificateDB.h" |
|
22 #include "nsPKCS12Blob.h" |
|
23 #include "nsPK11TokenDB.h" |
|
24 #include "nsThreadUtils.h" |
|
25 #include "nsIServiceManager.h" |
|
26 #include "nsIMemory.h" |
|
27 #include "nsAlgorithm.h" |
|
28 #include "prprf.h" |
|
29 #include "nsDOMCID.h" |
|
30 #include "nsIDOMWindow.h" |
|
31 #include "nsIDOMClassInfo.h" |
|
32 #include "nsIDOMDocument.h" |
|
33 #include "nsIDocument.h" |
|
34 #include "nsIScriptObjectPrincipal.h" |
|
35 #include "nsIScriptContext.h" |
|
36 #include "nsIScriptGlobalObject.h" |
|
37 #include "nsContentUtils.h" |
|
38 #include "nsCxPusher.h" |
|
39 #include "nsDOMJSUtils.h" |
|
40 #include "nsJSUtils.h" |
|
41 #include "nsIXPConnect.h" |
|
42 #include "nsIRunnable.h" |
|
43 #include "nsIWindowWatcher.h" |
|
44 #include "nsIPrompt.h" |
|
45 #include "nsIFilePicker.h" |
|
46 #include "nsJSPrincipals.h" |
|
47 #include "nsJSUtils.h" |
|
48 #include "nsIPrincipal.h" |
|
49 #include "nsIScriptSecurityManager.h" |
|
50 #include "nsIGenKeypairInfoDlg.h" |
|
51 #include "nsIDOMCryptoDialogs.h" |
|
52 #include "nsIFormSigningDialog.h" |
|
53 #include "nsIContentSecurityPolicy.h" |
|
54 #include "nsIURI.h" |
|
55 #include "jsapi.h" |
|
56 #include "js/OldDebugAPI.h" |
|
57 #include <ctype.h> |
|
58 #include "pk11func.h" |
|
59 #include "keyhi.h" |
|
60 #include "cryptohi.h" |
|
61 #include "seccomon.h" |
|
62 #include "secerr.h" |
|
63 #include "sechash.h" |
|
64 #include "crmf.h" |
|
65 #include "pk11pqg.h" |
|
66 #include "cmmf.h" |
|
67 #include "nssb64.h" |
|
68 #include "base64.h" |
|
69 #include "cert.h" |
|
70 #include "certdb.h" |
|
71 #include "secmod.h" |
|
72 #include "ScopedNSSTypes.h" |
|
73 #include "pkix/pkixtypes.h" |
|
74 |
|
75 #include "ssl.h" // For SSL_ClearSessionCache |
|
76 |
|
77 #include "nsNSSCleaner.h" |
|
78 |
|
79 #include "nsNSSCertHelper.h" |
|
80 #include <algorithm> |
|
81 #include "nsWrapperCacheInlines.h" |
|
82 #endif |
|
83 #ifndef MOZ_DISABLE_CRYPTOLEGACY |
|
84 #include "mozilla/dom/CRMFObjectBinding.h" |
|
85 #endif |
|
86 |
|
87 using namespace mozilla; |
|
88 using namespace mozilla::dom; |
|
89 |
|
90 /* |
|
91 * These are the most common error strings that are returned |
|
92 * by the JavaScript methods in case of error. |
|
93 */ |
|
94 |
|
95 #define JS_ERROR "error:" |
|
96 #define JS_ERROR_INTERNAL JS_ERROR"internalError" |
|
97 |
|
98 #undef REPORT_INCORRECT_NUM_ARGS |
|
99 |
|
100 #define JS_OK_ADD_MOD 3 |
|
101 #define JS_OK_DEL_EXTERNAL_MOD 2 |
|
102 #define JS_OK_DEL_INTERNAL_MOD 1 |
|
103 |
|
104 #define JS_ERR_INTERNAL -1 |
|
105 #define JS_ERR_USER_CANCEL_ACTION -2 |
|
106 #define JS_ERR_INCORRECT_NUM_OF_ARGUMENTS -3 |
|
107 #define JS_ERR_DEL_MOD -4 |
|
108 #define JS_ERR_ADD_MOD -5 |
|
109 #define JS_ERR_BAD_MODULE_NAME -6 |
|
110 #define JS_ERR_BAD_DLL_NAME -7 |
|
111 #define JS_ERR_BAD_MECHANISM_FLAGS -8 |
|
112 #define JS_ERR_BAD_CIPHER_ENABLE_FLAGS -9 |
|
113 #define JS_ERR_ADD_DUPLICATE_MOD -10 |
|
114 |
|
115 #ifndef MOZ_DISABLE_CRYPTOLEGACY |
|
116 |
|
117 NSSCleanupAutoPtrClass_WithParam(PK11Context, PK11_DestroyContext, TrueParam, true) |
|
118 |
|
119 /* |
|
120 * This structure is used to store information for one key generation. |
|
121 * The nsCrypto::GenerateCRMFRequest method parses the inputs and then |
|
122 * stores one of these structures for every key generation that happens. |
|
123 * The information stored in this structure is then used to set some |
|
124 * values in the CRMF request. |
|
125 */ |
|
126 typedef enum { |
|
127 rsaEnc, rsaDualUse, rsaSign, rsaNonrepudiation, rsaSignNonrepudiation, |
|
128 ecEnc, ecDualUse, ecSign, ecNonrepudiation, ecSignNonrepudiation, |
|
129 dhEx, dsaSignNonrepudiation, dsaSign, dsaNonrepudiation, invalidKeyGen |
|
130 } nsKeyGenType; |
|
131 |
|
132 bool isECKeyGenType(nsKeyGenType kgt) |
|
133 { |
|
134 switch (kgt) |
|
135 { |
|
136 case ecEnc: |
|
137 case ecDualUse: |
|
138 case ecSign: |
|
139 case ecNonrepudiation: |
|
140 case ecSignNonrepudiation: |
|
141 return true; |
|
142 |
|
143 default: |
|
144 break; |
|
145 } |
|
146 |
|
147 return false; |
|
148 } |
|
149 |
|
150 typedef struct nsKeyPairInfoStr { |
|
151 SECKEYPublicKey *pubKey; /* The putlic key associated with gen'd |
|
152 priv key. */ |
|
153 SECKEYPrivateKey *privKey; /* The private key we generated */ |
|
154 nsKeyGenType keyGenType; /* What type of key gen are we doing.*/ |
|
155 |
|
156 CERTCertificate *ecPopCert; |
|
157 /* null: use signing for pop |
|
158 other than null: a cert that defines EC keygen params |
|
159 and will be used for dhMac PoP. */ |
|
160 |
|
161 SECKEYPublicKey *ecPopPubKey; |
|
162 /* extracted public key from ecPopCert */ |
|
163 } nsKeyPairInfo; |
|
164 |
|
165 |
|
166 //This class is just used to pass arguments |
|
167 //to the nsCryptoRunnable event. |
|
168 class nsCryptoRunArgs : public nsISupports { |
|
169 public: |
|
170 nsCryptoRunArgs(JSContext *aCx); |
|
171 virtual ~nsCryptoRunArgs(); |
|
172 nsCOMPtr<nsISupports> m_kungFuDeathGrip; |
|
173 JSContext *m_cx; |
|
174 JS::PersistentRooted<JSObject*> m_scope; |
|
175 nsCOMPtr<nsIPrincipal> m_principals; |
|
176 nsXPIDLCString m_jsCallback; |
|
177 NS_DECL_ISUPPORTS |
|
178 }; |
|
179 |
|
180 //This class is used to run the callback code |
|
181 //passed to crypto.generateCRMFRequest |
|
182 //We have to do that for backwards compatibility |
|
183 //reasons w/ PSM 1.x and Communciator 4.x |
|
184 class nsCryptoRunnable : public nsIRunnable { |
|
185 public: |
|
186 nsCryptoRunnable(nsCryptoRunArgs *args); |
|
187 virtual ~nsCryptoRunnable(); |
|
188 |
|
189 NS_IMETHOD Run (); |
|
190 NS_DECL_ISUPPORTS |
|
191 private: |
|
192 nsCryptoRunArgs *m_args; |
|
193 }; |
|
194 |
|
195 |
|
196 //We're going to inherit the memory passed |
|
197 //into us. |
|
198 //This class backs up an array of certificates |
|
199 //as an event. |
|
200 class nsP12Runnable : public nsIRunnable { |
|
201 public: |
|
202 nsP12Runnable(nsIX509Cert **certArr, int32_t numCerts, nsIPK11Token *token); |
|
203 virtual ~nsP12Runnable(); |
|
204 |
|
205 NS_IMETHOD Run(); |
|
206 NS_DECL_ISUPPORTS |
|
207 private: |
|
208 nsCOMPtr<nsIPK11Token> mToken; |
|
209 nsIX509Cert **mCertArr; |
|
210 int32_t mNumCerts; |
|
211 }; |
|
212 |
|
213 // QueryInterface implementation for nsCrypto |
|
214 NS_INTERFACE_MAP_BEGIN(nsCrypto) |
|
215 NS_INTERFACE_MAP_ENTRY(nsIDOMCrypto) |
|
216 NS_INTERFACE_MAP_END_INHERITING(mozilla::dom::Crypto) |
|
217 |
|
218 NS_IMPL_ADDREF_INHERITED(nsCrypto, mozilla::dom::Crypto) |
|
219 NS_IMPL_RELEASE_INHERITED(nsCrypto, mozilla::dom::Crypto) |
|
220 |
|
221 // QueryInterface implementation for nsPkcs11 |
|
222 #endif // MOZ_DISABLE_CRYPTOLEGACY |
|
223 |
|
224 NS_INTERFACE_MAP_BEGIN(nsPkcs11) |
|
225 NS_INTERFACE_MAP_ENTRY(nsIPKCS11) |
|
226 NS_INTERFACE_MAP_ENTRY(nsISupports) |
|
227 NS_INTERFACE_MAP_END |
|
228 |
|
229 NS_IMPL_ADDREF(nsPkcs11) |
|
230 NS_IMPL_RELEASE(nsPkcs11) |
|
231 |
|
232 #ifndef MOZ_DISABLE_CRYPTOLEGACY |
|
233 |
|
234 // ISupports implementation for nsCryptoRunnable |
|
235 NS_IMPL_ISUPPORTS(nsCryptoRunnable, nsIRunnable) |
|
236 |
|
237 // ISupports implementation for nsP12Runnable |
|
238 NS_IMPL_ISUPPORTS(nsP12Runnable, nsIRunnable) |
|
239 |
|
240 // ISupports implementation for nsCryptoRunArgs |
|
241 NS_IMPL_ISUPPORTS0(nsCryptoRunArgs) |
|
242 |
|
243 nsCrypto::nsCrypto() : |
|
244 mEnableSmartCardEvents(false) |
|
245 { |
|
246 } |
|
247 |
|
248 nsCrypto::~nsCrypto() |
|
249 { |
|
250 } |
|
251 |
|
252 void |
|
253 nsCrypto::Init(nsIDOMWindow* aWindow) |
|
254 { |
|
255 mozilla::dom::Crypto::Init(aWindow); |
|
256 } |
|
257 |
|
258 void |
|
259 nsCrypto::SetEnableSmartCardEvents(bool aEnable, ErrorResult& aRv) |
|
260 { |
|
261 NS_DEFINE_CID(kNSSComponentCID, NS_NSSCOMPONENT_CID); |
|
262 |
|
263 nsresult rv = NS_OK; |
|
264 |
|
265 // this has the side effect of starting the nssComponent (and initializing |
|
266 // NSS) even if it isn't already going. Starting the nssComponent is a |
|
267 // prerequisite for getting smartCard events. |
|
268 if (aEnable) { |
|
269 nsCOMPtr<nsINSSComponent> nssComponent(do_GetService(kNSSComponentCID, &rv)); |
|
270 } |
|
271 |
|
272 if (NS_FAILED(rv)) { |
|
273 aRv.Throw(rv); |
|
274 return; |
|
275 } |
|
276 |
|
277 mEnableSmartCardEvents = aEnable; |
|
278 } |
|
279 |
|
280 NS_IMETHODIMP |
|
281 nsCrypto::SetEnableSmartCardEvents(bool aEnable) |
|
282 { |
|
283 ErrorResult rv; |
|
284 SetEnableSmartCardEvents(aEnable, rv); |
|
285 return rv.ErrorCode(); |
|
286 } |
|
287 |
|
288 bool |
|
289 nsCrypto::EnableSmartCardEvents() |
|
290 { |
|
291 return mEnableSmartCardEvents; |
|
292 } |
|
293 |
|
294 NS_IMETHODIMP |
|
295 nsCrypto::GetEnableSmartCardEvents(bool *aEnable) |
|
296 { |
|
297 *aEnable = EnableSmartCardEvents(); |
|
298 return NS_OK; |
|
299 } |
|
300 |
|
301 //A quick function to let us know if the key we're trying to generate |
|
302 //can be escrowed. |
|
303 static bool |
|
304 ns_can_escrow(nsKeyGenType keyGenType) |
|
305 { |
|
306 /* For now, we only escrow rsa-encryption and ec-encryption keys. */ |
|
307 return (bool)(keyGenType == rsaEnc || keyGenType == ecEnc); |
|
308 } |
|
309 |
|
310 //Retrieve crypto.version so that callers know what |
|
311 //version of PSM this is. |
|
312 void |
|
313 nsCrypto::GetVersion(nsString& aVersion) |
|
314 { |
|
315 aVersion.Assign(NS_LITERAL_STRING(PSM_VERSION_STRING)); |
|
316 } |
|
317 |
|
318 /* |
|
319 * Given an nsKeyGenType, return the PKCS11 mechanism that will |
|
320 * perform the correct key generation. |
|
321 */ |
|
322 static uint32_t |
|
323 cryptojs_convert_to_mechanism(nsKeyGenType keyGenType) |
|
324 { |
|
325 uint32_t retMech; |
|
326 |
|
327 switch (keyGenType) { |
|
328 case rsaEnc: |
|
329 case rsaDualUse: |
|
330 case rsaSign: |
|
331 case rsaNonrepudiation: |
|
332 case rsaSignNonrepudiation: |
|
333 retMech = CKM_RSA_PKCS_KEY_PAIR_GEN; |
|
334 break; |
|
335 case ecEnc: |
|
336 case ecDualUse: |
|
337 case ecSign: |
|
338 case ecNonrepudiation: |
|
339 case ecSignNonrepudiation: |
|
340 retMech = CKM_EC_KEY_PAIR_GEN; |
|
341 break; |
|
342 case dhEx: |
|
343 retMech = CKM_DH_PKCS_KEY_PAIR_GEN; |
|
344 break; |
|
345 case dsaSign: |
|
346 case dsaSignNonrepudiation: |
|
347 case dsaNonrepudiation: |
|
348 retMech = CKM_DSA_KEY_PAIR_GEN; |
|
349 break; |
|
350 default: |
|
351 retMech = CKM_INVALID_MECHANISM; |
|
352 } |
|
353 return retMech; |
|
354 } |
|
355 |
|
356 /* |
|
357 * This function takes a string read through JavaScript parameters |
|
358 * and translates it to the internal enumeration representing the |
|
359 * key gen type. Leading and trailing whitespace must be already removed. |
|
360 */ |
|
361 static nsKeyGenType |
|
362 cryptojs_interpret_key_gen_type(const nsAString& keyAlg) |
|
363 { |
|
364 if (keyAlg.EqualsLiteral("rsa-ex")) { |
|
365 return rsaEnc; |
|
366 } |
|
367 if (keyAlg.EqualsLiteral("rsa-dual-use")) { |
|
368 return rsaDualUse; |
|
369 } |
|
370 if (keyAlg.EqualsLiteral("rsa-sign")) { |
|
371 return rsaSign; |
|
372 } |
|
373 if (keyAlg.EqualsLiteral("rsa-sign-nonrepudiation")) { |
|
374 return rsaSignNonrepudiation; |
|
375 } |
|
376 if (keyAlg.EqualsLiteral("rsa-nonrepudiation")) { |
|
377 return rsaNonrepudiation; |
|
378 } |
|
379 if (keyAlg.EqualsLiteral("ec-ex")) { |
|
380 return ecEnc; |
|
381 } |
|
382 if (keyAlg.EqualsLiteral("ec-dual-use")) { |
|
383 return ecDualUse; |
|
384 } |
|
385 if (keyAlg.EqualsLiteral("ec-sign")) { |
|
386 return ecSign; |
|
387 } |
|
388 if (keyAlg.EqualsLiteral("ec-sign-nonrepudiation")) { |
|
389 return ecSignNonrepudiation; |
|
390 } |
|
391 if (keyAlg.EqualsLiteral("ec-nonrepudiation")) { |
|
392 return ecNonrepudiation; |
|
393 } |
|
394 if (keyAlg.EqualsLiteral("dsa-sign-nonrepudiation")) { |
|
395 return dsaSignNonrepudiation; |
|
396 } |
|
397 if (keyAlg.EqualsLiteral("dsa-sign")) { |
|
398 return dsaSign; |
|
399 } |
|
400 if (keyAlg.EqualsLiteral("dsa-nonrepudiation")) { |
|
401 return dsaNonrepudiation; |
|
402 } |
|
403 if (keyAlg.EqualsLiteral("dh-ex")) { |
|
404 return dhEx; |
|
405 } |
|
406 return invalidKeyGen; |
|
407 } |
|
408 |
|
409 /* |
|
410 * input: null terminated char* pointing to (the remainder of) an |
|
411 * EC key param string. |
|
412 * |
|
413 * bool return value, false means "no more name=value pair found", |
|
414 * true means "found, see out params" |
|
415 * |
|
416 * out param name: char * pointing to name (not zero terminated) |
