|
1 /* |
|
2 * SSL3 Protocol |
|
3 * |
|
4 * This Source Code Form is subject to the terms of the Mozilla Public |
|
5 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
6 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
7 |
|
8 /* ECC code moved here from ssl3con.c */ |
|
9 |
|
10 #include "nss.h" |
|
11 #include "cert.h" |
|
12 #include "ssl.h" |
|
13 #include "cryptohi.h" /* for DSAU_ stuff */ |
|
14 #include "keyhi.h" |
|
15 #include "secder.h" |
|
16 #include "secitem.h" |
|
17 |
|
18 #include "sslimpl.h" |
|
19 #include "sslproto.h" |
|
20 #include "sslerr.h" |
|
21 #include "prtime.h" |
|
22 #include "prinrval.h" |
|
23 #include "prerror.h" |
|
24 #include "pratom.h" |
|
25 #include "prthread.h" |
|
26 #include "prinit.h" |
|
27 |
|
28 #include "pk11func.h" |
|
29 #include "secmod.h" |
|
30 |
|
31 #include <stdio.h> |
|
32 |
|
33 #ifndef NSS_DISABLE_ECC |
|
34 |
|
35 #ifndef PK11_SETATTRS |
|
36 #define PK11_SETATTRS(x,id,v,l) (x)->type = (id); \ |
|
37 (x)->pValue=(v); (x)->ulValueLen = (l); |
|
38 #endif |
|
39 |
|
40 #define SSL_GET_SERVER_PUBLIC_KEY(sock, type) \ |
|
41 (ss->serverCerts[type].serverKeyPair ? \ |
|
42 ss->serverCerts[type].serverKeyPair->pubKey : NULL) |
|
43 |
|
44 #define SSL_IS_CURVE_NEGOTIATED(curvemsk, curveName) \ |
|
45 ((curveName > ec_noName) && \ |
|
46 (curveName < ec_pastLastName) && \ |
|
47 ((1UL << curveName) & curvemsk) != 0) |
|
48 |
|
49 |
|
50 |
|
51 static SECStatus ssl3_CreateECDHEphemeralKeys(sslSocket *ss, ECName ec_curve); |
|
52 |
|
53 #define supportedCurve(x) (((x) > ec_noName) && ((x) < ec_pastLastName)) |
|
54 |
|
55 /* Table containing OID tags for elliptic curves named in the |
|
56 * ECC-TLS IETF draft. |
|
57 */ |
|
58 static const SECOidTag ecName2OIDTag[] = { |
|
59 0, |
|
60 SEC_OID_SECG_EC_SECT163K1, /* 1 */ |
|
61 SEC_OID_SECG_EC_SECT163R1, /* 2 */ |
|
62 SEC_OID_SECG_EC_SECT163R2, /* 3 */ |
|
63 SEC_OID_SECG_EC_SECT193R1, /* 4 */ |
|
64 SEC_OID_SECG_EC_SECT193R2, /* 5 */ |
|
65 SEC_OID_SECG_EC_SECT233K1, /* 6 */ |
|
66 SEC_OID_SECG_EC_SECT233R1, /* 7 */ |
|
67 SEC_OID_SECG_EC_SECT239K1, /* 8 */ |
|
68 SEC_OID_SECG_EC_SECT283K1, /* 9 */ |
|
69 SEC_OID_SECG_EC_SECT283R1, /* 10 */ |
|
70 SEC_OID_SECG_EC_SECT409K1, /* 11 */ |
|
71 SEC_OID_SECG_EC_SECT409R1, /* 12 */ |
|
72 SEC_OID_SECG_EC_SECT571K1, /* 13 */ |
|
73 SEC_OID_SECG_EC_SECT571R1, /* 14 */ |
|
74 SEC_OID_SECG_EC_SECP160K1, /* 15 */ |
|
75 SEC_OID_SECG_EC_SECP160R1, /* 16 */ |
|
76 SEC_OID_SECG_EC_SECP160R2, /* 17 */ |
|
77 SEC_OID_SECG_EC_SECP192K1, /* 18 */ |
|
78 SEC_OID_SECG_EC_SECP192R1, /* 19 */ |
|
79 SEC_OID_SECG_EC_SECP224K1, /* 20 */ |
|
80 SEC_OID_SECG_EC_SECP224R1, /* 21 */ |
|
81 SEC_OID_SECG_EC_SECP256K1, /* 22 */ |
|
82 SEC_OID_SECG_EC_SECP256R1, /* 23 */ |
|
83 SEC_OID_SECG_EC_SECP384R1, /* 24 */ |
|
84 SEC_OID_SECG_EC_SECP521R1, /* 25 */ |
|
85 }; |
|
86 |
|
87 static const PRUint16 curve2bits[] = { |
|
88 0, /* ec_noName = 0, */ |
|
89 163, /* ec_sect163k1 = 1, */ |
|
90 163, /* ec_sect163r1 = 2, */ |
|
91 163, /* ec_sect163r2 = 3, */ |
