security/nss/lib/freebl/ecl/ec2_aff.c

branch
TOR_BUG_9701
changeset 15
b8a032363ba2
equal deleted inserted replaced
-1:000000000000 0:9c424241480a
1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
4
5 #include "ec2.h"
6 #include "mplogic.h"
7 #include "mp_gf2m.h"
8 #include <stdlib.h>
9
10 /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
11 mp_err
12 ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py)
13 {
14
15 if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
16 return MP_YES;
17 } else {
18 return MP_NO;
19 }
20
21 }
22
23 /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
24 mp_err
25 ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py)
26 {
27 mp_zero(px);
28 mp_zero(py);
29 return MP_OKAY;
30 }
31
32 /* Computes R = P + Q based on IEEE P1363 A.10.2. Elliptic curve points P,
33 * Q, and R can all be identical. Uses affine coordinates. */
34 mp_err
35 ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
36 const mp_int *qy, mp_int *rx, mp_int *ry,
37 const ECGroup *group)
38 {
39 mp_err res = MP_OKAY;
40 mp_int lambda, tempx, tempy;
41
42 MP_DIGITS(&lambda) = 0;
43 MP_DIGITS(&tempx) = 0;
44 MP_DIGITS(&tempy) = 0;
45 MP_CHECKOK(mp_init(&lambda));
46 MP_CHECKOK(mp_init(&tempx));
47 MP_CHECKOK(mp_init(&tempy));
48 /* if P = inf, then R = Q */
49 if (ec_GF2m_pt_is_inf_aff(px, py) == 0) {
50 MP_CHECKOK(mp_copy(qx, rx));
51 MP_CHECKOK(mp_copy(qy, ry));
52 res = MP_OKAY;
53 goto CLEANUP;
54 }
55 /* if Q = inf, then R = P */
56 if (ec_GF2m_pt_is_inf_aff(qx, qy) == 0) {
57 MP_CHECKOK(mp_copy(px, rx));
58 MP_CHECKOK(mp_copy(py, ry));
59 res = MP_OKAY;
60 goto CLEANUP;
61 }
62 /* if px != qx, then lambda = (py+qy) / (px+qx), tempx = a + lambda^2
63 * + lambda + px + qx */
64 if (mp_cmp(px, qx) != 0) {
65 MP_CHECKOK(group->meth->field_add(py, qy, &tempy, group->meth));
66 MP_CHECKOK(group->meth->field_add(px, qx, &tempx, group->meth));
67 MP_CHECKOK(group->meth->
68 field_div(&tempy, &tempx, &lambda, group->meth));
69 MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
70 MP_CHECKOK(group->meth->
71 field_add(&tempx, &lambda, &tempx, group->meth));
72 MP_CHECKOK(group->meth->
73 field_add(&tempx, &group->curvea, &tempx, group->meth));
74 MP_CHECKOK(group->meth->
75 field_add(&tempx, px, &tempx, group->meth));
76 MP_CHECKOK(group->meth->
77 field_add(&tempx, qx, &tempx, group->meth));
78 } else {
79 /* if py != qy or qx = 0, then R = inf */
80 if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qx) == 0)) {
81 mp_zero(rx);
82 mp_zero(ry);
83 res = MP_OKAY;
84 goto CLEANUP;
85 }
86 /* lambda = qx + qy / qx */
87 MP_CHECKOK(group->meth->field_div(qy, qx, &lambda, group->meth));
88 MP_CHECKOK(group->meth->
89 field_add(&lambda, qx, &lambda, group->meth));
90 /* tempx = a + lambda^2 + lambda */
91 MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
92 MP_CHECKOK(group->meth->
93 field_add(&tempx, &lambda, &tempx, group->meth));
94 MP_CHECKOK(group->meth->
95 field_add(&tempx, &group->curvea, &tempx, group->meth));
96 }
97 /* ry = (qx + tempx) * lambda + tempx + qy */
98 MP_CHECKOK(group->meth->field_add(qx, &tempx, &tempy, group->meth));
99 MP_CHECKOK(group->meth->
100 field_mul(&tempy, &lambda, &tempy, group->meth));