|
417 * out param name_len: length of found name |
|
418 * out param value: char * pointing to value (not zero terminated) |
|
419 * out param value_len: length of found value |
|
420 * out param next_pair: to be used for a follow up call to this function |
|
421 */ |
|
422 |
|
423 bool getNextNameValueFromECKeygenParamString(char *input, |
|
424 char *&name, |
|
425 int &name_len, |
|
426 char *&value, |
|
427 int &value_len, |
|
428 char *&next_call) |
|
429 { |
|
430 if (!input || !*input) |
|
431 return false; |
|
432 |
|
433 // we allow leading ; and leading space in front of each name value pair |
|
434 |
|
435 while (*input && *input == ';') |
|
436 ++input; |
|
437 |
|
438 while (*input && *input == ' ') |
|
439 ++input; |
|
440 |
|
441 name = input; |
|
442 |
|
443 while (*input && *input != '=') |
|
444 ++input; |
|
445 |
|
446 if (*input != '=') |
|
447 return false; |
|
448 |
|
449 name_len = input - name; |
|
450 ++input; |
|
451 |
|
452 value = input; |
|
453 |
|
454 while (*input && *input != ';') |
|
455 ++input; |
|
456 |
|
457 value_len = input - value; |
|
458 next_call = input; |
|
459 |
|
460 return true; |
|
461 } |
|
462 |
|
463 //Take the string passed into us via crypto.generateCRMFRequest |
|
464 //as the keygen type parameter and convert it to parameters |
|
465 //we can actually pass to the PKCS#11 layer. |
|
466 static void* |
|
467 nsConvertToActualKeyGenParams(uint32_t keyGenMech, char *params, |
|
468 uint32_t paramLen, int32_t keySize, |
|
469 nsKeyPairInfo *keyPairInfo) |
|
470 { |
|
471 void *returnParams = nullptr; |
|
472 |
|
473 |
|
474 switch (keyGenMech) { |
|
475 case CKM_RSA_PKCS_KEY_PAIR_GEN: |
|
476 { |
|
477 // For RSA, we don't support passing in key generation arguments from |
|
478 // the JS code just yet. |
|
479 if (params) |
|
480 return nullptr; |
|
481 |
|
482 PK11RSAGenParams *rsaParams; |
|
483 rsaParams = static_cast<PK11RSAGenParams*> |
|
484 (nsMemory::Alloc(sizeof(PK11RSAGenParams))); |
|
485 |
|
486 if (!rsaParams) { |
|
487 return nullptr; |
|
488 } |
|
489 /* I'm just taking the same parameters used in |
|
490 * certdlgs.c:GenKey |
|
491 */ |
|
492 if (keySize > 0) { |
|
493 rsaParams->keySizeInBits = keySize; |
|
494 } else { |
|
495 rsaParams->keySizeInBits = 1024; |
|
496 } |
|
497 rsaParams->pe = DEFAULT_RSA_KEYGEN_PE; |
|
498 returnParams = rsaParams; |
|
499 break; |
|
500 } |
|
501 case CKM_EC_KEY_PAIR_GEN: |
|
502 { |
|
503 /* |
|
504 * keygen params for generating EC keys must be composed of name=value pairs, |
|
505 * multiple pairs allowed, separated using semicolon ; |
|
506 * |
|
507 * Either param "curve" or param "popcert" must be specified. |
|
508 * curve=name-of-curve |
|
509 * popcert=base64-encoded-cert |
|
510 * |
|
511 * When both params are specified, popcert will be used. |
|
512 * If no popcert param is given, or if popcert can not be decoded, |
|
513 * we will fall back to the curve param. |
|
514 * |
|
515 * Additional name=value pairs may be defined in the future. |
|
516 * |
|
517 * If param popcert is present and valid, the given certificate will be used |
|
518 * to determine the key generation params. In addition the certificate |
|
519 * will be used to produce a dhMac based Proof of Posession, |
|
520 * using the cert's public key, subject and issuer names, |
|
521 * as specified in RFC 2511 section 4.3 paragraph 2 and Appendix A. |
|
522 * |
|
523 * If neither param popcert nor param curve could be used, |
|
524 * tse a curve based on the keysize param. |
|
525 * NOTE: Here keysize is used only as an indication of |
|
526 * High/Medium/Low strength; elliptic curve |
|
527 * cryptography uses smaller keys than RSA to provide |
|
528 * equivalent security. |
|
529 */ |
|
530 |
|
531 char *curve = nullptr; |
|
532 |
|
533 { |
|
534 // extract components of name=value list |
|
535 |
|
536 char *next_input = params; |
|
537 char *name = nullptr; |
|
538 char *value = nullptr; |
|
539 int name_len = 0; |
|
540 int value_len = 0; |
|
541 |
|
542 while (getNextNameValueFromECKeygenParamString( |
|
543 next_input, name, name_len, value, value_len, |
|
544 next_input)) |
|
545 { |
|
546 // use only the first specified curve |
|
547 if (!curve && PL_strncmp(name, "curve", std::min(name_len, 5)) == 0) |
|
548 { |
|
549 curve = PL_strndup(value, value_len); |
|
550 } |
|
551 // use only the first specified popcert |
|
552 else if (!keyPairInfo->ecPopCert && |
|
553 PL_strncmp(name, "popcert", std::min(name_len, 7)) == 0) |
|
554 { |
|
555 char *certstr = PL_strndup(value, value_len); |
|
556 if (certstr) { |
|
557 keyPairInfo->ecPopCert = CERT_ConvertAndDecodeCertificate(certstr); |
|
558 PL_strfree(certstr); |
|
559 |
|
560 if (keyPairInfo->ecPopCert) |
|
561 { |
|
562 keyPairInfo->ecPopPubKey = CERT_ExtractPublicKey(keyPairInfo->ecPopCert); |
|
563 } |
|
564 } |
|
565 } |
|
566 } |
|
567 } |
|
568 |
|
569 // first try to use the params of the provided CA cert |
|
570 if (keyPairInfo->ecPopPubKey && keyPairInfo->ecPopPubKey->keyType == ecKey) |
|
571 { |
|
572 returnParams = SECITEM_DupItem(&keyPairInfo->ecPopPubKey->u.ec.DEREncodedParams); |
|
573 } |
|
574 |
|
575 // if we did not yet find good params, do we have a curve name? |
|
576 if (!returnParams && curve) |
|
577 { |
|
578 returnParams = decode_ec_params(curve); |
|
579 } |
|
580 |
|
581 // if we did not yet find good params, do something based on keysize |
|
582 if (!returnParams) |
|
583 { |
|
584 switch (keySize) { |
|
585 case 512: |
|
586 case 1024: |
|
587 returnParams = decode_ec_params("secp256r1"); |
|
588 break; |
|
589 case 2048: |
|
590 default: |
|
591 returnParams = decode_ec_params("secp384r1"); |
|
592 break; |
|
593 } |
|
594 } |
|
595 |
|
596 if (curve) |
|
597 PL_strfree(curve); |
|
598 |
|
599 break; |
|
600 } |
|
601 case CKM_DSA_KEY_PAIR_GEN: |
|
602 { |
|
603 // For DSA, we don't support passing in key generation arguments from |
|
604 // the JS code just yet. |
|
605 if (params) |
|
606 return nullptr; |
|
607 |
|
608 PQGParams *pqgParams = nullptr; |
|
609 PQGVerify *vfy = nullptr; |
|
610 SECStatus rv; |
|
611 int index; |
|
612 |
|
613 index = PQG_PBITS_TO_INDEX(keySize); |
|
614 if (index == -1) { |
|
615 returnParams = nullptr; |
|
616 break; |
|
617 } |
|
618 rv = PK11_PQG_ParamGen(0, &pqgParams, &vfy); |
|
619 if (vfy) { |
|
620 PK11_PQG_DestroyVerify(vfy); |
|
621 } |
|
622 if (rv != SECSuccess) { |
|
623 if (pqgParams) { |
|
624 PK11_PQG_DestroyParams(pqgParams); |
|
625 } |
|
626 return nullptr; |
|
627 } |
|
628 returnParams = pqgParams; |
|
629 break; |
|
630 } |
|
631 default: |
|
632 returnParams = nullptr; |
|
633 } |
|
634 return returnParams; |
|
635 } |
|
636 |
|
637 //We need to choose which PKCS11 slot we're going to generate |
|
638 //the key on. Calls the default implementation provided by |
|
639 //nsKeygenHandler.cpp |
|
640 static PK11SlotInfo* |
|
641 nsGetSlotForKeyGen(nsKeyGenType keyGenType, nsIInterfaceRequestor *ctx) |
|
642 { |
|
643 nsNSSShutDownPreventionLock locker; |
|
644 uint32_t mechanism = cryptojs_convert_to_mechanism(keyGenType); |
|
645 PK11SlotInfo *slot = nullptr; |
|
646 nsresult rv = GetSlotWithMechanism(mechanism,ctx, &slot); |
|
647 if (NS_FAILED(rv)) { |
|
648 if (slot) |
|
649 PK11_FreeSlot(slot); |
|
650 slot = nullptr; |
|
651 } |
|
652 return slot; |
|
653 } |
|
654 |
|
655 //Free the parameters that were passed into PK11_GenerateKeyPair |
|
656 //depending on the mechanism type used. |
|
657 static void |
|
658 nsFreeKeyGenParams(CK_MECHANISM_TYPE keyGenMechanism, void *params) |
|
659 { |
|
660 switch (keyGenMechanism) { |
|
661 case CKM_RSA_PKCS_KEY_PAIR_GEN: |
|
662 nsMemory::Free(params); |
|
663 break; |
|
664 case CKM_EC_KEY_PAIR_GEN: |
|
665 SECITEM_FreeItem(reinterpret_cast<SECItem*>(params), true); |
|
666 break; |
|
667 case CKM_DSA_KEY_PAIR_GEN: |
|
668 PK11_PQG_DestroyParams(static_cast<PQGParams*>(params)); |
|
669 break; |
|
670 } |
|
671 } |
|
672 |
|
673 //Function that is used to generate a single key pair. |
|
674 //Once all the arguments have been parsed and processed, this |
|
675 //function gets called and takes care of actually generating |
|
676 //the key pair passing the appopriate parameters to the NSS |
|
677 //functions. |
|
678 static nsresult |
|
679 cryptojs_generateOneKeyPair(JSContext *cx, nsKeyPairInfo *keyPairInfo, |
|
680 int32_t keySize, char *params, |
|
681 nsIInterfaceRequestor *uiCxt, |
|
682 PK11SlotInfo *slot, bool willEscrow) |
|
683 |
|
684 { |
|
685 const PK11AttrFlags sensitiveFlags = (PK11_ATTR_SENSITIVE | PK11_ATTR_PRIVATE); |
|
686 const PK11AttrFlags temporarySessionFlags = PK11_ATTR_SESSION; |
|
687 const PK11AttrFlags permanentTokenFlags = PK11_ATTR_TOKEN; |
|
688 const PK11AttrFlags extractableFlags = PK11_ATTR_EXTRACTABLE; |
|
689 |
|
690 nsIGeneratingKeypairInfoDialogs * dialogs; |
|
691 nsKeygenThread *KeygenRunnable = 0; |
|
692 nsCOMPtr<nsIKeygenThread> runnable; |
|
693 |
|
694 uint32_t mechanism = cryptojs_convert_to_mechanism(keyPairInfo->keyGenType); |
|
695 void *keyGenParams = nsConvertToActualKeyGenParams(mechanism, params, |
|
696 (params) ? strlen(params):0, |
|
697 keySize, keyPairInfo); |
|
698 |
|
699 if (!keyGenParams || !slot) { |
|
700 return NS_ERROR_INVALID_ARG; |
|
701 } |
|
702 |
|
703 // Make sure the token has password already set on it before trying |
|
704 // to generate the key. |
|
705 |
|
706 nsresult rv = setPassword(slot, uiCxt); |
|
707 if (NS_FAILED(rv)) |
|
708 return rv; |
|
709 |
|
710 if (PK11_Authenticate(slot, true, uiCxt) != SECSuccess) |
|
711 return NS_ERROR_FAILURE; |
|
712 |
|
713 // Smart cards will not let you extract a private key once |
|
714 // it is on the smart card. If we've been told to escrow |
|
715 // a private key that will be stored on a smart card, |
|
716 // then we'll use the following strategy to ensure we can escrow it. |
|
717 // We'll attempt to generate the key on our internal token, |
|
718 // because this is expected to avoid some problems. |
|
719 // If it works, we'll escrow, move the key to the smartcard, done. |
|
720 // If it didn't work (or the internal key doesn't support the desired |
|
721 // mechanism), then we'll attempt to generate the key on |
|
722 // the destination token, with the EXTRACTABLE flag set. |
|
723 // If it works, we'll extract, escrow, done. |
|
724 // If it failed, then we're unable to escrow and return failure. |
|
725 // NOTE: We call PK11_GetInternalSlot instead of PK11_GetInternalKeySlot |
|
726 // so that the key has zero chance of being store in the |
|
727 // user's key3.db file. Which the slot returned by |
|
728 // PK11_GetInternalKeySlot has access to and PK11_GetInternalSlot |
|
729 // does not. |
|
730 ScopedPK11SlotInfo intSlot; |
|
731 |
|
732 if (willEscrow && !PK11_IsInternal(slot)) { |
|
733 intSlot = PK11_GetInternalSlot(); |
|
734 NS_ASSERTION(intSlot,"Couldn't get the internal slot"); |
|
735 |
|
736 if (!PK11_DoesMechanism(intSlot, mechanism)) { |
|
737 // Set to null, and the subsequent code will not attempt to use it. |
|
738 intSlot = nullptr; |
|
739 } |
|
740 } |
|
741 |
|
742 rv = getNSSDialogs((void**)&dialogs, |
|
743 NS_GET_IID(nsIGeneratingKeypairInfoDialogs), |
|
744 NS_GENERATINGKEYPAIRINFODIALOGS_CONTRACTID); |
|
745 |
|
746 if (NS_SUCCEEDED(rv)) { |
|
747 KeygenRunnable = new nsKeygenThread(); |
|
748 if (KeygenRunnable) { |
|
749 NS_ADDREF(KeygenRunnable); |
|
750 } |
|
751 } |
|
752 |
|
753 // "firstAttemptSlot" and "secondAttemptSlot" are alternative names |
|
754 // for better code readability, we don't increase the reference counts. |
|
755 |
|
756 PK11SlotInfo *firstAttemptSlot = nullptr; |
|
757 PK11AttrFlags firstAttemptFlags = 0; |
|
758 |
|
759 PK11SlotInfo *secondAttemptSlot = slot; |
|
760 PK11AttrFlags secondAttemptFlags = sensitiveFlags | permanentTokenFlags; |
|
761 |
|
762 if (willEscrow) { |
|
763 secondAttemptFlags |= extractableFlags; |
|
764 } |
|
765 |
|
766 if (!intSlot || PK11_IsInternal(slot)) { |
|
767 // if we cannot use the internal slot, then there is only one attempt |
|
768 // if the destination slot is the internal slot, then there is only one attempt |
|
769 firstAttemptSlot = secondAttemptSlot; |
|
770 firstAttemptFlags = secondAttemptFlags; |
|
771 secondAttemptSlot = nullptr; |
|
772 secondAttemptFlags = 0; |
|
773 } |
|
774 else { |
|
775 firstAttemptSlot = intSlot; |
|