|
92 193, /* ec_sect193r1 = 4, */ |
|
93 193, /* ec_sect193r2 = 5, */ |
|
94 233, /* ec_sect233k1 = 6, */ |
|
95 233, /* ec_sect233r1 = 7, */ |
|
96 239, /* ec_sect239k1 = 8, */ |
|
97 283, /* ec_sect283k1 = 9, */ |
|
98 283, /* ec_sect283r1 = 10, */ |
|
99 409, /* ec_sect409k1 = 11, */ |
|
100 409, /* ec_sect409r1 = 12, */ |
|
101 571, /* ec_sect571k1 = 13, */ |
|
102 571, /* ec_sect571r1 = 14, */ |
|
103 160, /* ec_secp160k1 = 15, */ |
|
104 160, /* ec_secp160r1 = 16, */ |
|
105 160, /* ec_secp160r2 = 17, */ |
|
106 192, /* ec_secp192k1 = 18, */ |
|
107 192, /* ec_secp192r1 = 19, */ |
|
108 224, /* ec_secp224k1 = 20, */ |
|
109 224, /* ec_secp224r1 = 21, */ |
|
110 256, /* ec_secp256k1 = 22, */ |
|
111 256, /* ec_secp256r1 = 23, */ |
|
112 384, /* ec_secp384r1 = 24, */ |
|
113 521, /* ec_secp521r1 = 25, */ |
|
114 65535 /* ec_pastLastName */ |
|
115 }; |
|
116 |
|
117 typedef struct Bits2CurveStr { |
|
118 PRUint16 bits; |
|
119 ECName curve; |
|
120 } Bits2Curve; |
|
121 |
|
122 static const Bits2Curve bits2curve [] = { |
|
123 { 192, ec_secp192r1 /* = 19, fast */ }, |
|
124 { 160, ec_secp160r2 /* = 17, fast */ }, |
|
125 { 160, ec_secp160k1 /* = 15, */ }, |
|
126 { 160, ec_secp160r1 /* = 16, */ }, |
|
127 { 163, ec_sect163k1 /* = 1, */ }, |
|
128 { 163, ec_sect163r1 /* = 2, */ }, |
|
129 { 163, ec_sect163r2 /* = 3, */ }, |
|
130 { 192, ec_secp192k1 /* = 18, */ }, |
|
131 { 193, ec_sect193r1 /* = 4, */ }, |
|
132 { 193, ec_sect193r2 /* = 5, */ }, |
|
133 { 224, ec_secp224r1 /* = 21, fast */ }, |
|
134 { 224, ec_secp224k1 /* = 20, */ }, |
|
135 { 233, ec_sect233k1 /* = 6, */ }, |
|
136 { 233, ec_sect233r1 /* = 7, */ }, |
|
137 { 239, ec_sect239k1 /* = 8, */ }, |
|
138 { 256, ec_secp256r1 /* = 23, fast */ }, |
|
139 { 256, ec_secp256k1 /* = 22, */ }, |
|
140 { 283, ec_sect283k1 /* = 9, */ }, |
|
141 { 283, ec_sect283r1 /* = 10, */ }, |
|
142 { 384, ec_secp384r1 /* = 24, fast */ }, |
|
143 { 409, ec_sect409k1 /* = 11, */ }, |
|
144 { 409, ec_sect409r1 /* = 12, */ }, |
|
145 { 521, ec_secp521r1 /* = 25, fast */ }, |
|
146 { 571, ec_sect571k1 /* = 13, */ }, |
|
147 { 571, ec_sect571r1 /* = 14, */ }, |
|
148 { 65535, ec_noName } |
|
149 }; |
|
150 |
|
151 typedef struct ECDHEKeyPairStr { |
|
152 ssl3KeyPair * pair; |
|
153 int error; /* error code of the call-once function */ |
|
154 PRCallOnceType once; |
|
155 } ECDHEKeyPair; |
|
156 |
|
157 /* arrays of ECDHE KeyPairs */ |
|
158 static ECDHEKeyPair gECDHEKeyPairs[ec_pastLastName]; |
|
159 |
|
160 SECStatus |
|
161 ssl3_ECName2Params(PLArenaPool * arena, ECName curve, SECKEYECParams * params) |
|
162 { |
|
163 SECOidData *oidData = NULL; |
|
164 |
|
165 if ((curve <= ec_noName) || (curve >= ec_pastLastName) || |
|
166 ((oidData = SECOID_FindOIDByTag(ecName2OIDTag[curve])) == NULL)) { |
|
167 PORT_SetError(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE); |
|
168 return SECFailure; |
|
169 } |
|
170 |
|
171 SECITEM_AllocItem(arena, params, (2 + oidData->oid.len)); |
|
172 /* |
|
173 * params->data needs to contain the ASN encoding of an object ID (OID) |