101 MP_CHECKOK(group->meth->
102 field_add(&tempy, &tempx, &tempy, group->meth));
103 MP_CHECKOK(group->meth->field_add(&tempy, qy, ry, group->meth));
104 /* rx = tempx */
105 MP_CHECKOK(mp_copy(&tempx, rx));
106
107 CLEANUP:
108 mp_clear(&lambda);
109 mp_clear(&tempx);
110 mp_clear(&tempy);
111 return res;
112 }
113
114 /* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
115 * identical. Uses affine coordinates. */
116 mp_err
117 ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
118 const mp_int *qy, mp_int *rx, mp_int *ry,
119 const ECGroup *group)
120 {
121 mp_err res = MP_OKAY;
122 mp_int nqy;
123
124 MP_DIGITS(&nqy) = 0;
125 MP_CHECKOK(mp_init(&nqy));
126 /* nqy = qx+qy */
127 MP_CHECKOK(group->meth->field_add(qx, qy, &nqy, group->meth));
128 MP_CHECKOK(group->point_add(px, py, qx, &nqy, rx, ry, group));
129 CLEANUP:
130 mp_clear(&nqy);
131 return res;
132 }
133
134 /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
135 * affine coordinates. */
136 mp_err
137 ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
138 mp_int *ry, const ECGroup *group)
139 {
140 return group->point_add(px, py, px, py, rx, ry, group);
141 }
142
143 /* by default, this routine is unused and thus doesn't need to be compiled */
144 #ifdef ECL_ENABLE_GF2M_PT_MUL_AFF
145 /* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
146 * R can be identical. Uses affine coordinates. */
147 mp_err
148 ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
149 mp_int *rx, mp_int *ry, const ECGroup *group)
150 {
151 mp_err res = MP_OKAY;
152 mp_int k, k3, qx, qy, sx, sy;
153 int b1, b3, i, l;
154
155 MP_DIGITS(&k) = 0;
156 MP_DIGITS(&k3) = 0;
157 MP_DIGITS(&qx) = 0;
158 MP_DIGITS(&qy) = 0;
159 MP_DIGITS(&sx) = 0;
160 MP_DIGITS(&sy) = 0;
161 MP_CHECKOK(mp_init(&k));
162 MP_CHECKOK(mp_init(&k3));
163 MP_CHECKOK(mp_init(&qx));
164 MP_CHECKOK(mp_init(&qy));
165 MP_CHECKOK(mp_init(&sx));
166 MP_CHECKOK(mp_init(&sy));
167
168 /* if n = 0 then r = inf */
169 if (mp_cmp_z(n) == 0) {
170 mp_zero(rx);
171 mp_zero(ry);
172 res = MP_OKAY;
173 goto CLEANUP;
174 }
175 /* Q = P, k = n */
176 MP_CHECKOK(mp_copy(px, &qx));
177 MP_CHECKOK(mp_copy(py, &qy));
178 MP_CHECKOK(mp_copy(n, &k));
179 /* if n < 0 then Q = -Q, k = -k */
180 if (mp_cmp_z(n) < 0) {
181 MP_CHECKOK(group->meth->field_add(&qx, &qy, &qy, group->meth));
182 MP_CHECKOK(mp_neg(&k, &k));
183 }
184 #ifdef ECL_DEBUG /* basic double and add method */
185 l = mpl_significant_bits(&k) - 1;
186 MP_CHECKOK(mp_copy(&qx, &sx));
187 MP_CHECKOK(mp_copy(&qy, &sy));
188 for (i = l - 1; i >= 0; i--) {
189 /* S = 2S */
190 MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
191 /* if k_i = 1, then S = S + Q */
192 if (mpl_get_bit(&k, i) != 0) {
193 MP_CHECKOK(group->
194 point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
195 }
196 }
197 #else /* double and add/subtract method from
198 * standard */
199 /* k3 = 3 * k */
200 MP_CHECKOK(mp_set_int(&k3, 3));
201 MP_CHECKOK(mp_mul(&k, &k3, &k3));
202 /* S = Q */
203 MP_CHECKOK(mp_copy(&qx, &sx));
204 MP_CHECKOK(mp_copy(&qy, &sy));
205 /* l = index of high order bit in binary representation of 3*k */
206 l = mpl_significant_bits(&k3) - 1;
207 /* for i = l-1 downto 1 */