776 firstAttemptFlags = sensitiveFlags | temporarySessionFlags; |
|
777 |
|
778 // We always need the extractable flag on the first attempt, |
|
779 // because we want to move the key to another slot - ### is this correct? |
|
780 firstAttemptFlags |= extractableFlags; |
|
781 } |
|
782 |
|
783 bool mustMoveKey = false; |
|
784 |
|
785 if (NS_FAILED(rv) || !KeygenRunnable) { |
|
786 /* execute key generation on this thread */ |
|
787 rv = NS_OK; |
|
788 |
|
789 keyPairInfo->privKey = |
|
790 PK11_GenerateKeyPairWithFlags(firstAttemptSlot, mechanism, |
|
791 keyGenParams, &keyPairInfo->pubKey, |
|
792 firstAttemptFlags, uiCxt); |
|
793 |
|
794 if (keyPairInfo->privKey) { |
|
795 // success on first attempt |
|
796 if (secondAttemptSlot) { |
|
797 mustMoveKey = true; |
|
798 } |
|
799 } |
|
800 else { |
|
801 keyPairInfo->privKey = |
|
802 PK11_GenerateKeyPairWithFlags(secondAttemptSlot, mechanism, |
|
803 keyGenParams, &keyPairInfo->pubKey, |
|
804 secondAttemptFlags, uiCxt); |
|
805 } |
|
806 |
|
807 } else { |
|
808 /* execute key generation on separate thread */ |
|
809 KeygenRunnable->SetParams( firstAttemptSlot, firstAttemptFlags, |
|
810 secondAttemptSlot, secondAttemptFlags, |
|
811 mechanism, keyGenParams, uiCxt ); |
|
812 |
|
813 runnable = do_QueryInterface(KeygenRunnable); |
|
814 |
|
815 if (runnable) { |
|
816 { |
|
817 nsPSMUITracker tracker; |
|
818 if (tracker.isUIForbidden()) { |
|
819 rv = NS_ERROR_NOT_AVAILABLE; |
|
820 } |
|
821 else { |
|
822 rv = dialogs->DisplayGeneratingKeypairInfo(uiCxt, runnable); |
|
823 // We call join on the thread, |
|
824 // so we can be sure that no simultaneous access to the passed parameters will happen. |
|
825 KeygenRunnable->Join(); |
|
826 } |
|
827 } |
|
828 |
|
829 NS_RELEASE(dialogs); |
|
830 if (NS_SUCCEEDED(rv)) { |
|
831 PK11SlotInfo *used_slot = nullptr; |
|
832 rv = KeygenRunnable->ConsumeResult(&used_slot, |
|
833 &keyPairInfo->privKey, &keyPairInfo->pubKey); |
|
834 |
|
835 if (NS_SUCCEEDED(rv)) { |
|
836 if ((used_slot == firstAttemptSlot) && secondAttemptSlot) { |
|
837 mustMoveKey = true; |
|
838 } |
|
839 |
|
840 if (used_slot) { |
|
841 PK11_FreeSlot(used_slot); |
|
842 } |
|
843 } |
|
844 } |
|
845 } |
|
846 } |
|
847 |
|
848 firstAttemptSlot = nullptr; |
|
849 secondAttemptSlot = nullptr; |
|
850 |
|
851 nsFreeKeyGenParams(mechanism, keyGenParams); |
|
852 |
|
853 if (KeygenRunnable) { |
|
854 NS_RELEASE(KeygenRunnable); |
|
855 } |
|
856 |
|
857 if (!keyPairInfo->privKey || !keyPairInfo->pubKey) { |
|
858 return NS_ERROR_FAILURE; |
|
859 } |
|
860 |
|
861 //If we generated the key pair on the internal slot because the |
|
862 // keys were going to be escrowed, move the keys over right now. |
|
863 if (mustMoveKey) { |
|
864 ScopedSECKEYPrivateKey newPrivKey(PK11_LoadPrivKey(slot, |
|
865 keyPairInfo->privKey, |
|
866 keyPairInfo->pubKey, |
|
867 true, true)); |
|
868 if (!newPrivKey) |
|
869 return NS_ERROR_FAILURE; |
|
870 |
|
871 // The private key is stored on the selected slot now, and the copy we |
|
872 // ultimately use for escrowing when the time comes lives |
|
873 // in the internal slot. We will delete it from that slot |
|
874 // after the requests are made. |
|
875 } |
|
876 |
|
877 return NS_OK; |
|
878 } |
|
879 |
|
880 /* |
|
881 * FUNCTION: cryptojs_ReadArgsAndGenerateKey |
|
882 * ------------------------------------- |
|
883 * INPUTS: |
|
884 * cx |
|
885 * The JSContext associated with the execution of the corresponging |
|
886 * crypto.generateCRMFRequest call |
|
887 * argv |
|
888 * A pointer to an array of JavaScript parameters passed to the |
|
889 * method crypto.generateCRMFRequest. The array should have the |
|
890 * 3 arguments keySize, "keyParams", and "keyGenAlg" mentioned in |
|
891 * the definition of crypto.generateCRMFRequest at the following |
|
892 * document http://docs.iplanet.com/docs/manuals/psm/11/cmcjavascriptapi.html |
|
893 * keyGenType |
|
894 * A structure used to store the information about the newly created |
|
895 * key pair. |
|
896 * uiCxt |
|
897 * An interface requestor that would be used to get an nsIPrompt |
|
898 * if we need to ask the user for a password. |
|
899 * slotToUse |
|
900 * The PKCS11 slot to use for generating the key pair. If nullptr, then |
|
901 * this function should select a slot that can do the key generation |
|
902 * from the keytype associted with the keyPairInfo, and pass it back to |
|
903 * the caller so that subsequence key generations can use the same slot. |
|
904 * willEscrow |
|
905 * If true, then that means we will try to escrow the generated |
|
906 * private key when building the CRMF request. If false, then |
|
907 * we will not try to escrow the private key. |
|
908 * |
|
909 * NOTES: |
|
910 * This function takes care of reading a set of 3 parameters that define |
|
911 * one key generation. The argv pointer should be one that originates |
|
912 * from the argv parameter passed in to the method nsCrypto::GenerateCRMFRequest. |
|
913 * The function interprets the argument in the first index as an integer and |
|
914 * passes that as the key size for the key generation-this parameter is |
|
915 * mandatory. The second parameter is read in as a string. This value can |
|
916 * be null in JavaScript world and everything will still work. The third |
|
917 * parameter is a mandatory string that indicates what kind of key to generate. |
|
918 * There should always be 1-to-1 correspondence between the strings compared |
|
919 * in the function cryptojs_interpret_key_gen_type and the strings listed in |
|
920 * document at http://docs.iplanet.com/docs/manuals/psm/11/cmcjavascriptapi.html |
|
921 * under the definition of the method generateCRMFRequest, for the parameter |
|
922 * "keyGenAlgN". After reading the parameters, the function then |
|
923 * generates the key pairs passing the parameters parsed from the JavaScript i |
|
924 * routine. |
|
925 * |
|
926 * RETURN: |
|
927 * NS_OK if creating the Key was successful. Any other return value |
|
928 * indicates an error. |
|
929 */ |
|
930 |
|
931 static nsresult |
|
932 cryptojs_ReadArgsAndGenerateKey(JSContext *cx, |
|
933 JS::Value *argv, |
|
934 nsKeyPairInfo *keyGenType, |
|
935 nsIInterfaceRequestor *uiCxt, |
|
936 PK11SlotInfo **slot, bool willEscrow) |
|
937 { |
|
938 JSString *jsString; |
|
939 JSAutoByteString params; |
|
940 int keySize; |
|
941 nsresult rv; |
|
942 |
|
943 if (!JSVAL_IS_INT(argv[0])) { |
|
944 JS_ReportError(cx, "%s%s", JS_ERROR, |
|
945 "passed in non-integer for key size"); |
|
946 return NS_ERROR_FAILURE; |
|
947 } |
|
948 keySize = JSVAL_TO_INT(argv[0]); |
|
949 if (!JSVAL_IS_NULL(argv[1])) { |
|
950 JS::Rooted<JS::Value> v(cx, argv[1]); |
|
951 jsString = JS::ToString(cx, v); |
|
952 NS_ENSURE_TRUE(jsString, NS_ERROR_OUT_OF_MEMORY); |
|
953 argv[1] = STRING_TO_JSVAL(jsString); |
|
954 params.encodeLatin1(cx, jsString); |
|
955 NS_ENSURE_TRUE(!!params, NS_ERROR_OUT_OF_MEMORY); |
|
956 } |
|
957 |
|
958 if (JSVAL_IS_NULL(argv[2])) { |
|
959 JS_ReportError(cx,"%s%s", JS_ERROR, |
|
960 "key generation type not specified"); |
|
961 return NS_ERROR_FAILURE; |
|
962 } |
|
963 JS::Rooted<JS::Value> v(cx, argv[2]); |
|
964 jsString = JS::ToString(cx, v); |
|
965 NS_ENSURE_TRUE(jsString, NS_ERROR_OUT_OF_MEMORY); |
|
966 argv[2] = STRING_TO_JSVAL(jsString); |
|
967 nsDependentJSString dependentKeyGenAlg; |
|
968 NS_ENSURE_TRUE(dependentKeyGenAlg.init(cx, jsString), NS_ERROR_UNEXPECTED); |
|
969 nsAutoString keyGenAlg(dependentKeyGenAlg); |
|
970 keyGenAlg.Trim("\r\n\t "); |
|
971 keyGenType->keyGenType = cryptojs_interpret_key_gen_type(keyGenAlg); |
|
972 if (keyGenType->keyGenType == invalidKeyGen) { |
|
973 NS_LossyConvertUTF16toASCII keyGenAlgNarrow(dependentKeyGenAlg); |
|
974 JS_ReportError(cx, "%s%s%s", JS_ERROR, |
|
975 "invalid key generation argument:", |
|
976 keyGenAlgNarrow.get()); |
|
977 goto loser; |
|
978 } |
|
979 if (!*slot) { |
|
980 *slot = nsGetSlotForKeyGen(keyGenType->keyGenType, uiCxt); |
|
981 if (!*slot) |
|
982 goto loser; |
|
983 } |
|
984 |
|
985 rv = cryptojs_generateOneKeyPair(cx,keyGenType,keySize,params.ptr(),uiCxt, |
|
986 *slot,willEscrow); |
|
987 |
|
988 if (rv != NS_OK) { |
|
989 NS_LossyConvertUTF16toASCII keyGenAlgNarrow(dependentKeyGenAlg); |
|
990 JS_ReportError(cx,"%s%s%s", JS_ERROR, |
|
991 "could not generate the key for algorithm ", |
|
992 keyGenAlgNarrow.get()); |
|
993 goto loser; |
|
994 } |
|
995 return NS_OK; |
|
996 loser: |
|
997 return NS_ERROR_FAILURE; |
|
998 } |
|
999 |
|
1000 //Utility funciton to free up the memory used by nsKeyPairInfo |
|
1001 //arrays. |
|
1002 static void |
|
1003 nsFreeKeyPairInfo(nsKeyPairInfo *keyids, int numIDs) |
|
1004 { |
|
1005 NS_ASSERTION(keyids, "NULL pointer passed to nsFreeKeyPairInfo"); |
|
1006 if (!keyids) |
|
1007 return; |
|
1008 int i; |
|
1009 for (i=0; i<numIDs; i++) { |
|
1010 if (keyids[i].pubKey) |
|
1011 SECKEY_DestroyPublicKey(keyids[i].pubKey); |
|
1012 if (keyids[i].privKey) |
|
1013 SECKEY_DestroyPrivateKey(keyids[i].privKey); |
|
1014 if (keyids[i].ecPopCert) |
|
1015 CERT_DestroyCertificate(keyids[i].ecPopCert); |
|
1016 if (keyids[i].ecPopPubKey) |
|
1017 SECKEY_DestroyPublicKey(keyids[i].ecPopPubKey); |
|
1018 } |
|
1019 delete []keyids; |
|
1020 } |
|
1021 |
|
1022 //Utility funciton used to free the genertaed cert request messages |
|
1023 static void |
|
1024 nsFreeCertReqMessages(CRMFCertReqMsg **certReqMsgs, int32_t numMessages) |
|
1025 { |
|
1026 int32_t i; |
|
1027 for (i=0; i<numMessages && certReqMsgs[i]; i++) { |
|
1028 CRMF_DestroyCertReqMsg(certReqMsgs[i]); |
|
1029 } |
|
1030 delete []certReqMsgs; |
|
1031 } |
|
1032 |
|
1033 //If the form called for escrowing the private key we just generated, |
|
1034 //this function adds all the correct elements to the request. |
|
1035 //That consists of adding CRMFEncryptedKey to the reques as part |
|
1036 //of the CRMFPKIArchiveOptions Control. |
|
1037 static nsresult |
|
1038 nsSetEscrowAuthority(CRMFCertRequest *certReq, nsKeyPairInfo *keyInfo, |
|
1039 nsNSSCertificate *wrappingCert) |
|
1040 { |
|
1041 if (!wrappingCert || |
|
1042 CRMF_CertRequestIsControlPresent(certReq, crmfPKIArchiveOptionsControl)){ |
|
1043 return NS_ERROR_FAILURE; |
|
1044 } |
|
1045 mozilla::pkix::ScopedCERTCertificate cert(wrappingCert->GetCert()); |
|
1046 if (!cert) |
|
1047 return NS_ERROR_FAILURE; |
|
1048 |
|
1049 CRMFEncryptedKey *encrKey = |
|
1050 CRMF_CreateEncryptedKeyWithEncryptedValue(keyInfo->privKey, cert.get()); |
|
1051 if (!encrKey) |
|
1052 return NS_ERROR_FAILURE; |
|
1053 |
|
1054 CRMFPKIArchiveOptions *archOpt = |
|
1055 CRMF_CreatePKIArchiveOptions(crmfEncryptedPrivateKey, encrKey); |
|
1056 if (!archOpt) { |
|
1057 CRMF_DestroyEncryptedKey(encrKey); |
|
1058 return NS_ERROR_FAILURE; |
|
1059 } |
|
1060 SECStatus srv = CRMF_CertRequestSetPKIArchiveOptions(certReq, archOpt); |
|
1061 CRMF_DestroyEncryptedKey(encrKey); |
|
1062 CRMF_DestroyPKIArchiveOptions(archOpt); |
|
1063 if (srv != SECSuccess) |
|
1064 return NS_ERROR_FAILURE; |
|
1065 |
|
1066 return NS_OK; |
|
1067 } |
|
1068 |
|
1069 //Set the Distinguished Name (Subject Name) for the cert |
|
1070 //being requested. |
|
1071 static nsresult |
|
1072 nsSetDNForRequest(CRMFCertRequest *certReq, char *reqDN) |
|
1073 { |
|
1074 if (!reqDN || CRMF_CertRequestIsFieldPresent(certReq, crmfSubject)) { |
|
1075 return NS_ERROR_FAILURE; |
|
1076 } |
|
1077 ScopedCERTName subjectName(CERT_AsciiToName(reqDN)); |
|
1078 if (!subjectName) { |
|
1079 return NS_ERROR_FAILURE; |
|
1080 } |
|
1081 SECStatus srv = CRMF_CertRequestSetTemplateField(certReq, crmfSubject, |
|
1082 static_cast<void*> |
|
1083 (subjectName)); |
|
1084 return (srv == SECSuccess) ? NS_OK : NS_ERROR_FAILURE; |
|
1085 } |
|
1086 |
|
1087 //Set Registration Token Control on the request. |
|
1088 static nsresult |
|
1089 nsSetRegToken(CRMFCertRequest *certReq, char *regToken) |
|
1090 { |
|
1091 // this should never happen, but might as well add this. |
|
1092 NS_ASSERTION(certReq, "A bogus certReq passed to nsSetRegToken"); |
|
1093 if (regToken){ |
|
1094 if (CRMF_CertRequestIsControlPresent(certReq, crmfRegTokenControl)) |
|
1095 return NS_ERROR_FAILURE; |
|
1096 |
|
1097 SECItem src; |
|
1098 src.data = (unsigned char*)regToken; |
|
1099 src.len = strlen(regToken); |
|
1100 SECItem *derEncoded = SEC_ASN1EncodeItem(nullptr, nullptr, &src, |
|