|
174 * representing the named curve. The actual OID is in |
|
175 * oidData->oid.data so we simply prepend 0x06 and OID length |
|
176 */ |
|
177 params->data[0] = SEC_ASN1_OBJECT_ID; |
|
178 params->data[1] = oidData->oid.len; |
|
179 memcpy(params->data + 2, oidData->oid.data, oidData->oid.len); |
|
180 |
|
181 return SECSuccess; |
|
182 } |
|
183 |
|
184 static ECName |
|
185 params2ecName(SECKEYECParams * params) |
|
186 { |
|
187 SECItem oid = { siBuffer, NULL, 0}; |
|
188 SECOidData *oidData = NULL; |
|
189 ECName i; |
|
190 |
|
191 /* |
|
192 * params->data needs to contain the ASN encoding of an object ID (OID) |
|
193 * representing a named curve. Here, we strip away everything |
|
194 * before the actual OID and use the OID to look up a named curve. |
|
195 */ |
|
196 if (params->data[0] != SEC_ASN1_OBJECT_ID) return ec_noName; |
|
197 oid.len = params->len - 2; |
|
198 oid.data = params->data + 2; |
|
199 if ((oidData = SECOID_FindOID(&oid)) == NULL) return ec_noName; |
|
200 for (i = ec_noName + 1; i < ec_pastLastName; i++) { |
|
201 if (ecName2OIDTag[i] == oidData->offset) |
|
202 return i; |
|
203 } |
|
204 |
|
205 return ec_noName; |
|
206 } |
|
207 |
|
208 /* Caller must set hiLevel error code. */ |
|
209 static SECStatus |
|
210 ssl3_ComputeECDHKeyHash(SECOidTag hashAlg, |
|
211 SECItem ec_params, SECItem server_ecpoint, |
|
212 SSL3Random *client_rand, SSL3Random *server_rand, |
|
213 SSL3Hashes *hashes, PRBool bypassPKCS11) |
|
214 { |
|
215 PRUint8 * hashBuf; |
|
216 PRUint8 * pBuf; |
|
217 SECStatus rv = SECSuccess; |
|
218 unsigned int bufLen; |
|
219 /* |
|
220 * XXX For now, we only support named curves (the appropriate |
|
221 * checks are made before this method is called) so ec_params |
|
222 * takes up only two bytes. ECPoint needs to fit in 256 bytes |
|
223 * (because the spec says the length must fit in one byte) |
|
224 */ |
|
225 PRUint8 buf[2*SSL3_RANDOM_LENGTH + 2 + 1 + 256]; |
|
226 |
|
227 bufLen = 2*SSL3_RANDOM_LENGTH + ec_params.len + 1 + server_ecpoint.len; |
|
228 if (bufLen <= sizeof buf) { |
|
229 hashBuf = buf; |
|
230 } else { |
|
231 hashBuf = PORT_Alloc(bufLen); |
|
232 if (!hashBuf) { |
|
233 return SECFailure; |
|
234 } |
|
235 } |
|
236 |
|
237 memcpy(hashBuf, client_rand, SSL3_RANDOM_LENGTH); |
|
238 pBuf = hashBuf + SSL3_RANDOM_LENGTH; |
|
239 memcpy(pBuf, server_rand, SSL3_RANDOM_LENGTH); |
|
240 pBuf += SSL3_RANDOM_LENGTH; |
|
241 memcpy(pBuf, ec_params.data, ec_params.len); |
|
242 pBuf += ec_params.len; |
|
243 pBuf[0] = (PRUint8)(server_ecpoint.len); |
|
244 pBuf += 1; |
|
245 memcpy(pBuf, server_ecpoint.data, server_ecpoint.len); |
|
246 pBuf += server_ecpoint.len; |
|
247 PORT_Assert((unsigned int)(pBuf - hashBuf) == bufLen); |
|
248 |
|
249 rv = ssl3_ComputeCommonKeyHash(hashAlg, hashBuf, bufLen, hashes, |
|
250 bypassPKCS11); |
|
251 |
|
252 PRINT_BUF(95, (NULL, "ECDHkey hash: ", hashBuf, bufLen)); |
|
253 PRINT_BUF(95, (NULL, "ECDHkey hash: MD5 result", |
|
254 hashes->u.s.md5, MD5_LENGTH)); |