208 for (i = l - 1; i >= 1; i--) {
209 /* S = 2S */
210 MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
211 b3 = MP_GET_BIT(&k3, i);
212 b1 = MP_GET_BIT(&k, i);
213 /* if k3_i = 1 and k_i = 0, then S = S + Q */
214 if ((b3 == 1) && (b1 == 0)) {
215 MP_CHECKOK(group->
216 point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
217 /* if k3_i = 0 and k_i = 1, then S = S - Q */
218 } else if ((b3 == 0) && (b1 == 1)) {
219 MP_CHECKOK(group->
220 point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
221 }
222 }
223 #endif
224 /* output S */
225 MP_CHECKOK(mp_copy(&sx, rx));
226 MP_CHECKOK(mp_copy(&sy, ry));
227
228 CLEANUP:
229 mp_clear(&k);
230 mp_clear(&k3);
231 mp_clear(&qx);
232 mp_clear(&qy);
233 mp_clear(&sx);
234 mp_clear(&sy);
235 return res;
236 }
237 #endif
238
239 /* Validates a point on a GF2m curve. */
240 mp_err
241 ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
242 {
243 mp_err res = MP_NO;
244 mp_int accl, accr, tmp, pxt, pyt;
245
246 MP_DIGITS(&accl) = 0;
247 MP_DIGITS(&accr) = 0;
248 MP_DIGITS(&tmp) = 0;
249 MP_DIGITS(&pxt) = 0;
250 MP_DIGITS(&pyt) = 0;
251 MP_CHECKOK(mp_init(&accl));
252 MP_CHECKOK(mp_init(&accr));
253 MP_CHECKOK(mp_init(&tmp));
254 MP_CHECKOK(mp_init(&pxt));
255 MP_CHECKOK(mp_init(&pyt));
256
257 /* 1: Verify that publicValue is not the point at infinity */
258 if (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES) {
259 res = MP_NO;
260 goto CLEANUP;
261 }
262 /* 2: Verify that the coordinates of publicValue are elements
263 * of the field.
264 */
265 if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
266 (MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
267 res = MP_NO;
268 goto CLEANUP;
269 }
270 /* 3: Verify that publicValue is on the curve. */
271 if (group->meth->field_enc) {
272 group->meth->field_enc(px, &pxt, group->meth);
273 group->meth->field_enc(py, &pyt, group->meth);
274 } else {
275 mp_copy(px, &pxt);
276 mp_copy(py, &pyt);
277 }
278 /* left-hand side: y^2 + x*y */
279 MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
280 MP_CHECKOK( group->meth->field_mul(&pxt, &pyt, &tmp, group->meth) );
281 MP_CHECKOK( group->meth->field_add(&accl, &tmp, &accl, group->meth) );
282 /* right-hand side: x^3 + a*x^2 + b */
283 MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
284 MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) );
285 MP_CHECKOK( group->meth->field_mul(&group->curvea, &tmp, &tmp, group->meth) );
286 MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) );
287 MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
288 /* check LHS - RHS == 0 */
289 MP_CHECKOK( group->meth->field_add(&accl, &accr, &accr, group->meth) );
290 if (mp_cmp_z(&accr) != 0) {
291 res = MP_NO;
292 goto CLEANUP;
293 }
294 /* 4: Verify that the order of the curve times the publicValue
295 * is the point at infinity.
296 */
297 MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) );
298 if (ec_GF2m_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
299 res = MP_NO;
300 goto CLEANUP;
301 }
302
303 res = MP_YES;
304
305 CLEANUP:
306 mp_clear(&accl);
307 mp_clear(&accr);
308 mp_clear(&tmp);
309 mp_clear(&pxt);
310 mp_clear(&pyt);
311 return res;
312 }

mercurial