1101 SEC_ASN1_GET(SEC_UTF8StringTemplate)); |
|
1102 |
|
1103 if (!derEncoded) |
|
1104 return NS_ERROR_FAILURE; |
|
1105 |
|
1106 SECStatus srv = CRMF_CertRequestSetRegTokenControl(certReq, derEncoded); |
|
1107 SECITEM_FreeItem(derEncoded,true); |
|
1108 if (srv != SECSuccess) |
|
1109 return NS_ERROR_FAILURE; |
|
1110 } |
|
1111 return NS_OK; |
|
1112 } |
|
1113 |
|
1114 //Set the Authenticator control on the cert reuest. It's just |
|
1115 //a string that gets passed along. |
|
1116 static nsresult |
|
1117 nsSetAuthenticator(CRMFCertRequest *certReq, char *authenticator) |
|
1118 { |
|
1119 //This should never happen, but might as well check. |
|
1120 NS_ASSERTION(certReq, "Bogus certReq passed to nsSetAuthenticator"); |
|
1121 if (authenticator) { |
|
1122 if (CRMF_CertRequestIsControlPresent(certReq, crmfAuthenticatorControl)) |
|
1123 return NS_ERROR_FAILURE; |
|
1124 |
|
1125 SECItem src; |
|
1126 src.data = (unsigned char*)authenticator; |
|
1127 src.len = strlen(authenticator); |
|
1128 SECItem *derEncoded = SEC_ASN1EncodeItem(nullptr, nullptr, &src, |
|
1129 SEC_ASN1_GET(SEC_UTF8StringTemplate)); |
|
1130 if (!derEncoded) |
|
1131 return NS_ERROR_FAILURE; |
|
1132 |
|
1133 SECStatus srv = CRMF_CertRequestSetAuthenticatorControl(certReq, |
|
1134 derEncoded); |
|
1135 SECITEM_FreeItem(derEncoded, true); |
|
1136 if (srv != SECSuccess) |
|
1137 return NS_ERROR_FAILURE; |
|
1138 } |
|
1139 return NS_OK; |
|
1140 } |
|
1141 |
|
1142 // ASN1 DER encoding rules say that when encoding a BIT string, |
|
1143 // the length in the header for the bit string is the number |
|
1144 // of "useful" bits in the BIT STRING. So the function finds |
|
1145 // it and sets accordingly for the returned item. |
|
1146 static void |
|
1147 nsPrepareBitStringForEncoding (SECItem *bitsmap, SECItem *value) |
|
1148 { |
|
1149 unsigned char onebyte; |
|
1150 unsigned int i, len = 0; |
|
1151 |
|
1152 /* to prevent warning on some platform at compile time */ |
|
1153 onebyte = '\0'; |
|
1154 /* Get the position of the right-most turn-on bit */ |
|
1155 for (i = 0; i < (value->len ) * 8; ++i) { |
|
1156 if (i % 8 == 0) |
|
1157 onebyte = value->data[i/8]; |
|
1158 if (onebyte & 0x80) |
|
1159 len = i; |
|
1160 onebyte <<= 1; |
|
1161 } |
|
1162 |
|
1163 bitsmap->data = value->data; |
|
1164 /* Add one here since we work with base 1 */ |
|
1165 bitsmap->len = len + 1; |
|
1166 } |
|
1167 |
|
1168 //This next section defines all the functions that sets the |
|
1169 //keyUsageExtension for all the different types of key gens |
|
1170 //we handle. The keyUsageExtension is just a bit flag extension |
|
1171 //that we set in wrapper functions that call straight into |
|
1172 //nsSetKeyUsageExtension. There is one wrapper funciton for each |
|
1173 //keyGenType. The correct function will eventually be called |
|
1174 //by going through a switch statement based on the nsKeyGenType |
|
1175 //in the nsKeyPairInfo struct. |
|
1176 static nsresult |
|
1177 nsSetKeyUsageExtension(CRMFCertRequest *crmfReq, |
|
1178 unsigned char keyUsage) |
|
1179 { |
|
1180 SECItem *encodedExt= nullptr; |
|
1181 SECItem keyUsageValue = { (SECItemType) 0, nullptr, 0 }; |
|
1182 SECItem bitsmap = { (SECItemType) 0, nullptr, 0 }; |
|
1183 SECStatus srv; |
|
1184 CRMFCertExtension *ext = nullptr; |
|
1185 CRMFCertExtCreationInfo extAddParams; |
|
1186 SEC_ASN1Template bitStrTemplate = {SEC_ASN1_BIT_STRING, 0, nullptr, |
|
1187 sizeof(SECItem)}; |
|
1188 |
|
1189 keyUsageValue.data = &keyUsage; |
|
1190 keyUsageValue.len = 1; |
|
1191 nsPrepareBitStringForEncoding(&bitsmap, &keyUsageValue); |
|
1192 |
|
1193 encodedExt = SEC_ASN1EncodeItem(nullptr, nullptr, &bitsmap,&bitStrTemplate); |
|
1194 if (!encodedExt) { |
|
1195 goto loser; |
|
1196 } |
|
1197 ext = CRMF_CreateCertExtension(SEC_OID_X509_KEY_USAGE, true, encodedExt); |
|
1198 if (!ext) { |
|
1199 goto loser; |
|
1200 } |
|
1201 extAddParams.numExtensions = 1; |
|
1202 extAddParams.extensions = &ext; |
|
1203 srv = CRMF_CertRequestSetTemplateField(crmfReq, crmfExtension, |
|
1204 &extAddParams); |
|
1205 if (srv != SECSuccess) { |
|
1206 goto loser; |
|
1207 } |
|
1208 CRMF_DestroyCertExtension(ext); |
|
1209 SECITEM_FreeItem(encodedExt, true); |
|
1210 return NS_OK; |
|
1211 loser: |
|
1212 if (ext) { |
|
1213 CRMF_DestroyCertExtension(ext); |
|
1214 } |
|
1215 if (encodedExt) { |
|
1216 SECITEM_FreeItem(encodedExt, true); |
|
1217 } |
|
1218 return NS_ERROR_FAILURE; |
|
1219 } |
|
1220 |
|
1221 static nsresult |
|
1222 nsSetRSADualUse(CRMFCertRequest *crmfReq) |
|
1223 { |
|
1224 unsigned char keyUsage = KU_DIGITAL_SIGNATURE |
|
1225 | KU_NON_REPUDIATION |
|
1226 | KU_KEY_ENCIPHERMENT; |
|
1227 |
|
1228 return nsSetKeyUsageExtension(crmfReq, keyUsage); |
|
1229 } |
|
1230 |
|
1231 static nsresult |
|
1232 nsSetRSAKeyEx(CRMFCertRequest *crmfReq) |
|
1233 { |
|
1234 unsigned char keyUsage = KU_KEY_ENCIPHERMENT; |
|
1235 |
|
1236 return nsSetKeyUsageExtension(crmfReq, keyUsage); |
|
1237 } |
|
1238 |
|
1239 static nsresult |
|
1240 nsSetRSASign(CRMFCertRequest *crmfReq) |
|
1241 { |
|
1242 unsigned char keyUsage = KU_DIGITAL_SIGNATURE; |
|
1243 |
|
1244 |
|
1245 return nsSetKeyUsageExtension(crmfReq, keyUsage); |
|
1246 } |
|
1247 |
|
1248 static nsresult |
|
1249 nsSetRSANonRepudiation(CRMFCertRequest *crmfReq) |
|
1250 { |
|
1251 unsigned char keyUsage = KU_NON_REPUDIATION; |
|
1252 |
|
1253 return nsSetKeyUsageExtension(crmfReq, keyUsage); |
|
1254 } |
|
1255 |
|
1256 static nsresult |
|
1257 nsSetRSASignNonRepudiation(CRMFCertRequest *crmfReq) |
|
1258 { |
|
1259 unsigned char keyUsage = KU_DIGITAL_SIGNATURE | |
|
1260 KU_NON_REPUDIATION; |
|
1261 |
|
1262 return nsSetKeyUsageExtension(crmfReq, keyUsage); |
|
1263 } |
|
1264 |
|
1265 static nsresult |
|
1266 nsSetECDualUse(CRMFCertRequest *crmfReq) |
|
1267 { |
|
1268 unsigned char keyUsage = KU_DIGITAL_SIGNATURE |
|
1269 | KU_NON_REPUDIATION |
|
1270 | KU_KEY_AGREEMENT; |
|
1271 |
|
1272 return nsSetKeyUsageExtension(crmfReq, keyUsage); |
|
1273 } |
|
1274 |
|
1275 static nsresult |
|
1276 nsSetECKeyEx(CRMFCertRequest *crmfReq) |
|
1277 { |
|
1278 unsigned char keyUsage = KU_KEY_AGREEMENT; |
|
1279 |
|
1280 return nsSetKeyUsageExtension(crmfReq, keyUsage); |
|
1281 } |
|
1282 |
|
1283 static nsresult |
|
1284 nsSetECSign(CRMFCertRequest *crmfReq) |
|
1285 { |
|
1286 unsigned char keyUsage = KU_DIGITAL_SIGNATURE; |
|
1287 |
|
1288 |
|
1289 return nsSetKeyUsageExtension(crmfReq, keyUsage); |
|
1290 } |
|
1291 |
|
1292 static nsresult |
|
1293 nsSetECNonRepudiation(CRMFCertRequest *crmfReq) |
|
1294 { |
|
1295 unsigned char keyUsage = KU_NON_REPUDIATION; |
|
1296 |
|
1297 return nsSetKeyUsageExtension(crmfReq, keyUsage); |
|
1298 } |
|
1299 |
|
1300 static nsresult |
|
1301 nsSetECSignNonRepudiation(CRMFCertRequest *crmfReq) |
|
1302 { |
|
1303 unsigned char keyUsage = KU_DIGITAL_SIGNATURE | |
|
1304 KU_NON_REPUDIATION; |
|
1305 |
|
1306 return nsSetKeyUsageExtension(crmfReq, keyUsage); |
|
1307 } |
|
1308 |
|
1309 static nsresult |
|
1310 nsSetDH(CRMFCertRequest *crmfReq) |
|
1311 { |
|
1312 unsigned char keyUsage = KU_KEY_AGREEMENT; |
|
1313 |
|
1314 return nsSetKeyUsageExtension(crmfReq, keyUsage); |
|
1315 } |
|
1316 |
|
1317 static nsresult |
|
1318 nsSetDSASign(CRMFCertRequest *crmfReq) |
|
1319 { |
|
1320 unsigned char keyUsage = KU_DIGITAL_SIGNATURE; |
|
1321 |
|
1322 return nsSetKeyUsageExtension(crmfReq, keyUsage); |
|
1323 } |
|
1324 |
|
1325 static nsresult |
|
1326 nsSetDSANonRepudiation(CRMFCertRequest *crmfReq) |
|
1327 { |
|
1328 unsigned char keyUsage = KU_NON_REPUDIATION; |
|
1329 |
|
1330 return nsSetKeyUsageExtension(crmfReq, keyUsage); |
|
1331 } |
|
1332 |
|
1333 static nsresult |
|
1334 nsSetDSASignNonRepudiation(CRMFCertRequest *crmfReq) |
|
1335 { |
|
1336 unsigned char keyUsage = KU_DIGITAL_SIGNATURE | |
|
1337 KU_NON_REPUDIATION; |
|
1338 |
|
1339 return nsSetKeyUsageExtension(crmfReq, keyUsage); |
|
1340 } |
|
1341 |
|
1342 static nsresult |
|
1343 nsSetKeyUsageExtension(CRMFCertRequest *crmfReq, nsKeyGenType keyGenType) |
|
1344 { |
|
1345 nsresult rv; |
|
1346 |
|
1347 switch (keyGenType) { |
|
1348 case rsaDualUse: |
|
1349 rv = nsSetRSADualUse(crmfReq); |
|
1350 break; |
|
1351 case rsaEnc: |
|
1352 rv = nsSetRSAKeyEx(crmfReq); |
|
1353 break; |
|
1354 case rsaSign: |
|
1355 rv = nsSetRSASign(crmfReq); |
|
1356 break; |
|
1357 case rsaNonrepudiation: |
|
1358 rv = nsSetRSANonRepudiation(crmfReq); |
|
1359 break; |
|
1360 case rsaSignNonrepudiation: |
|
1361 rv = nsSetRSASignNonRepudiation(crmfReq); |
|
1362 break; |
|
1363 case ecDualUse: |
|
1364 rv = nsSetECDualUse(crmfReq); |
|
1365 break; |
|
1366 case ecEnc: |
|
1367 rv = nsSetECKeyEx(crmfReq); |
|
1368 break; |
|
1369 case ecSign: |
|
1370 rv = nsSetECSign(crmfReq); |
|
1371 break; |
|
1372 case ecNonrepudiation: |
|
1373 rv = nsSetECNonRepudiation(crmfReq); |
|
1374 break; |
|
1375 case ecSignNonrepudiation: |
|
1376 rv = nsSetECSignNonRepudiation(crmfReq); |
|
1377 break; |
|
1378 case dhEx: |
|
1379 rv = nsSetDH(crmfReq); |
|
1380 break; |
|
1381 case dsaSign: |
|
1382 rv = nsSetDSASign(crmfReq); |
|
1383 break; |
|
1384 case dsaNonrepudiation: |
|
1385 rv = nsSetDSANonRepudiation(crmfReq); |
|
1386 break; |
|
1387 case dsaSignNonrepudiation: |
|
1388 rv = nsSetDSASignNonRepudiation(crmfReq); |
|
1389 break; |
|
1390 default: |
|
1391 rv = NS_ERROR_FAILURE; |
|
1392 break; |
|
1393 } |
|
1394 return rv; |
|
1395 } |
|
1396 |
|
1397 //Create a single CRMFCertRequest with all of the necessary parts |
|
1398 //already installed. The request returned by this function will |
|
1399 //have all the parts necessary and can just be added to a |
|
1400 //Certificate Request Message. |
|
1401 static CRMFCertRequest* |
|
1402 nsCreateSingleCertReq(nsKeyPairInfo *keyInfo, char *reqDN, char *regToken, |
|
1403 char *authenticator, nsNSSCertificate *wrappingCert) |
|
1404 { |
|
1405 uint32_t reqID; |
|
1406 nsresult rv; |
|
1407 |
|
1408 //The draft says the ID of the request should be a random |
|
1409 //number. We don't have a way of tracking this number |
|
1410 //to compare when the reply actually comes back,though. |
|
1411 PK11_GenerateRandom((unsigned char*)&reqID, sizeof(reqID)); |
|
1412 CRMFCertRequest *certReq = CRMF_CreateCertRequest(reqID); |
|
1413 if (!certReq) |
|
1414 return nullptr; |
|
1415 |
|
1416 long version = SEC_CERTIFICATE_VERSION_3; |
|
1417 SECStatus srv; |
|
1418 CERTSubjectPublicKeyInfo *spki = nullptr; |
|
1419 srv = CRMF_CertRequestSetTemplateField(certReq, crmfVersion, &version); |
|
1420 if (srv != SECSuccess) |
|
1421 goto loser; |
|
1422 |
|
1423 spki = SECKEY_CreateSubjectPublicKeyInfo(keyInfo->pubKey); |
|
1424 if (!spki) |
|
1425 goto loser; |
|
1426 |
|
1427 srv = CRMF_CertRequestSetTemplateField(certReq, crmfPublicKey, spki); |
|
1428 SECKEY_DestroySubjectPublicKeyInfo(spki); |
|
1429 if (srv != SECSuccess) |
|
1430 goto loser; |
|
1431 |
|
1432 if (wrappingCert && ns_can_escrow(keyInfo->keyGenType)) { |
|
1433 rv = nsSetEscrowAuthority(certReq, keyInfo, wrappingCert); |
|
1434 if (NS_FAILED(rv)) |
|
1435 goto loser; |
|
1436 } |
|
1437 rv = nsSetDNForRequest(certReq, reqDN); |
|
1438 if (NS_FAILED(rv)) |
|
1439 goto loser; |
|
1440 |
|
1441 rv = nsSetRegToken(certReq, regToken); |
|
1442 if (NS_FAILED(rv)) |
|
1443 goto loser; |
|
1444 |
|
1445 rv = nsSetAuthenticator(certReq, authenticator); |
|
1446 if (NS_FAILED(rv)) |
|
1447 goto loser; |
|
1448 |
|
1449 rv = nsSetKeyUsageExtension(certReq, keyInfo->keyGenType); |
|
1450 if (NS_FAILED(rv)) |
|
1451 goto loser; |
|
1452 |
|
1453 return certReq; |
|
1454 loser: |
|
1455 if (certReq) { |
|
1456 CRMF_DestroyCertRequest(certReq); |
|
1457 } |
|
1458 return nullptr; |
|
1459 } |
|
1460 |
|
1461 /* |
|
1462 * This function will set the Proof Of Possession (POP) for a request |
|
1463 * associated with a key pair intended to do Key Encipherment. Currently |
|
1464 * this means encryption only keys. |
|
1465 */ |
|
1466 static nsresult |
|
1467 nsSetKeyEnciphermentPOP(CRMFCertReqMsg *certReqMsg, bool isEscrowed) |
|
1468 { |
|
1469 SECItem bitString; |
|
1470 unsigned char der[2]; |
|
1471 SECStatus srv; |
|
1472 |
|
1473 if (isEscrowed) { |
|
1474 /* For proof of possession on escrowed keys, we use the |
|
1475 * this Message option of POPOPrivKey and include a zero |
|
1476 * length bit string in the POP field. This is OK because the encrypted |