|
255 PRINT_BUF(95, (NULL, "ECDHkey hash: SHA1 result", |
|
256 hashes->u.s.sha, SHA1_LENGTH)); |
|
257 |
|
258 if (hashBuf != buf) |
|
259 PORT_Free(hashBuf); |
|
260 return rv; |
|
261 } |
|
262 |
|
263 |
|
264 /* Called from ssl3_SendClientKeyExchange(). */ |
|
265 SECStatus |
|
266 ssl3_SendECDHClientKeyExchange(sslSocket * ss, SECKEYPublicKey * svrPubKey) |
|
267 { |
|
268 PK11SymKey * pms = NULL; |
|
269 SECStatus rv = SECFailure; |
|
270 PRBool isTLS, isTLS12; |
|
271 CK_MECHANISM_TYPE target; |
|
272 SECKEYPublicKey *pubKey = NULL; /* Ephemeral ECDH key */ |
|
273 SECKEYPrivateKey *privKey = NULL; /* Ephemeral ECDH key */ |
|
274 |
|
275 PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); |
|
276 PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); |
|
277 |
|
278 isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0); |
|
279 isTLS12 = (PRBool)(ss->ssl3.pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2); |
|
280 |
|
281 /* Generate ephemeral EC keypair */ |
|
282 if (svrPubKey->keyType != ecKey) { |
|
283 PORT_SetError(SEC_ERROR_BAD_KEY); |
|
284 goto loser; |
|
285 } |
|
286 /* XXX SHOULD CALL ssl3_CreateECDHEphemeralKeys here, instead! */ |
|
287 privKey = SECKEY_CreateECPrivateKey(&svrPubKey->u.ec.DEREncodedParams, |
|
288 &pubKey, ss->pkcs11PinArg); |
|
289 if (!privKey || !pubKey) { |
|
290 ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL); |
|
291 rv = SECFailure; |
|
292 goto loser; |
|
293 } |
|
294 PRINT_BUF(50, (ss, "ECDH public value:", |
|
295 pubKey->u.ec.publicValue.data, |
|
296 pubKey->u.ec.publicValue.len)); |
|
297 |
|
298 if (isTLS12) { |
|
299 target = CKM_NSS_TLS_MASTER_KEY_DERIVE_DH_SHA256; |
|
300 } else if (isTLS) { |
|
301 target = CKM_TLS_MASTER_KEY_DERIVE_DH; |
|
302 } else { |
|
303 target = CKM_SSL3_MASTER_KEY_DERIVE_DH; |
|
304 } |
|
305 |
|
306 /* Determine the PMS */ |
|
307 pms = PK11_PubDeriveWithKDF(privKey, svrPubKey, PR_FALSE, NULL, NULL, |
|
308 CKM_ECDH1_DERIVE, target, CKA_DERIVE, 0, |
|
309 CKD_NULL, NULL, NULL); |
|
310 |
|
311 if (pms == NULL) { |
|
312 SSL3AlertDescription desc = illegal_parameter; |
|
313 (void)SSL3_SendAlert(ss, alert_fatal, desc); |
|
314 ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); |
|
315 goto loser; |
|
316 } |
|
317 |
|
318 SECKEY_DestroyPrivateKey(privKey); |
|
319 privKey = NULL; |
|
320 |
|
321 rv = ssl3_InitPendingCipherSpec(ss, pms); |
|
322 PK11_FreeSymKey(pms); pms = NULL; |
|
323 |
|
324 if (rv != SECSuccess) { |
|
325 ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); |
|
326 goto loser; |
|
327 } |
|
328 |
|
329 rv = ssl3_AppendHandshakeHeader(ss, client_key_exchange, |
|
330 pubKey->u.ec.publicValue.len + 1); |
|
331 if (rv != SECSuccess) { |
|
332 goto loser; /* err set by ssl3_AppendHandshake* */ |
|
333 } |
|
334 |
|
335 rv = ssl3_AppendHandshakeVariable(ss, |
|
336 pubKey->u.ec.publicValue.data, |
|
337 pubKey->u.ec.publicValue.len, 1); |
|
338 SECKEY_DestroyPublicKey(pubKey); |
|
339 pubKey = NULL; |
|
340 |
|
341 if (rv != SECSuccess) { |
|
342 goto loser; /* err set by ssl3_AppendHandshake* */ |
|
343 } |
|
344 |
|
345 rv = SECSuccess; |
|
346 |
|
347 loser: |
|
348 if(pms) PK11_FreeSymKey(pms); |
|
349 if(privKey) SECKEY_DestroyPrivateKey(privKey); |
|
350 if(pubKey) SECKEY_DestroyPublicKey(pubKey); |
|
351 return rv; |
|
352 } |
|
353 |
|
354 |
|
355 /* |
|
356 ** Called from ssl3_HandleClientKeyExchange() |
|
357 */ |
|
358 SECStatus |
|
359 ssl3_HandleECDHClientKeyExchange(sslSocket *ss, SSL3Opaque *b, |
|
360 PRUint32 length, |
|
361 SECKEYPublicKey *srvrPubKey, |
|
362 SECKEYPrivateKey *srvrPrivKey) |
|
363 { |
|
364 PK11SymKey * pms; |
|
365 SECStatus rv; |
|
366 SECKEYPublicKey clntPubKey; |
|
367 CK_MECHANISM_TYPE target; |
|
368 PRBool isTLS, isTLS12; |
|
369 |
|
370 PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); |
|
371 PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); |
|
372 |
|
373 clntPubKey.keyType = ecKey; |
|
374 clntPubKey.u.ec.DEREncodedParams.len = |
|
375 srvrPubKey->u.ec.DEREncodedParams.len; |
|
376 clntPubKey.u.ec.DEREncodedParams.data = |
|
377 srvrPubKey->u.ec.DEREncodedParams.data; |
|
378 |
|
379 rv = ssl3_ConsumeHandshakeVariable(ss, &clntPubKey.u.ec.publicValue, |
|
380 1, &b, &length); |
|
381 if (rv != SECSuccess) { |
|
382 SEND_ALERT |
|
383 return SECFailure; /* XXX Who sets the error code?? */ |
|
384 } |
|
385 |
|
386 isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0); |
|
387 isTLS12 = (PRBool)(ss->ssl3.prSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2); |
|
388 |
|
389 if (isTLS12) { |
|
390 target = CKM_NSS_TLS_MASTER_KEY_DERIVE_DH_SHA256; |
|
391 } else if (isTLS) { |
|
392 target = CKM_TLS_MASTER_KEY_DERIVE_DH; |
|
393 } else { |
|
394 target = CKM_SSL3_MASTER_KEY_DERIVE_DH; |
|
395 } |
|
396 |
|
397 /* Determine the PMS */ |
|
398 pms = PK11_PubDeriveWithKDF(srvrPrivKey, &clntPubKey, PR_FALSE, NULL, NULL, |
|
399 CKM_ECDH1_DERIVE, target, CKA_DERIVE, 0, |
|
400 CKD_NULL, NULL, NULL); |
|
401 |
|
402 if (pms == NULL) { |
|
403 /* last gasp. */ |
|
404 ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE); |
|
405 return SECFailure; |
|
406 } |
|
407 |
|
408 rv = ssl3_InitPendingCipherSpec(ss, pms); |
|
409 PK11_FreeSymKey(pms); |
|
410 if (rv != SECSuccess) { |
|
411 SEND_ALERT |
|
412 return SECFailure; /* error code set by ssl3_InitPendingCipherSpec */ |
|
413 } |
|
414 return SECSuccess; |
|
415 } |
|
416 |
|
417 ECName |
|
418 ssl3_GetCurveWithECKeyStrength(PRUint32 curvemsk, int requiredECCbits) |
|
419 { |
|
420 int i; |
|
421 |
|
422 for ( i = 0; bits2curve[i].curve != ec_noName; i++) { |
|
423 if (bits2curve[i].bits < requiredECCbits) |
|
424 continue; |
|
425 if (SSL_IS_CURVE_NEGOTIATED(curvemsk, bits2curve[i].curve)) { |
|
426 return bits2curve[i].curve; |
|
427 } |
|
428 } |
|
429 PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP); |
|
430 return ec_noName; |
|
431 } |
|
432 |
|
433 /* find the "weakest link". Get strength of signature key and of sym key. |
|
434 * choose curve for the weakest of those two. |
|
435 */ |
|