|
1477 * private key already exists as part of the PKIArchiveOptions |
|
1478 * Control and that for all intents and purposes proves that |
|
1479 * we do own the private key. |
|
1480 */ |
|
1481 der[0] = 0x03; /*We've got a bit string */ |
|
1482 der[1] = 0x00; /*We've got a 0 length bit string */ |
|
1483 bitString.data = der; |
|
1484 bitString.len = 2; |
|
1485 srv = CRMF_CertReqMsgSetKeyEnciphermentPOP(certReqMsg, crmfThisMessage, |
|
1486 crmfNoSubseqMess, &bitString); |
|
1487 } else { |
|
1488 /* If the encryption key is not being escrowed, then we set the |
|
1489 * Proof Of Possession to be a Challenge Response mechanism. |
|
1490 */ |
|
1491 srv = CRMF_CertReqMsgSetKeyEnciphermentPOP(certReqMsg, |
|
1492 crmfSubsequentMessage, |
|
1493 crmfChallengeResp, nullptr); |
|
1494 } |
|
1495 return (srv == SECSuccess) ? NS_OK : NS_ERROR_FAILURE; |
|
1496 } |
|
1497 |
|
1498 static void |
|
1499 nsCRMFEncoderItemCount(void *arg, const char *buf, unsigned long len); |
|
1500 |
|
1501 static void |
|
1502 nsCRMFEncoderItemStore(void *arg, const char *buf, unsigned long len); |
|
1503 |
|
1504 static nsresult |
|
1505 nsSet_EC_DHMAC_ProofOfPossession(CRMFCertReqMsg *certReqMsg, |
|
1506 nsKeyPairInfo *keyInfo, |
|
1507 CRMFCertRequest *certReq) |
|
1508 { |
|
1509 // RFC 2511 Appendix A section 2 a) defines, |
|
1510 // the "text" input for HMAC shall be the DER encoded version of |
|
1511 // of the single cert request. |
|
1512 // We'll produce that encoding and destroy it afterwards, |
|
1513 // because when sending the complete package to the CA, |
|
1514 // we'll use a different encoding, one that includes POP and |
|
1515 // allows multiple requests to be sent in one step. |
|
1516 |
|
1517 unsigned long der_request_len = 0; |
|
1518 ScopedSECItem der_request; |
|
1519 |
|
1520 if (SECSuccess != CRMF_EncodeCertRequest(certReq, |
|
1521 nsCRMFEncoderItemCount, |
|
1522 &der_request_len)) |
|
1523 return NS_ERROR_FAILURE; |
|
1524 |
|
1525 der_request = SECITEM_AllocItem(nullptr, nullptr, der_request_len); |
|
1526 if (!der_request) |
|
1527 return NS_ERROR_FAILURE; |
|
1528 |
|
1529 // set len in returned SECItem back to zero, because it will |
|
1530 // be used as the destination offset inside the |
|
1531 // nsCRMFEncoderItemStore callback. |
|
1532 |
|
1533 der_request->len = 0; |
|
1534 |
|
1535 if (SECSuccess != CRMF_EncodeCertRequest(certReq, |
|
1536 nsCRMFEncoderItemStore, |
|
1537 der_request)) |
|
1538 return NS_ERROR_FAILURE; |
|
1539 |
|
1540 // RFC 2511 Appendix A section 2 c): |
|
1541 // "A key K is derived from the shared secret Kec and the subject and |
|
1542 // issuer names in the CA's certificate as follows: |
|
1543 // K = SHA1(DER-encoded-subjectName | Kec | DER-encoded-issuerName)" |
|
1544 |
|
1545 ScopedPK11SymKey shared_secret; |
|
1546 ScopedPK11SymKey subject_and_secret; |
|
1547 ScopedPK11SymKey subject_and_secret_and_issuer; |
|
1548 ScopedPK11SymKey sha1_of_subject_and_secret_and_issuer; |
|
1549 |
|
1550 shared_secret = |
|
1551 PK11_PubDeriveWithKDF(keyInfo->privKey, // SECKEYPrivateKey *privKey |
|
1552 keyInfo->ecPopPubKey, // SECKEYPublicKey *pubKey |
|
1553 false, // bool isSender |
|
1554 nullptr, // SECItem *randomA |
|
1555 nullptr, // SECItem *randomB |
|
1556 CKM_ECDH1_DERIVE, // CK_MECHANISM_TYPE derive |
|
1557 CKM_CONCATENATE_DATA_AND_BASE, // CK_MECHANISM_TYPE target |
|
1558 CKA_DERIVE, // CK_ATTRIBUTE_TYPE operation |
|
1559 0, // int keySize |
|
1560 CKD_NULL, // CK_ULONG kdf |
|
1561 nullptr, // SECItem *sharedData |
|
1562 nullptr); // void *wincx |
|
1563 |
|
1564 if (!shared_secret) |
|
1565 return NS_ERROR_FAILURE; |
|
1566 |
|
1567 CK_KEY_DERIVATION_STRING_DATA concat_data_base; |
|
1568 concat_data_base.pData = keyInfo->ecPopCert->derSubject.data; |
|
1569 concat_data_base.ulLen = keyInfo->ecPopCert->derSubject.len; |
|
1570 SECItem concat_data_base_item; |
|
1571 concat_data_base_item.data = (unsigned char*)&concat_data_base; |
|
1572 concat_data_base_item.len = sizeof(CK_KEY_DERIVATION_STRING_DATA); |
|
1573 |
|
1574 subject_and_secret = |
|
1575 PK11_Derive(shared_secret, // PK11SymKey *baseKey |
|
1576 CKM_CONCATENATE_DATA_AND_BASE, // CK_MECHANISM_TYPE mechanism |
|
1577 &concat_data_base_item, // SECItem *param |
|
1578 CKM_CONCATENATE_BASE_AND_DATA, // CK_MECHANISM_TYPE target |
|
1579 CKA_DERIVE, // CK_ATTRIBUTE_TYPE operation |
|
1580 0); // int keySize |
|
1581 |
|
1582 if (!subject_and_secret) |
|
1583 return NS_ERROR_FAILURE; |
|
1584 |
|
1585 CK_KEY_DERIVATION_STRING_DATA concat_base_data; |
|
1586 concat_base_data.pData = keyInfo->ecPopCert->derSubject.data; |
|
1587 concat_base_data.ulLen = keyInfo->ecPopCert->derSubject.len; |
|
1588 SECItem concat_base_data_item; |
|
1589 concat_base_data_item.data = (unsigned char*)&concat_base_data; |
|
1590 concat_base_data_item.len = sizeof(CK_KEY_DERIVATION_STRING_DATA); |
|
1591 |
|
1592 subject_and_secret_and_issuer = |
|
1593 PK11_Derive(subject_and_secret, // PK11SymKey *baseKey |
|
1594 CKM_CONCATENATE_BASE_AND_DATA, // CK_MECHANISM_TYPE mechanism |
|
1595 &concat_base_data_item, // SECItem *param |
|
1596 CKM_SHA1_KEY_DERIVATION, // CK_MECHANISM_TYPE target |
|
1597 CKA_DERIVE, // CK_ATTRIBUTE_TYPE operation |
|
1598 0); // int keySize |
|
1599 |
|
1600 if (!subject_and_secret_and_issuer) |
|
1601 return NS_ERROR_FAILURE; |
|
1602 |
|
1603 sha1_of_subject_and_secret_and_issuer = |
|
1604 PK11_Derive(subject_and_secret_and_issuer, // PK11SymKey *baseKey |
|
1605 CKM_SHA1_KEY_DERIVATION, // CK_MECHANISM_TYPE mechanism |
|
1606 nullptr, // SECItem *param |
|
1607 CKM_SHA_1_HMAC, // CK_MECHANISM_TYPE target |
|
1608 CKA_SIGN, // CK_ATTRIBUTE_TYPE operation |
|
1609 0); // int keySize |
|
1610 |
|
1611 if (!sha1_of_subject_and_secret_and_issuer) |
|
1612 return NS_ERROR_FAILURE; |
|
1613 |
|
1614 PK11Context *context = nullptr; |
|
1615 PK11ContextCleanerTrueParam context_cleaner(context); |
|
1616 |
|
1617 SECItem ignore; |
|
1618 ignore.data = 0; |
|
1619 ignore.len = 0; |
|
1620 |
|
1621 context = |
|
1622 PK11_CreateContextBySymKey(CKM_SHA_1_HMAC, // CK_MECHANISM_TYPE type |
|
1623 CKA_SIGN, // CK_ATTRIBUTE_TYPE operation |
|
1624 sha1_of_subject_and_secret_and_issuer, // PK11SymKey *symKey |
|
1625 &ignore); // SECItem *param |
|
1626 |
|
1627 if (!context) |
|
1628 return NS_ERROR_FAILURE; |
|
1629 |
|
1630 if (SECSuccess != PK11_DigestBegin(context)) |
|
1631 return NS_ERROR_FAILURE; |
|
1632 |
|
1633 if (SECSuccess != |
|
1634 PK11_DigestOp(context, der_request->data, der_request->len)) |
|
1635 return NS_ERROR_FAILURE; |
|
1636 |
|
1637 ScopedAutoSECItem result_hmac_sha1_item(SHA1_LENGTH); |
|
1638 |
|
1639 if (SECSuccess != |
|
1640 PK11_DigestFinal(context, |
|
1641 result_hmac_sha1_item.data, |
|
1642 &result_hmac_sha1_item.len, |
|
1643 SHA1_LENGTH)) |
|
1644 return NS_ERROR_FAILURE; |
|
1645 |
|
1646 if (SECSuccess != |
|
1647 CRMF_CertReqMsgSetKeyAgreementPOP(certReqMsg, crmfDHMAC, |
|
1648 crmfNoSubseqMess, &result_hmac_sha1_item)) |
|
1649 return NS_ERROR_FAILURE; |
|
1650 |
|
1651 return NS_OK; |
|
1652 } |
|
1653 |
|
1654 static nsresult |
|
1655 nsSetProofOfPossession(CRMFCertReqMsg *certReqMsg, |
|
1656 nsKeyPairInfo *keyInfo, |
|
1657 CRMFCertRequest *certReq) |
|
1658 { |
|
1659 // Depending on the type of cert request we'll try |
|
1660 // POP mechanisms in different order, |
|
1661 // and add the result to the cert request message. |
|
1662 // |
|
1663 // For any signing or dual use cert, |
|
1664 // try signing first, |
|
1665 // fall back to DHMAC if we can |
|
1666 // (EC cert requests that provide keygen param "popcert"), |
|
1667 // otherwise fail. |
|
1668 // |
|
1669 // For encryption only certs that get escrowed, this is sufficient. |
|
1670 // |
|
1671 // For encryption only certs, that are not being escrowed, |
|
1672 // try DHMAC if we can |
|
1673 // (EC cert requests that provide keygen param "popcert"), |
|
1674 // otherwise we'll indicate challenge response should be used. |
|
1675 |
|
1676 bool isEncryptionOnlyCertRequest = false; |
|
1677 bool escrowEncryptionOnlyCert = false; |
|
1678 |
|
1679 switch (keyInfo->keyGenType) |
|
1680 { |
|
1681 case rsaEnc: |
|
1682 case ecEnc: |
|
1683 isEncryptionOnlyCertRequest = true; |
|
1684 break; |
|
1685 |
|
1686 case rsaSign: |
|
1687 case rsaDualUse: |
|
1688 case rsaNonrepudiation: |
|
1689 case rsaSignNonrepudiation: |
|
1690 case ecSign: |
|
1691 case ecDualUse: |
|
1692 case ecNonrepudiation: |
|
1693 case ecSignNonrepudiation: |
|
1694 case dsaSign: |
|
1695 case dsaNonrepudiation: |
|
1696 case dsaSignNonrepudiation: |
|
1697 break; |
|
1698 |
|
1699 case dhEx: |
|
1700 /* This case may be supported in the future, but for now, we just fall |
|
1701 * though to the default case and return an error for diffie-hellman keys. |
|
1702 */ |
|
1703 default: |
|
1704 return NS_ERROR_FAILURE; |
|
1705 }; |
|
1706 |
|
1707 if (isEncryptionOnlyCertRequest) |
|
1708 { |
|
1709 escrowEncryptionOnlyCert = |
|
1710 CRMF_CertRequestIsControlPresent(certReq,crmfPKIArchiveOptionsControl); |
|
1711 } |
|
1712 |
|
1713 bool gotDHMACParameters = false; |
|
1714 |
|
1715 if (isECKeyGenType(keyInfo->keyGenType) && |
|
1716 keyInfo->ecPopCert && |
|
1717 keyInfo->ecPopPubKey) |
|
1718 { |
|
1719 gotDHMACParameters = true; |
|
1720 } |
|
1721 |
|
1722 if (isEncryptionOnlyCertRequest) |
|
1723 { |
|
1724 if (escrowEncryptionOnlyCert) |
|
1725 return nsSetKeyEnciphermentPOP(certReqMsg, true); // escrowed |
|
1726 |
|
1727 if (gotDHMACParameters) |
|
1728 return nsSet_EC_DHMAC_ProofOfPossession(certReqMsg, keyInfo, certReq); |
|
1729 |
|
1730 return nsSetKeyEnciphermentPOP(certReqMsg, false); // not escrowed |
|
1731 } |
|
1732 |
|
1733 // !isEncryptionOnlyCertRequest |
|
1734 |
|
1735 SECStatus srv = CRMF_CertReqMsgSetSignaturePOP(certReqMsg, |
|
1736 keyInfo->privKey, |
|
1737 keyInfo->pubKey, nullptr, |
|
1738 nullptr, nullptr); |
|
1739 |
|
1740 if (srv == SECSuccess) |
|
1741 return NS_OK; |
|
1742 |
|
1743 if (!gotDHMACParameters) |
|
1744 return NS_ERROR_FAILURE; |
|
1745 |
|
1746 return nsSet_EC_DHMAC_ProofOfPossession(certReqMsg, keyInfo, certReq); |
|
1747 } |
|
1748 |
|
1749 static void |
|
1750 nsCRMFEncoderItemCount(void *arg, const char *buf, unsigned long len) |
|
1751 { |
|
1752 unsigned long *count = (unsigned long *)arg; |
|
1753 *count += len; |
|
1754 } |
|
1755 |
|
1756 static void |
|
1757 nsCRMFEncoderItemStore(void *arg, const char *buf, unsigned long len) |
|
1758 { |
|
1759 SECItem *dest = (SECItem *)arg; |
|
1760 memcpy(dest->data + dest->len, buf, len); |
|
1761 dest->len += len; |
|
1762 } |
|
1763 |
|
1764 static SECItem* |
|
1765 nsEncodeCertReqMessages(CRMFCertReqMsg **certReqMsgs) |
|
1766 { |
|
1767 unsigned long len = 0; |
|
1768 if (CRMF_EncodeCertReqMessages(certReqMsgs, nsCRMFEncoderItemCount, &len) |
|
1769 != SECSuccess) { |
|
1770 return nullptr; |
|
1771 } |
|
1772 SECItem *dest = (SECItem *)PORT_Alloc(sizeof(SECItem)); |
|
1773 if (!dest) { |
|
1774 return nullptr; |
|
1775 } |
|
1776 dest->type = siBuffer; |
|
1777 dest->data = (unsigned char *)PORT_Alloc(len); |
|
1778 if (!dest->data) { |
|
1779 PORT_Free(dest); |
|
1780 return nullptr; |
|
1781 } |
|
1782 dest->len = 0; |
|
1783 |
|
1784 if (CRMF_EncodeCertReqMessages(certReqMsgs, nsCRMFEncoderItemStore, dest) |
|
1785 != SECSuccess) { |
|
1786 SECITEM_FreeItem(dest, true); |
|
1787 return nullptr; |
|
1788 } |
|
1789 return dest; |
|
1790 } |
|
1791 |
|
1792 //Create a Base64 encoded CRMFCertReqMsg that can be sent to a CA |
|
1793 //requesting one or more certificates to be issued. This function |
|
1794 //creates a single cert request per key pair and then appends it to |
|
1795 //a message that is ultimately sent off to a CA. |
|
1796 static char* |
|
1797 nsCreateReqFromKeyPairs(nsKeyPairInfo *keyids, int32_t numRequests, |
|
1798 char *reqDN, char *regToken, char *authenticator, |
|
1799 nsNSSCertificate *wrappingCert) |
|
1800 { |
|
1801 // We'use the goto notation for clean-up purposes in this function |
|
1802 // that calls the C API of NSS. |
|
1803 int32_t i; |
|
1804 // The ASN1 encoder in NSS wants the last entry in the array to be |
|
1805 // nullptr so that it knows when the last element is. |
|
1806 CRMFCertReqMsg **certReqMsgs = new CRMFCertReqMsg*[numRequests+1]; |
|
1807 CRMFCertRequest *certReq; |
|
1808 if (!certReqMsgs) |
|
1809 return nullptr; |