436 ECName |
|
437 ssl3_GetCurveNameForServerSocket(sslSocket *ss) |
|
438 { |
|
439 SECKEYPublicKey * svrPublicKey = NULL; |
|
440 ECName ec_curve = ec_noName; |
|
441 int signatureKeyStrength = 521; |
|
442 int requiredECCbits = ss->sec.secretKeyBits * 2; |
|
443 |
|
444 if (ss->ssl3.hs.kea_def->kea == kea_ecdhe_ecdsa) { |
|
445 svrPublicKey = SSL_GET_SERVER_PUBLIC_KEY(ss, kt_ecdh); |
|
446 if (svrPublicKey) |
|
447 ec_curve = params2ecName(&svrPublicKey->u.ec.DEREncodedParams); |
|
448 if (!SSL_IS_CURVE_NEGOTIATED(ss->ssl3.hs.negotiatedECCurves, ec_curve)) { |
|
449 PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP); |
|
450 return ec_noName; |
|
451 } |
|
452 signatureKeyStrength = curve2bits[ ec_curve ]; |
|
453 } else { |
|
454 /* RSA is our signing cert */ |
|
455 int serverKeyStrengthInBits; |
|
456 |
|
457 svrPublicKey = SSL_GET_SERVER_PUBLIC_KEY(ss, kt_rsa); |
|
458 if (!svrPublicKey) { |
|
459 PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP); |
|
460 return ec_noName; |
|
461 } |
|
462 |
|
463 /* currently strength in bytes */ |
|
464 serverKeyStrengthInBits = svrPublicKey->u.rsa.modulus.len; |
|
465 if (svrPublicKey->u.rsa.modulus.data[0] == 0) { |
|
466 serverKeyStrengthInBits--; |
|
467 } |
|
468 /* convert to strength in bits */ |
|
469 serverKeyStrengthInBits *= BPB; |
|
470 |
|
471 signatureKeyStrength = |
|
472 SSL_RSASTRENGTH_TO_ECSTRENGTH(serverKeyStrengthInBits); |
|
473 } |
|
474 if ( requiredECCbits > signatureKeyStrength ) |
|
475 requiredECCbits = signatureKeyStrength; |
|
476 |
|
477 return ssl3_GetCurveWithECKeyStrength(ss->ssl3.hs.negotiatedECCurves, |
|
478 requiredECCbits); |
|
479 } |
|
480 |
|
481 /* function to clear out the lists */ |
|
482 static SECStatus |
|
483 ssl3_ShutdownECDHECurves(void *appData, void *nssData) |
|
484 { |
|
485 int i; |
|
486 ECDHEKeyPair *keyPair = &gECDHEKeyPairs[0]; |
|
487 |
|
488 for (i=0; i < ec_pastLastName; i++, keyPair++) { |
|
489 if (keyPair->pair) { |
|
490 ssl3_FreeKeyPair(keyPair->pair); |
|
491 } |
|
492 } |
|
493 memset(gECDHEKeyPairs, 0, sizeof gECDHEKeyPairs); |
|
494 return SECSuccess; |
|
495 } |
|
496 |
|
497 static PRStatus |
|
498 ssl3_ECRegister(void) |
|
499 { |
|
500 SECStatus rv; |
|
501 rv = NSS_RegisterShutdown(ssl3_ShutdownECDHECurves, gECDHEKeyPairs); |
|
502 if (rv != SECSuccess) { |
|
503 gECDHEKeyPairs[ec_noName].error = PORT_GetError(); |
|
504 } |
|
505 return (PRStatus)rv; |
|
506 } |
|
507 |
|
508 /* CallOnce function, called once for each named curve. */ |
|
509 static PRStatus |
|
510 ssl3_CreateECDHEphemeralKeyPair(void * arg) |
|
511 { |
|
512 SECKEYPrivateKey * privKey = NULL; |
|
513 SECKEYPublicKey * pubKey = NULL; |
|
514 ssl3KeyPair * keyPair = NULL; |
|
515 ECName ec_curve = (ECName)arg; |
|
516 SECKEYECParams ecParams = { siBuffer, NULL, 0 }; |
|
517 |
|
518 PORT_Assert(gECDHEKeyPairs[ec_curve].pair == NULL); |
|
519 |
|
520 /* ok, no one has generated a global key for this curve yet, do so */ |
|
521 if (ssl3_ECName2Params(NULL, ec_curve, &ecParams) != SECSuccess) { |
|
522 gECDHEKeyPairs[ec_curve].error = PORT_GetError(); |
|
523 return PR_FAILURE; |
|
524 } |
|
525 |
|
526 privKey = SECKEY_CreateECPrivateKey(&ecParams, &pubKey, NULL); |
|
527 SECITEM_FreeItem(&ecParams, PR_FALSE); |
|
528 |
|
529 if (!privKey || !pubKey || !(keyPair = ssl3_NewKeyPair(privKey, pubKey))) { |
|
530 if (privKey) { |
|
531 SECKEY_DestroyPrivateKey(privKey); |
|
532 } |
|
533 if (pubKey) { |
|
534 SECKEY_DestroyPublicKey(pubKey); |
|
535 } |
|
536 ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL); |
|
537 gECDHEKeyPairs[ec_curve].error = PORT_GetError(); |
|
538 return PR_FAILURE; |
|
539 } |
|
540 |
|
541 gECDHEKeyPairs[ec_curve].pair = keyPair; |
|
542 return PR_SUCCESS; |
|
543 } |
|
544 |
|
545 /* |
|
546 * Creates the ephemeral public and private ECDH keys used by |
|
547 * server in ECDHE_RSA and ECDHE_ECDSA handshakes. |
|
548 * For now, the elliptic curve is chosen to be the same |
|
549 * strength as the signing certificate (ECC or RSA). |
|
550 * We need an API to specify the curve. This won't be a real |
|
551 * issue until we further develop server-side support for ECC |
|
552 * cipher suites. |
|
553 */ |
|
554 static SECStatus |
|
555 ssl3_CreateECDHEphemeralKeys(sslSocket *ss, ECName ec_curve) |
|
556 { |
|
557 ssl3KeyPair * keyPair = NULL; |
|
558 |
|
559 /* if there's no global key for this curve, make one. */ |
|
560 if (gECDHEKeyPairs[ec_curve].pair == NULL) { |
|
561 PRStatus status; |
|
562 |
|
563 status = PR_CallOnce(&gECDHEKeyPairs[ec_noName].once, ssl3_ECRegister); |
|
564 if (status != PR_SUCCESS) { |
|
565 PORT_SetError(gECDHEKeyPairs[ec_noName].error); |
|
566 return SECFailure; |
|
567 } |
|
568 status = PR_CallOnceWithArg(&gECDHEKeyPairs[ec_curve].once, |
|
569 ssl3_CreateECDHEphemeralKeyPair, |
|
570 (void *)ec_curve); |
|
571 if (status != PR_SUCCESS) { |
|
572 PORT_SetError(gECDHEKeyPairs[ec_curve].error); |
|
573 return SECFailure; |
|
574 } |
|
575 } |
|
576 |
|
577 keyPair = gECDHEKeyPairs[ec_curve].pair; |
|
578 PORT_Assert(keyPair != NULL); |
|
579 if (!keyPair) |
|
580 return SECFailure; |
|
581 ss->ephemeralECDHKeyPair = ssl3_GetKeyPairRef(keyPair); |
|
582 |
|
583 return SECSuccess; |
|
584 } |
|
585 |
|
586 SECStatus |
|
587 ssl3_HandleECDHServerKeyExchange(sslSocket *ss, SSL3Opaque *b, PRUint32 length) |
|
588 { |
|
589 PLArenaPool * arena = NULL; |
|
590 SECKEYPublicKey *peerKey = NULL; |
|
591 PRBool isTLS, isTLS12; |
|
592 SECStatus rv; |
|
593 int errCode = SSL_ERROR_RX_MALFORMED_SERVER_KEY_EXCH; |
|
594 SSL3AlertDescription desc = illegal_parameter; |
|
595 SSL3Hashes hashes; |
|
596 SECItem signature = {siBuffer, NULL, 0}; |
|
597 |
|
598 SECItem ec_params = {siBuffer, NULL, 0}; |
|
599 SECItem ec_point = {siBuffer, NULL, 0}; |
|
600 unsigned char paramBuf[3]; /* only for curve_type == named_curve */ |
|
601 SSL3SignatureAndHashAlgorithm sigAndHash; |
|
602 |
|
603 sigAndHash.hashAlg = SEC_OID_UNKNOWN; |
|
604 |
|
605 isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0); |
|