|
1810 memset(certReqMsgs, 0, sizeof(CRMFCertReqMsg*)*(1+numRequests)); |
|
1811 SECStatus srv; |
|
1812 nsresult rv; |
|
1813 SECItem *encodedReq; |
|
1814 char *retString; |
|
1815 for (i=0; i<numRequests; i++) { |
|
1816 certReq = nsCreateSingleCertReq(&keyids[i], reqDN, regToken, authenticator, |
|
1817 wrappingCert); |
|
1818 if (!certReq) |
|
1819 goto loser; |
|
1820 |
|
1821 certReqMsgs[i] = CRMF_CreateCertReqMsg(); |
|
1822 if (!certReqMsgs[i]) |
|
1823 goto loser; |
|
1824 srv = CRMF_CertReqMsgSetCertRequest(certReqMsgs[i], certReq); |
|
1825 if (srv != SECSuccess) |
|
1826 goto loser; |
|
1827 |
|
1828 rv = nsSetProofOfPossession(certReqMsgs[i], &keyids[i], certReq); |
|
1829 if (NS_FAILED(rv)) |
|
1830 goto loser; |
|
1831 CRMF_DestroyCertRequest(certReq); |
|
1832 } |
|
1833 encodedReq = nsEncodeCertReqMessages(certReqMsgs); |
|
1834 nsFreeCertReqMessages(certReqMsgs, numRequests); |
|
1835 |
|
1836 retString = NSSBase64_EncodeItem (nullptr, nullptr, 0, encodedReq); |
|
1837 SECITEM_FreeItem(encodedReq, true); |
|
1838 return retString; |
|
1839 loser: |
|
1840 nsFreeCertReqMessages(certReqMsgs,numRequests); |
|
1841 return nullptr; |
|
1842 } |
|
1843 |
|
1844 static nsISupports * |
|
1845 GetISupportsFromContext(JSContext *cx) |
|
1846 { |
|
1847 if (JS::ContextOptionsRef(cx).privateIsNSISupports()) |
|
1848 return static_cast<nsISupports *>(JS_GetContextPrivate(cx)); |
|
1849 |
|
1850 return nullptr; |
|
1851 } |
|
1852 |
|
1853 //The top level method which is a member of nsIDOMCrypto |
|
1854 //for generate a base64 encoded CRMF request. |
|
1855 CRMFObject* |
|
1856 nsCrypto::GenerateCRMFRequest(JSContext* aContext, |
|
1857 const nsCString& aReqDN, |
|
1858 const nsCString& aRegToken, |
|
1859 const nsCString& aAuthenticator, |
|
1860 const nsCString& aEaCert, |
|
1861 const nsCString& aJsCallback, |
|
1862 const Sequence<JS::Value>& aArgs, |
|
1863 ErrorResult& aRv) |
|
1864 { |
|
1865 nsNSSShutDownPreventionLock locker; |
|
1866 nsresult nrv; |
|
1867 |
|
1868 uint32_t argc = aArgs.Length(); |
|
1869 |
|
1870 /* |
|
1871 * Get all of the parameters. |
|
1872 */ |
|
1873 if (argc % 3 != 0) { |
|
1874 aRv.ThrowNotEnoughArgsError(); |
|
1875 return nullptr; |
|
1876 } |
|
1877 |
|
1878 if (aReqDN.IsVoid()) { |
|
1879 NS_WARNING("no DN specified"); |
|
1880 aRv.Throw(NS_ERROR_FAILURE); |
|
1881 return nullptr; |
|
1882 } |
|
1883 |
|
1884 if (aJsCallback.IsVoid()) { |
|
1885 NS_WARNING("no completion function specified"); |
|
1886 aRv.Throw(NS_ERROR_FAILURE); |
|
1887 return nullptr; |
|
1888 } |
|
1889 |
|
1890 JS::RootedObject script_obj(aContext, GetWrapper()); |
|
1891 if (MOZ_UNLIKELY(!script_obj)) { |
|
1892 aRv.Throw(NS_ERROR_UNEXPECTED); |
|
1893 return nullptr; |
|
1894 } |
|
1895 |
|
1896 nsCOMPtr<nsIContentSecurityPolicy> csp; |
|
1897 if (!nsContentUtils::GetContentSecurityPolicy(aContext, getter_AddRefs(csp))) { |
|
1898 NS_ERROR("Error: failed to get CSP"); |
|
1899 aRv.Throw(NS_ERROR_FAILURE); |
|
1900 return nullptr; |
|
1901 } |
|
1902 |
|
1903 bool evalAllowed = true; |
|
1904 bool reportEvalViolations = false; |
|
1905 if (csp && NS_FAILED(csp->GetAllowsEval(&reportEvalViolations, &evalAllowed))) { |
|
1906 NS_WARNING("CSP: failed to get allowsEval"); |
|
1907 aRv.Throw(NS_ERROR_FAILURE); |
|
1908 return nullptr; |
|
1909 } |
|
1910 |
|
1911 if (reportEvalViolations) { |
|
1912 NS_NAMED_LITERAL_STRING(scriptSample, "window.crypto.generateCRMFRequest: call to eval() or related function blocked by CSP"); |
|
1913 |
|
1914 const char *fileName; |
|
1915 uint32_t lineNum; |
|
1916 nsJSUtils::GetCallingLocation(aContext, &fileName, &lineNum); |
|
1917 csp->LogViolationDetails(nsIContentSecurityPolicy::VIOLATION_TYPE_EVAL, |
|
1918 NS_ConvertASCIItoUTF16(fileName), |
|
1919 scriptSample, |
|
1920 lineNum, |
|
1921 EmptyString(), |
|
1922 EmptyString()); |
|
1923 } |
|
1924 |
|
1925 if (!evalAllowed) { |
|
1926 NS_WARNING("eval() not allowed by Content Security Policy"); |
|
1927 aRv.Throw(NS_ERROR_FAILURE); |
|
1928 return nullptr; |
|
1929 } |
|
1930 |
|
1931 //Put up some UI warning that someone is trying to |
|
1932 //escrow the private key. |
|
1933 //Don't addref this copy. That way ths reference goes away |
|
1934 //at the same the nsIX09Cert ref goes away. |
|
1935 nsNSSCertificate *escrowCert = nullptr; |
|
1936 nsCOMPtr<nsIX509Cert> nssCert; |
|
1937 bool willEscrow = false; |
|
1938 if (!aEaCert.IsVoid()) { |
|
1939 SECItem certDer = {siBuffer, nullptr, 0}; |
|
1940 SECStatus srv = ATOB_ConvertAsciiToItem(&certDer, aEaCert.get()); |
|
1941 if (srv != SECSuccess) { |
|
1942 aRv.Throw(NS_ERROR_FAILURE); |
|
1943 return nullptr; |
|
1944 } |
|
1945 mozilla::pkix::ScopedCERTCertificate cert( |
|
1946 CERT_NewTempCertificate(CERT_GetDefaultCertDB(), |
|
1947 &certDer, nullptr, false, true)); |
|
1948 if (!cert) { |
|
1949 aRv.Throw(NS_ERROR_FAILURE); |
|
1950 return nullptr; |
|
1951 } |
|
1952 |
|
1953 escrowCert = nsNSSCertificate::Create(cert.get()); |
|
1954 nssCert = escrowCert; |
|
1955 if (!nssCert) { |
|
1956 aRv.Throw(NS_ERROR_OUT_OF_MEMORY); |
|
1957 return nullptr; |
|
1958 } |
|
1959 |
|
1960 nsCOMPtr<nsIDOMCryptoDialogs> dialogs; |
|
1961 nsresult rv = getNSSDialogs(getter_AddRefs(dialogs), |
|
1962 NS_GET_IID(nsIDOMCryptoDialogs), |
|
1963 NS_DOMCRYPTODIALOGS_CONTRACTID); |
|
1964 if (NS_FAILED(rv)) { |
|
1965 aRv.Throw(rv); |
|
1966 return nullptr; |
|
1967 } |
|
1968 |
|
1969 bool okay=false; |
|
1970 { |
|
1971 nsPSMUITracker tracker; |
|
1972 if (tracker.isUIForbidden()) { |
|
1973 okay = false; |
|
1974 } |
|
1975 else { |
|
1976 dialogs->ConfirmKeyEscrow(nssCert, &okay); |
|
1977 } |
|
1978 } |
|
1979 if (!okay) { |
|
1980 aRv.Throw(NS_ERROR_FAILURE); |
|
1981 return nullptr; |
|
1982 } |
|
1983 willEscrow = true; |
|
1984 } |
|
1985 nsCOMPtr<nsIInterfaceRequestor> uiCxt = new PipUIContext; |
|
1986 int32_t numRequests = argc / 3; |
|
1987 nsKeyPairInfo *keyids = new nsKeyPairInfo[numRequests]; |
|
1988 memset(keyids, 0, sizeof(nsKeyPairInfo)*numRequests); |
|
1989 int keyInfoIndex; |
|
1990 uint32_t i; |
|
1991 PK11SlotInfo *slot = nullptr; |
|
1992 // Go through all of the arguments and generate the appropriate key pairs. |
|
1993 for (i=0,keyInfoIndex=0; i<argc; i+=3,keyInfoIndex++) { |
|
1994 nrv = cryptojs_ReadArgsAndGenerateKey(aContext, |
|
1995 const_cast<JS::Value*>(&aArgs[i]), |
|
1996 &keyids[keyInfoIndex], |
|
1997 uiCxt, &slot, willEscrow); |
|
1998 |
|
1999 if (NS_FAILED(nrv)) { |
|
2000 if (slot) |
|
2001 PK11_FreeSlot(slot); |
|
2002 nsFreeKeyPairInfo(keyids,numRequests); |
|
2003 aRv.Throw(nrv); |
|
2004 return nullptr; |
|
2005 } |
|
2006 } |
|
2007 // By this time we'd better have a slot for the key gen. |
|
2008 NS_ASSERTION(slot, "There was no slot selected for key generation"); |
|
2009 if (slot) |
|
2010 PK11_FreeSlot(slot); |
|
2011 |
|
2012 char *encodedRequest = nsCreateReqFromKeyPairs(keyids,numRequests, |
|
2013 const_cast<char*>(aReqDN.get()), |
|
2014 const_cast<char*>(aRegToken.get()), |
|
2015 const_cast<char*>(aAuthenticator.get()), |
|
2016 escrowCert); |
|
2017 #ifdef DEBUG_javi |
|
2018 printf ("Created the folloing CRMF request:\n%s\n", encodedRequest); |
|
2019 #endif |
|
2020 if (!encodedRequest) { |
|
2021 nsFreeKeyPairInfo(keyids, numRequests); |
|
2022 aRv.Throw(NS_ERROR_FAILURE); |
|
2023 return nullptr; |
|
2024 } |
|
2025 CRMFObject* newObject = new CRMFObject(); |
|
2026 newObject->SetCRMFRequest(encodedRequest); |
|
2027 PORT_Free(encodedRequest); |
|
2028 nsFreeKeyPairInfo(keyids, numRequests); |
|
2029 |
|
2030 // Post an event on the UI queue so that the JS gets called after |
|
2031 // we return control to the JS layer. Why do we have to this? |
|
2032 // Because when this API was implemented for PSM 1.x w/ Communicator, |
|
2033 // the only way to make this method work was to have a callback |
|
2034 // in the JS layer that got called after key generation had happened. |
|
2035 // So for backwards compatibility, we return control and then just post |
|
2036 // an event to call the JS the script provides as the code to execute |
|
2037 // when the request has been generated. |
|
2038 // |
|
2039 |
|
2040 nsCOMPtr<nsIScriptSecurityManager> secMan = |
|
2041 do_GetService(NS_SCRIPTSECURITYMANAGER_CONTRACTID); |
|
2042 if (MOZ_UNLIKELY(!secMan)) { |
|
2043 aRv.Throw(NS_ERROR_UNEXPECTED); |
|
2044 return nullptr; |
|
2045 } |
|
2046 |
|
2047 nsCOMPtr<nsIPrincipal> principals; |
|
2048 nsresult rv = secMan->GetSubjectPrincipal(getter_AddRefs(principals)); |
|
2049 if (NS_FAILED(nrv)) { |
|
2050 aRv.Throw(nrv); |
|
2051 return nullptr; |
|
2052 } |
|
2053 if (MOZ_UNLIKELY(!principals)) { |
|
2054 aRv.Throw(NS_ERROR_UNEXPECTED); |
|
2055 return nullptr; |
|
2056 } |
|
2057 |
|
2058 nsCryptoRunArgs *args = new nsCryptoRunArgs(aContext); |
|
2059 |
|
2060 args->m_kungFuDeathGrip = GetISupportsFromContext(aContext); |
|
2061 args->m_scope = JS_GetParent(script_obj); |
|
2062 if (!aJsCallback.IsVoid()) { |
|
2063 args->m_jsCallback = aJsCallback; |
|
2064 } |
|
2065 args->m_principals = principals; |
|
2066 |
|
2067 nsCryptoRunnable *cryptoRunnable = new nsCryptoRunnable(args); |
|
2068 |
|
2069 rv = NS_DispatchToMainThread(cryptoRunnable); |
|
2070 if (NS_FAILED(rv)) { |
|
2071 aRv.Throw(rv); |
|
2072 delete cryptoRunnable; |
|
2073 } |
|
2074 |
|
2075 return newObject; |
|
2076 } |
|
2077 |
|
2078 // Reminder that we inherit the memory passed into us here. |
|
2079 // An implementation to let us back up certs as an event. |
|
2080 nsP12Runnable::nsP12Runnable(nsIX509Cert **certArr, int32_t numCerts, |
|
2081 nsIPK11Token *token) |
|
2082 { |
|
2083 mCertArr = certArr; |
|
2084 mNumCerts = numCerts; |
|
2085 mToken = token; |
|
2086 } |
|
2087 |
|
2088 nsP12Runnable::~nsP12Runnable() |
|
2089 { |
|
2090 int32_t i; |
|
2091 for (i=0; i<mNumCerts; i++) { |
|
2092 NS_IF_RELEASE(mCertArr[i]); |
|
2093 } |
|
2094 delete []mCertArr; |
|
2095 } |
|
2096 |
|
2097 |
|
2098 //Implementation that backs cert(s) into a PKCS12 file |
|
2099 NS_IMETHODIMP |
|
2100 nsP12Runnable::Run() |
|
2101 { |
|
2102 NS_DEFINE_CID(kNSSComponentCID, NS_NSSCOMPONENT_CID); |
|
2103 |
|
2104 NS_ASSERTION(NS_IsMainThread(), "nsP12Runnable dispatched to the wrong thread"); |
|
2105 |
|
2106 nsNSSShutDownPreventionLock locker; |
|
2107 NS_ASSERTION(mCertArr, "certArr is NULL while trying to back up"); |
|
2108 |
|
2109 nsString final; |
|
2110 nsString temp; |
|
2111 nsresult rv; |
|
2112 |
|
2113 nsCOMPtr<nsINSSComponent> nssComponent(do_GetService(kNSSComponentCID, &rv)); |
|
2114 if (NS_FAILED(rv)) |
|
2115 return rv; |
|
2116 |
|
2117 //Build up the message that let's the user know we're trying to |
|
2118 //make PKCS12 backups of the new certs. |
|
2119 nssComponent->GetPIPNSSBundleString("ForcedBackup1", final); |
|
2120 final.Append(MOZ_UTF16("\n\n")); |
|
2121 nssComponent->GetPIPNSSBundleString("ForcedBackup2", temp); |
|
2122 final.Append(temp.get()); |
|
2123 final.Append(MOZ_UTF16("\n\n")); |
|
2124 |
|
2125 nssComponent->GetPIPNSSBundleString("ForcedBackup3", temp); |
|
2126 |
|
2127 final.Append(temp.get()); |
|
2128 nsNSSComponent::ShowAlertWithConstructedString(final); |
|
2129 |
|
2130 nsCOMPtr<nsIFilePicker> filePicker = |
|
2131 do_CreateInstance("@mozilla.org/filepicker;1", &rv); |
|
2132 if (!filePicker) { |
|
2133 NS_ERROR("Could not create a file picker when backing up certs."); |
|
2134 return rv; |
|
2135 } |
|
2136 |
|
2137 nsCOMPtr<nsIWindowWatcher> wwatch = |
|
2138 (do_GetService(NS_WINDOWWATCHER_CONTRACTID, &rv)); |
|
2139 NS_ENSURE_SUCCESS(rv, rv); |
|
2140 |
|
2141 nsCOMPtr<nsIDOMWindow> window; |
|
2142 wwatch->GetActiveWindow(getter_AddRefs(window)); |
|
2143 |
|
2144 nsString filePickMessage; |
|
2145 nssComponent->GetPIPNSSBundleString("chooseP12BackupFileDialog", |
|
2146 filePickMessage); |
|
2147 rv = filePicker->Init(window, filePickMessage, nsIFilePicker::modeSave); |
|
2148 NS_ENSURE_SUCCESS(rv, rv); |
|
2149 |
|
2150 filePicker->AppendFilter(NS_LITERAL_STRING("PKCS12"), |
|
2151 NS_LITERAL_STRING("*.p12")); |
|
2152 filePicker->AppendFilters(nsIFilePicker::filterAll); |
|
2153 |
|
2154 int16_t dialogReturn; |
|
2155 filePicker->Show(&dialogReturn); |
|
2156 if (dialogReturn == nsIFilePicker::returnCancel) |
|
2157 return NS_OK; //User canceled. It'd be nice if they couldn't, |
|
2158 //but oh well. |
|
2159 |
|
2160 nsCOMPtr<nsIFile> localFile; |
|
2161 rv = filePicker->GetFile(getter_AddRefs(localFile)); |
|
2162 if (NS_FAILED(rv)) |
|
2163 return NS_ERROR_FAILURE; |
|
2164 |
|
2165 nsPKCS12Blob p12Cxt; |
|
2166 |
|
2167 p12Cxt.SetToken(mToken); |
|
2168 p12Cxt.ExportToFile(localFile, mCertArr, mNumCerts); |
|
2169 return NS_OK; |
|
2170 } |
|
2171 |
|
2172 nsCryptoRunArgs::nsCryptoRunArgs(JSContext *cx) : m_cx(cx), m_scope(cx) {} |
|
2173 |
|
2174 nsCryptoRunArgs::~nsCryptoRunArgs() {} |
|
2175 |
|
2176 nsCryptoRunnable::nsCryptoRunnable(nsCryptoRunArgs *args) |
|
2177 { |
|
2178 nsNSSShutDownPreventionLock locker; |
|
2179 NS_ASSERTION(args,"Passed nullptr to nsCryptoRunnable constructor."); |
|
2180 m_args = args; |
|
2181 NS_IF_ADDREF(m_args); |
|
2182 } |
|
2183 |
|
2184 nsCryptoRunnable::~nsCryptoRunnable() |
|
2185 { |
|
2186 nsNSSShutDownPreventionLock locker; |
|
2187 NS_IF_RELEASE(m_args); |
|
2188 } |
|
2189 |
|
2190 //Implementation that runs the callback passed to |
|
2191 //crypto.generateCRMFRequest as an event. |
|
2192 NS_IMETHODIMP |
|
2193 nsCryptoRunnable::Run() |
|
2194 { |
|
2195 nsNSSShutDownPreventionLock locker; |
|
2196 AutoPushJSContext cx(m_args->m_cx); |
|
2197 JSAutoRequest ar(cx); |
|
2198 JS::Rooted<JSObject*> scope(cx, m_args->m_scope); |
|
2199 JSAutoCompartment ac(cx, scope); |
|
2200 |
|
2201 bool ok = |
|
2202 JS_EvaluateScript(cx, scope, m_args->m_jsCallback, |
|
2203 strlen(m_args->m_jsCallback), nullptr, 0); |
|
2204 return ok ? NS_OK : NS_ERROR_FAILURE; |
|
2205 } |
|
2206 |
|
2207 //Quick helper function to check if a newly issued cert |
|
2208 //already exists in the user's database. |
|
2209 static bool |
|
2210 nsCertAlreadyExists(SECItem *derCert) |
|
2211 { |
|
2212 CERTCertDBHandle *handle = CERT_GetDefaultCertDB(); |
|
2213 bool retVal = false; |
|
2214 |
|
2215 mozilla::pkix::ScopedCERTCertificate cert( |
|
2216 CERT_FindCertByDERCert(handle, derCert)); |
|
2217 if (cert) { |
|
2218 if (cert->isperm && !cert->nickname && !cert->emailAddr) { |
|
2219 //If the cert doesn't have a nickname or email addr, it is |
|
2220 //bogus cruft, so delete it. |
|
2221 SEC_DeletePermCertificate(cert.get()); |
|
2222 } else if (cert->isperm) { |
|
2223 retVal = true; |
|
2224 } |
|
2225 } |
|
2226 return retVal; |
|
2227 } |
|
2228 |
|
2229 static int32_t |
|
2230 nsCertListCount(CERTCertList *certList) |
|
2231 { |
|
2232 int32_t numCerts = 0; |
|
2233 CERTCertListNode *node; |
|
2234 |
|
2235 node = CERT_LIST_HEAD(certList); |
|
2236 while (!CERT_LIST_END(node, certList)) { |
|
2237 numCerts++; |
|
2238 node = CERT_LIST_NEXT(node); |
|
2239 } |
|
2240 return numCerts; |
|
2241 } |
|
2242 |
|
2243 //Import user certificates that arrive as a CMMF base64 encoded |
|
2244 //string. |
|
2245 void |
|
2246 nsCrypto::ImportUserCertificates(const nsAString& aNickname, |
|
2247 const nsAString& aCmmfResponse, |
|
2248 bool aDoForcedBackup, |
|
2249 nsAString& aReturn, |
|
2250 ErrorResult& aRv) |
|
2251 { |
|
2252 nsNSSShutDownPreventionLock locker; |
|
2253 char *nickname=nullptr, *cmmfResponse=nullptr; |
|
2254 CMMFCertRepContent *certRepContent = nullptr; |
|
2255 int numResponses = 0; |
|
2256 nsIX509Cert **certArr = nullptr; |
|
2257 int i; |
|
2258 CMMFCertResponse *currResponse; |
|
2259 CMMFPKIStatus reqStatus; |
|
2260 CERTCertificate *currCert; |
|
2261 PK11SlotInfo *slot; |
|
2262 nsAutoCString localNick; |
|
2263 nsCOMPtr<nsIInterfaceRequestor> ctx = new PipUIContext(); |
|
2264 nsresult rv = NS_OK; |
|
2265 nsCOMPtr<nsIPK11Token> token; |
|
2266 |
|
2267 nickname = ToNewCString(aNickname); |
|
2268 cmmfResponse = ToNewCString(aCmmfResponse); |
|
2269 if (nsCRT::strcmp("null", nickname) == 0) { |
|
2270 nsMemory::Free(nickname); |
|
2271 nickname = nullptr; |
|
2272 } |
|
2273 |
|
2274 SECItem cmmfDer = {siBuffer, nullptr, 0}; |
|
2275 SECStatus srv = ATOB_ConvertAsciiToItem(&cmmfDer, cmmfResponse); |
|
2276 |
|
2277 if (srv != SECSuccess) { |
|
2278 rv = NS_ERROR_FAILURE; |
|
2279 goto loser; |
|
2280 } |
|
2281 |
|
2282 certRepContent = CMMF_CreateCertRepContentFromDER(CERT_GetDefaultCertDB(), |
|
2283 (const char*)cmmfDer.data, |
|
2284 cmmfDer.len); |
|
2285 if (!certRepContent) { |
|
2286 rv = NS_ERROR_FAILURE; |
|
2287 goto loser; |
|
2288 } |
|
2289 |
|
2290 numResponses = CMMF_CertRepContentGetNumResponses(certRepContent); |
|
2291 |
|
2292 if (aDoForcedBackup) { |
|
2293 //We've been asked to force the user to back up these |
|
2294 //certificates. Let's keep an array of them around which |
|
2295 //we pass along to the nsP12Runnable to use. |
|
2296 certArr = new nsIX509Cert*[numResponses]; |
|
2297 // If this is nullptr, chances are we're gonna fail really |
|
2298 // soon, but let's try to keep going just in case. |
|
2299 if (!certArr) |
|
2300 aDoForcedBackup = false; |
|
2301 |
|
2302 memset(certArr, 0, sizeof(nsIX509Cert*)*numResponses); |
|
2303 } |
|
2304 for (i=0; i<numResponses; i++) { |
|
2305 currResponse = CMMF_CertRepContentGetResponseAtIndex(certRepContent,i); |
|
2306 if (!currResponse) { |
|
2307 rv = NS_ERROR_FAILURE; |
|
2308 goto loser; |
|
2309 } |
|
2310 reqStatus = CMMF_CertResponseGetPKIStatusInfoStatus(currResponse); |
|
2311 if (!(reqStatus == cmmfGranted || reqStatus == cmmfGrantedWithMods)) { |
|
2312 // The CA didn't give us the cert we requested. |
|
2313 rv = NS_ERROR_FAILURE; |
|
2314 goto loser; |
|
2315 } |
|
2316 currCert = CMMF_CertResponseGetCertificate(currResponse, |
|
2317 CERT_GetDefaultCertDB()); |
|
2318 if (!currCert) { |
|
2319 rv = NS_ERROR_FAILURE; |
|
2320 goto loser; |
|
2321 } |
|
2322 |
|
2323 if (nsCertAlreadyExists(&currCert->derCert)) { |
|
2324 if (aDoForcedBackup) { |
|
2325 certArr[i] = nsNSSCertificate::Create(currCert); |
|
2326 if (!certArr[i]) |
|
2327 goto loser; |
|
2328 NS_ADDREF(certArr[i]); |
|
2329 } |
|
2330 CERT_DestroyCertificate(currCert); |
|
2331 CMMF_DestroyCertResponse(currResponse); |
|
2332 continue; |
|
2333 } |
|
2334 // Let's figure out which nickname to give the cert. If |
|
2335 // a certificate with the same subject name already exists, |
|
2336 // then just use that one, otherwise, get the default nickname. |
|
2337 if (currCert->nickname) { |
|
2338 localNick = currCert->nickname; |
|
2339 } |
|
2340 else if (!nickname || nickname[0] == '\0') { |
|
2341 nsNSSCertificateDB::get_default_nickname(currCert, ctx, localNick, locker); |
|
2342 } else { |
|
2343 //This is the case where we're getting a brand new |
|
2344 //cert that doesn't have the same subjectName as a cert |
|
2345 //that already exists in our db and the CA page has |
|
2346 //designated a nickname to use for the newly issued cert. |
|
2347 localNick = nickname; |
|
2348 } |
|
2349 { |
|
2350 char *cast_const_away = const_cast<char*>(localNick.get()); |
|
2351 slot = PK11_ImportCertForKey(currCert, cast_const_away, ctx); |
|
2352 } |
|
2353 if (!slot) { |
|
2354 rv = NS_ERROR_FAILURE; |
|
2355 goto loser; |
|
2356 } |
|
2357 if (aDoForcedBackup) { |
|
2358 certArr[i] = nsNSSCertificate::Create(currCert); |
|
2359 if (!certArr[i]) |
|
2360 goto loser; |
|
2361 NS_ADDREF(certArr[i]); |
|
2362 } |
|
2363 CERT_DestroyCertificate(currCert); |
|
2364 |
|
2365 if (!token) |
|
2366 token = new nsPK11Token(slot); |
|
2367 |
|
2368 PK11_FreeSlot(slot); |
|
2369 CMMF_DestroyCertResponse(currResponse); |
|
2370 } |
|
2371 //Let the loser: label take care of freeing up our reference to |
|
2372 //nickname (This way we don't free it twice and avoid crashing. |
|
2373 //That would be a good thing. |
|
2374 |
|
2375 //Import the root chain into the cert db. |
|
2376 { |
|
2377 mozilla::pkix::ScopedCERTCertList |
|
2378 caPubs(CMMF_CertRepContentGetCAPubs(certRepContent)); |
|
2379 if (caPubs) { |
|
2380 int32_t numCAs = nsCertListCount(caPubs.get()); |
|
2381 |
|
2382 NS_ASSERTION(numCAs > 0, "Invalid number of CA's"); |
|
2383 if (numCAs > 0) { |
|
2384 CERTCertListNode *node; |
|
2385 SECItem *derCerts; |
|
2386 |
|
2387 derCerts = static_cast<SECItem*> |
|
2388 (nsMemory::Alloc(sizeof(SECItem)*numCAs)); |
|
2389 if (!derCerts) { |
|
2390 rv = NS_ERROR_OUT_OF_MEMORY; |
|
2391 goto loser; |
|
2392 } |
|
2393 for (node = CERT_LIST_HEAD(caPubs), i=0; |
|
2394 !CERT_LIST_END(node, caPubs); |
|
2395 node = CERT_LIST_NEXT(node), i++) { |
|
2396 derCerts[i] = node->cert->derCert; |
|
2397 } |
|
2398 nsNSSCertificateDB::ImportValidCACerts(numCAs, derCerts, ctx, locker); |
|
2399 nsMemory::Free(derCerts); |
|
2400 } |
|
2401 } |
|
2402 } |
|
2403 |
|
2404 if (aDoForcedBackup) { |
|
2405 // I can't pop up a file picker from the depths of JavaScript, |
|
2406 // so I'll just post an event on the UI queue to do the backups |
|
2407 // later. |
|
2408 nsCOMPtr<nsIRunnable> p12Runnable = new nsP12Runnable(certArr, numResponses, |
|
2409 token); |
|
2410 if (!p12Runnable) { |
|
2411 rv = NS_ERROR_FAILURE; |
|
2412 goto loser; |
|
2413 } |
|
2414 |
|
2415 // null out the certArr pointer which has now been inherited by |
|
2416 // the nsP12Runnable instance so that we don't free up the |
|
2417 // memory on the way out. |
|
2418 certArr = nullptr; |
|
2419 |
|
2420 rv = NS_DispatchToMainThread(p12Runnable); |
|
2421 if (NS_FAILED(rv)) |
|
2422 goto loser; |
|
2423 } |
|
2424 |
|
2425 loser: |
|
2426 if (certArr) { |
|
2427 for (i=0; i<numResponses; i++) { |
|
2428 NS_IF_RELEASE(certArr[i]); |
|
2429 } |
|
2430 delete []certArr; |
|
2431 } |
|
2432 aReturn.Assign(EmptyString()); |
|
2433 if (nickname) { |
|
2434 NS_Free(nickname); |
|
2435 } |
|
2436 if (cmmfResponse) { |
|
2437 NS_Free(cmmfResponse); |
|
2438 } |
|
2439 if (certRepContent) { |
|
2440 CMMF_DestroyCertRepContent(certRepContent); |
|
2441 } |
|
2442 |
|
2443 if (NS_FAILED(rv)) { |
|
2444 aRv.Throw(rv); |
|
2445 } |
|
2446 } |
|
2447 |
|
2448 static void |
|
2449 GetDocumentFromContext(JSContext *cx, nsIDocument **aDocument) |
|
2450 { |
|
2451 // Get the script context. |
|
2452 nsIScriptContext* scriptContext = GetScriptContextFromJSContext(cx); |
|
2453 if (!scriptContext) { |
|
2454 return; |
|
2455 } |
|
2456 |
|
2457 nsCOMPtr<nsIDOMWindow> domWindow = |
|
2458 do_QueryInterface(scriptContext->GetGlobalObject()); |
|
2459 if (!domWindow) { |
|
2460 return; |
|
2461 } |
|
2462 |
|
2463 nsCOMPtr<nsIDOMDocument> domDocument; |
|
2464 domWindow->GetDocument(getter_AddRefs(domDocument)); |
|
2465 if (!domDocument) { |
|
2466 return; |
|
2467 } |
|
2468 |
|
2469 CallQueryInterface(domDocument, aDocument); |
|
2470 |
|
2471 return; |
|
2472 } |
|
2473 |
|
2474 void signTextOutputCallback(void *arg, const char *buf, unsigned long len) |
|
2475 { |
|
2476 ((nsCString*)arg)->Append(buf, len); |
|
2477 } |
|
2478 |
|
2479 void |
|
2480 nsCrypto::SignText(JSContext* aContext, |
|
2481 const nsAString& aStringToSign, |
|
2482 const nsAString& aCaOption, |
|
2483 const Sequence<nsCString>& aArgs, |
|
2484 nsAString& aReturn) |
|
2485 { |
|
2486 // XXX This code should return error codes, but we're keeping this |
|
2487 // backwards compatible with NS4.x and so we can't throw exceptions. |
|
2488 NS_NAMED_LITERAL_STRING(internalError, "error:internalError"); |
|
2489 |
|
2490 aReturn.Truncate(); |
|
2491 |
|
2492 uint32_t argc = aArgs.Length(); |
|
2493 |
|
2494 if (!aCaOption.EqualsLiteral("auto") && |
|
2495 !aCaOption.EqualsLiteral("ask")) { |
|
2496 NS_WARNING("caOption argument must be ask or auto"); |
|
2497 aReturn.Append(internalError); |
|
2498 |
|
2499 return; |
|
2500 } |
|
2501 |
|
2502 // It was decided to always behave as if "ask" were specified. |
|
2503 // XXX Should we warn in the JS Console for auto? |
|
2504 |
|
2505 nsCOMPtr<nsIInterfaceRequestor> uiContext = new PipUIContext; |
|
2506 if (!uiContext) { |
|
2507 aReturn.Append(internalError); |
|
2508 |
|
2509 return; |
|
2510 } |
|
2511 |
|
2512 bool bestOnly = true; |
|
2513 bool validOnly = true; |
|
2514 CERTCertList* certList = |
|
2515 CERT_FindUserCertsByUsage(CERT_GetDefaultCertDB(), certUsageEmailSigner, |
|
2516 bestOnly, validOnly, uiContext); |
|
2517 |
|
2518 uint32_t numCAs = argc; |
|
2519 if (numCAs > 0) { |
|
2520 nsAutoArrayPtr<char*> caNames(new char*[numCAs]); |
|
2521 if (!caNames) { |
|
2522 aReturn.Append(internalError); |
|
2523 return; |
|
2524 } |
|
2525 |
|
2526 uint32_t i; |
|
2527 for (i = 0; i < numCAs; ++i) |
|
2528 caNames[i] = const_cast<char*>(aArgs[i].get()); |
|
2529 |
|
2530 if (certList && |
|
2531 CERT_FilterCertListByCANames(certList, numCAs, caNames, |
|
2532 certUsageEmailSigner) != SECSuccess) { |
|
2533 aReturn.Append(internalError); |
|
2534 |
|
2535 return; |
|
2536 } |
|
2537 } |
|
2538 |
|
2539 if (!certList || CERT_LIST_EMPTY(certList)) { |
|
2540 aReturn.AppendLiteral("error:noMatchingCert"); |
|
2541 |
|
2542 return; |
|
2543 } |
|
2544 |
|
2545 nsCOMPtr<nsIFormSigningDialog> fsd = |
|
2546 do_CreateInstance(NS_FORMSIGNINGDIALOG_CONTRACTID); |
|
2547 if (!fsd) { |
|
2548 aReturn.Append(internalError); |
|
2549 |
|
2550 return; |
|
2551 } |
|
2552 |
|
2553 nsCOMPtr<nsIDocument> document; |
|
2554 GetDocumentFromContext(aContext, getter_AddRefs(document)); |
|
2555 if (!document) { |
|
2556 aReturn.Append(internalError); |
|
2557 |
|
2558 return; |
|
2559 } |
|
2560 |
|
2561 // Get the hostname from the URL of the document. |
|
2562 nsIURI* uri = document->GetDocumentURI(); |
|
2563 if (!uri) { |
|
2564 aReturn.Append(internalError); |
|
2565 |
|
2566 return; |
|
2567 } |
|
2568 |
|
2569 nsresult rv; |
|
2570 |
|
2571 nsCString host; |
|
2572 rv = uri->GetHost(host); |
|
2573 if (NS_FAILED(rv)) { |
|
2574 aReturn.Append(internalError); |
|
2575 |
|
2576 return; |
|
2577 } |
|
2578 |
|
2579 int32_t numberOfCerts = 0; |
|
2580 CERTCertListNode* node; |
|
2581 for (node = CERT_LIST_HEAD(certList); !CERT_LIST_END(node, certList); |
|
2582 node = CERT_LIST_NEXT(node)) { |
|
2583 ++numberOfCerts; |
|
2584 } |
|
2585 |
|
2586 ScopedCERTCertNicknames nicknames(getNSSCertNicknamesFromCertList(certList)); |
|
2587 |
|
2588 if (!nicknames) { |
|
2589 aReturn.Append(internalError); |
|
2590 |
|
2591 return; |
|
2592 } |
|
2593 |
|
2594 NS_ASSERTION(nicknames->numnicknames == numberOfCerts, |
|
2595 "nicknames->numnicknames != numberOfCerts"); |
|
2596 |
|
2597 nsAutoArrayPtr<char16_t*> certNicknameList(new char16_t*[nicknames->numnicknames * 2]); |
|
2598 if (!certNicknameList) { |
|
2599 aReturn.Append(internalError); |
|
2600 |
|
2601 return; |
|
2602 } |
|
2603 |
|
2604 char16_t** certDetailsList = certNicknameList.get() + nicknames->numnicknames; |
|
2605 |
|
2606 int32_t certsToUse; |
|
2607 for (node = CERT_LIST_HEAD(certList), certsToUse = 0; |
|
2608 !CERT_LIST_END(node, certList) && certsToUse < nicknames->numnicknames; |
|
2609 node = CERT_LIST_NEXT(node)) { |
|
2610 RefPtr<nsNSSCertificate> tempCert(nsNSSCertificate::Create(node->cert)); |
|
2611 if (tempCert) { |
|
2612 nsAutoString nickWithSerial, details; |
|
2613 rv = tempCert->FormatUIStrings(NS_ConvertUTF8toUTF16(nicknames->nicknames[certsToUse]), |
|
2614 nickWithSerial, details); |
|
2615 if (NS_SUCCEEDED(rv)) { |
|
2616 certNicknameList[certsToUse] = ToNewUnicode(nickWithSerial); |
|
2617 if (certNicknameList[certsToUse]) { |
|
2618 certDetailsList[certsToUse] = ToNewUnicode(details); |
|
2619 if (!certDetailsList[certsToUse]) { |
|
2620 nsMemory::Free(certNicknameList[certsToUse]); |
|
2621 continue; |
|
2622 } |
|
2623 ++certsToUse; |
|
2624 } |
|
2625 } |
|
2626 } |
|
2627 } |
|
2628 |
|
2629 if (certsToUse == 0) { |
|
2630 aReturn.Append(internalError); |
|
2631 |
|
2632 return; |
|
2633 } |
|
2634 |
|
2635 NS_ConvertUTF8toUTF16 utf16Host(host); |
|
2636 |
|
2637 CERTCertificate *signingCert = nullptr; |
|
2638 bool tryAgain, canceled; |
|
2639 nsAutoString password; |
|
2640 do { |
|
2641 // Throw up the form signing confirmation dialog and get back the index |
|
2642 // of the selected cert. |
|
2643 int32_t selectedIndex = -1; |
|
2644 rv = fsd->ConfirmSignText(uiContext, utf16Host, aStringToSign, |
|
2645 const_cast<const char16_t**>(certNicknameList.get()), |
|
2646 const_cast<const char16_t**>(certDetailsList), |
|
2647 certsToUse, &selectedIndex, password, |
|
2648 &canceled); |
|
2649 if (NS_FAILED(rv) || canceled) { |
|
2650 break; // out of tryAgain loop |
|
2651 } |
|
2652 |
|
2653 int32_t j = 0; |
|
2654 for (node = CERT_LIST_HEAD(certList); !CERT_LIST_END(node, certList); |
|
2655 node = CERT_LIST_NEXT(node)) { |
|
2656 if (j == selectedIndex) { |
|
2657 signingCert = CERT_DupCertificate(node->cert); |
|
2658 break; // out of cert list iteration loop |
|
2659 } |
|
2660 ++j; |
|
2661 } |
|
2662 |
|
2663 if (!signingCert) { |
|
2664 rv = NS_ERROR_FAILURE; |
|
2665 break; // out of tryAgain loop |
|
2666 } |
|
2667 |
|
2668 NS_ConvertUTF16toUTF8 pwUtf8(password); |
|
2669 |
|
2670 tryAgain = |
|
2671 PK11_CheckUserPassword(signingCert->slot, |
|
2672 const_cast<char *>(pwUtf8.get())) != SECSuccess; |
|
2673 // XXX we should show an error dialog before retrying |
|
2674 } while (tryAgain); |
|
2675 |
|
2676 int32_t k; |
|
2677 for (k = 0; k < certsToUse; ++k) { |
|
2678 nsMemory::Free(certNicknameList[k]); |
|
2679 nsMemory::Free(certDetailsList[k]); |
|
2680 } |
|
2681 |
|
2682 if (NS_FAILED(rv)) { // something went wrong inside the tryAgain loop |
|
2683 aReturn.Append(internalError); |
|
2684 |
|
2685 return; |
|
2686 } |
|
2687 |
|
2688 if (canceled) { |
|
2689 aReturn.AppendLiteral("error:userCancel"); |
|
2690 |
|
2691 return; |
|
2692 } |
|
2693 |
|
2694 SECKEYPrivateKey* privKey = PK11_FindKeyByAnyCert(signingCert, uiContext); |
|
2695 if (!privKey) { |
|
2696 aReturn.Append(internalError); |
|
2697 |
|
2698 return; |
|
2699 } |
|
2700 |
|
2701 nsAutoCString charset(document->GetDocumentCharacterSet()); |
|
2702 |
|
2703 // XXX Doing what nsFormSubmission::GetEncoder does (see |
|
2704 // http://bugzilla.mozilla.org/show_bug.cgi?id=81203). |
|
2705 if (charset.EqualsLiteral("ISO-8859-1")) { |
|
2706 charset.AssignLiteral("windows-1252"); |
|
2707 } |
|
2708 |
|
2709 nsCOMPtr<nsISaveAsCharset> encoder = |
|
2710 do_CreateInstance(NS_SAVEASCHARSET_CONTRACTID); |
|
2711 if (encoder) { |
|
2712 rv = encoder->Init(charset.get(), |
|
2713 (nsISaveAsCharset::attr_EntityAfterCharsetConv + |
|
2714 nsISaveAsCharset::attr_FallbackDecimalNCR), |
|
2715 0); |
|
2716 } |
|
2717 |
|
2718 nsXPIDLCString buffer; |
|
2719 if (aStringToSign.Length() > 0) { |
|
2720 if (encoder && NS_SUCCEEDED(rv)) { |
|
2721 rv = encoder->Convert(PromiseFlatString(aStringToSign).get(), |
|
2722 getter_Copies(buffer)); |
|
2723 if (NS_FAILED(rv)) { |
|
2724 aReturn.Append(internalError); |
|
2725 |
|
2726 return; |
|
2727 } |
|
2728 } |
|
2729 else { |
|
2730 AppendUTF16toUTF8(aStringToSign, buffer); |
|
2731 } |
|
2732 } |
|
2733 |
|
2734 HASHContext *hc = HASH_Create(HASH_AlgSHA1); |
|
2735 if (!hc) { |
|
2736 aReturn.Append(internalError); |
|
2737 |
|
2738 return; |
|
2739 } |
|
2740 |
|
2741 unsigned char hash[SHA1_LENGTH]; |
|
2742 |
|
2743 SECItem digest; |
|
2744 digest.data = hash; |
|
2745 |
|
2746 HASH_Begin(hc); |
|
2747 HASH_Update(hc, reinterpret_cast<const unsigned char*>(buffer.get()), |
|
2748 buffer.Length()); |
|
2749 HASH_End(hc, digest.data, &digest.len, SHA1_LENGTH); |
|
2750 HASH_Destroy(hc); |
|
2751 |
|
2752 nsCString p7; |
|
2753 SECStatus srv = SECFailure; |
|
2754 |
|
2755 SEC_PKCS7ContentInfo *ci = SEC_PKCS7CreateSignedData(signingCert, |
|
2756 certUsageEmailSigner, |
|
2757 nullptr, SEC_OID_SHA1, |
|
2758 &digest, nullptr, uiContext); |
|
2759 if (ci) { |
|
2760 srv = SEC_PKCS7IncludeCertChain(ci, nullptr); |
|
2761 if (srv == SECSuccess) { |
|
2762 srv = SEC_PKCS7AddSigningTime(ci); |
|
2763 if (srv == SECSuccess) { |
|
2764 srv = SEC_PKCS7Encode(ci, signTextOutputCallback, &p7, nullptr, nullptr, |
|
2765 uiContext); |
|
2766 } |
|
2767 } |
|
2768 |
|
2769 SEC_PKCS7DestroyContentInfo(ci); |
|
2770 } |
|
2771 |
|
2772 if (srv != SECSuccess) { |
|
2773 aReturn.Append(internalError); |
|
2774 |
|
2775 return; |
|
2776 } |
|
2777 |
|
2778 SECItem binary_item; |
|
2779 binary_item.data = reinterpret_cast<unsigned char*> |
|
2780 (const_cast<char*>(p7.get())); |
|
2781 binary_item.len = p7.Length(); |
|
2782 |
|
2783 char *result = NSSBase64_EncodeItem(nullptr, nullptr, 0, &binary_item); |
|
2784 if (result) { |
|
2785 AppendASCIItoUTF16(result, aReturn); |
|
2786 } |
|
2787 else { |
|
2788 aReturn.Append(internalError); |
|
2789 } |
|
2790 |
|
2791 PORT_Free(result); |
|
2792 |
|
2793 return; |
|
2794 } |
|
2795 |
|
2796 void |
|
2797 nsCrypto::Logout(ErrorResult& aRv) |
|
2798 { |
|
2799 NS_DEFINE_CID(kNSSComponentCID, NS_NSSCOMPONENT_CID); |
|
2800 |
|
2801 nsresult rv; |
|
2802 nsCOMPtr<nsINSSComponent> nssComponent(do_GetService(kNSSComponentCID, &rv)); |
|
2803 if (NS_FAILED(rv)) { |
|
2804 aRv.Throw(rv); |
|
2805 return; |
|
2806 } |
|
2807 |
|
2808 { |
|
2809 nsNSSShutDownPreventionLock locker; |
|
2810 PK11_LogoutAll(); |
|
2811 SSL_ClearSessionCache(); |
|
2812 } |
|
2813 |
|
2814 rv = nssComponent->LogoutAuthenticatedPK11(); |
|
2815 if (NS_FAILED(rv)) { |
|
2816 aRv.Throw(rv); |
|
2817 } |
|
2818 } |
|
2819 |
|
2820 CRMFObject::CRMFObject() |
|
2821 { |
|
2822 MOZ_COUNT_CTOR(CRMFObject); |
|
2823 } |
|
2824 |
|
2825 CRMFObject::~CRMFObject() |
|
2826 { |
|
2827 MOZ_COUNT_DTOR(CRMFObject); |
|
2828 } |
|
2829 |
|
2830 JSObject* |
|
2831 CRMFObject::WrapObject(JSContext *aCx, bool* aTookOwnership) |
|
2832 { |
|
2833 return CRMFObjectBinding::Wrap(aCx, this, aTookOwnership); |
|
2834 } |
|
2835 |
|
2836 void |
|
2837 CRMFObject::GetRequest(nsAString& aRequest) |
|
2838 { |
|
2839 aRequest.Assign(mBase64Request); |
|
2840 } |
|
2841 |
|
2842 nsresult |
|
2843 CRMFObject::SetCRMFRequest(char *inRequest) |
|
2844 { |
|
2845 mBase64Request.AssignWithConversion(inRequest); |
|
2846 return NS_OK; |
|
2847 } |
|
2848 |
|
2849 #endif // MOZ_DISABLE_CRYPTOLEGACY |
|
2850 |
|
2851 nsPkcs11::nsPkcs11() |
|
2852 { |
|
2853 } |
|
2854 |
|
2855 nsPkcs11::~nsPkcs11() |
|
2856 { |
|
2857 } |
|
2858 |
|
2859 //Delete a PKCS11 module from the user's profile. |
|
2860 NS_IMETHODIMP |
|
2861 nsPkcs11::DeleteModule(const nsAString& aModuleName) |
|
2862 { |
|
2863 NS_DEFINE_CID(kNSSComponentCID, NS_NSSCOMPONENT_CID); |
|
2864 |
|
2865 nsNSSShutDownPreventionLock locker; |
|
2866 nsresult rv; |
|
2867 nsString errorMessage; |
|
2868 |
|
2869 nsCOMPtr<nsINSSComponent> nssComponent(do_GetService(kNSSComponentCID, &rv)); |
|
2870 if (NS_FAILED(rv)) |
|
2871 return rv; |
|
2872 |
|
2873 if (aModuleName.IsEmpty()) { |
|
2874 return NS_ERROR_ILLEGAL_VALUE; |
|
2875 } |
|
2876 |
|
2877 NS_ConvertUTF16toUTF8 modName(aModuleName); |
|
2878 int32_t modType; |
|
2879 SECStatus srv = SECMOD_DeleteModule(modName.get(), &modType); |
|
2880 if (srv == SECSuccess) { |
|
2881 SECMODModule *module = SECMOD_FindModule(modName.get()); |
|
2882 if (module) { |
|
2883 #ifndef MOZ_DISABLE_CRYPTOLEGACY |
|
2884 nssComponent->ShutdownSmartCardThread(module); |
|
2885 #endif |
|
2886 SECMOD_DestroyModule(module); |
|
2887 } |
|
2888 rv = NS_OK; |
|
2889 } else { |
|
2890 rv = NS_ERROR_FAILURE; |
|
2891 } |
|
2892 return rv; |
|
2893 } |
|
2894 |
|
2895 //Add a new PKCS11 module to the user's profile. |
|
2896 NS_IMETHODIMP |
|
2897 nsPkcs11::AddModule(const nsAString& aModuleName, |
|
2898 const nsAString& aLibraryFullPath, |
|
2899 int32_t aCryptoMechanismFlags, |
|
2900 int32_t aCipherFlags) |
|
2901 { |
|
2902 NS_DEFINE_CID(kNSSComponentCID, NS_NSSCOMPONENT_CID); |
|
2903 |
|
2904 nsNSSShutDownPreventionLock locker; |
|
2905 nsresult rv; |
|
2906 nsCOMPtr<nsINSSComponent> nssComponent(do_GetService(kNSSComponentCID, &rv)); |
|
2907 |
|
2908 NS_ConvertUTF16toUTF8 moduleName(aModuleName); |
|
2909 nsCString fullPath; |
|
2910 // NSS doesn't support Unicode path. Use native charset |
|
2911 NS_CopyUnicodeToNative(aLibraryFullPath, fullPath); |
|
2912 uint32_t mechFlags = SECMOD_PubMechFlagstoInternal(aCryptoMechanismFlags); |
|
2913 uint32_t cipherFlags = SECMOD_PubCipherFlagstoInternal(aCipherFlags); |
|
2914 SECStatus srv = SECMOD_AddNewModule(moduleName.get(), fullPath.get(), |
|
2915 mechFlags, cipherFlags); |
|
2916 if (srv == SECSuccess) { |
|
2917 SECMODModule *module = SECMOD_FindModule(moduleName.get()); |
|
2918 if (module) { |
|
2919 #ifndef MOZ_DISABLE_CRYPTOLEGACY |
|
2920 nssComponent->LaunchSmartCardThread(module); |
|
2921 #endif |
|
2922 SECMOD_DestroyModule(module); |
|
2923 } |
|
2924 } |
|
2925 |
|
2926 // The error message we report to the user depends directly on |
|
2927 // what the return value for SEDMOD_AddNewModule is |
|
2928 switch (srv) { |
|
2929 case SECSuccess: |
|
2930 return NS_OK; |
|
2931 case SECFailure: |
|
2932 return NS_ERROR_FAILURE; |
|
2933 case -2: |
|
2934 return NS_ERROR_ILLEGAL_VALUE; |
|
2935 } |
|
2936 NS_ERROR("Bogus return value, this should never happen"); |
|
2937 return NS_ERROR_FAILURE; |
|
2938 } |
|
2939 |