606 isTLS12 = (PRBool)(ss->ssl3.prSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2); |
|
607 |
|
608 /* XXX This works only for named curves, revisit this when |
|
609 * we support generic curves. |
|
610 */ |
|
611 ec_params.len = sizeof paramBuf; |
|
612 ec_params.data = paramBuf; |
|
613 rv = ssl3_ConsumeHandshake(ss, ec_params.data, ec_params.len, &b, &length); |
|
614 if (rv != SECSuccess) { |
|
615 goto loser; /* malformed. */ |
|
616 } |
|
617 |
|
618 /* Fail if the curve is not a named curve */ |
|
619 if ((ec_params.data[0] != ec_type_named) || |
|
620 (ec_params.data[1] != 0) || |
|
621 !supportedCurve(ec_params.data[2])) { |
|
622 errCode = SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE; |
|
623 desc = handshake_failure; |
|
624 goto alert_loser; |
|
625 } |
|
626 |
|
627 rv = ssl3_ConsumeHandshakeVariable(ss, &ec_point, 1, &b, &length); |
|
628 if (rv != SECSuccess) { |
|
629 goto loser; /* malformed. */ |
|
630 } |
|
631 /* Fail if the ec point uses compressed representation */ |
|
632 if (ec_point.data[0] != EC_POINT_FORM_UNCOMPRESSED) { |
|
633 errCode = SEC_ERROR_UNSUPPORTED_EC_POINT_FORM; |
|
634 desc = handshake_failure; |
|
635 goto alert_loser; |
|
636 } |
|
637 |
|
638 if (isTLS12) { |
|
639 rv = ssl3_ConsumeSignatureAndHashAlgorithm(ss, &b, &length, |
|
640 &sigAndHash); |
|
641 if (rv != SECSuccess) { |
|
642 goto loser; /* malformed or unsupported. */ |
|
643 } |
|
644 rv = ssl3_CheckSignatureAndHashAlgorithmConsistency( |
|
645 &sigAndHash, ss->sec.peerCert); |
|
646 if (rv != SECSuccess) { |
|
647 goto loser; |
|
648 } |
|
649 } |
|
650 |
|
651 rv = ssl3_ConsumeHandshakeVariable(ss, &signature, 2, &b, &length); |
|
652 if (rv != SECSuccess) { |
|
653 goto loser; /* malformed. */ |
|
654 } |
|
655 |
|
656 if (length != 0) { |
|
657 if (isTLS) |
|
658 desc = decode_error; |
|
659 goto alert_loser; /* malformed. */ |
|
660 } |
|
661 |
|
662 PRINT_BUF(60, (NULL, "Server EC params", ec_params.data, |
|
663 ec_params.len)); |
|
664 PRINT_BUF(60, (NULL, "Server EC point", ec_point.data, ec_point.len)); |
|
665 |
|
666 /* failures after this point are not malformed handshakes. */ |
|
667 /* TLS: send decrypt_error if signature failed. */ |
|
668 desc = isTLS ? decrypt_error : handshake_failure; |
|
669 |
|
670 /* |
|
671 * check to make sure the hash is signed by right guy |
|
672 */ |
|
673 rv = ssl3_ComputeECDHKeyHash(sigAndHash.hashAlg, ec_params, ec_point, |
|
674 &ss->ssl3.hs.client_random, |
|
675 &ss->ssl3.hs.server_random, |
|
676 &hashes, ss->opt.bypassPKCS11); |
|
677 |
|
678 if (rv != SECSuccess) { |
|
679 errCode = |
|
680 ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); |
|
681 goto alert_loser; |
|
682 } |
|
683 rv = ssl3_VerifySignedHashes(&hashes, ss->sec.peerCert, &signature, |
|
684 isTLS, ss->pkcs11PinArg); |
|
685 if (rv != SECSuccess) { |
|
686 errCode = |
|
687 ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); |
|
688 goto alert_loser; |
|
689 } |
|
690 |
|
691 arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE); |
|
692 if (arena == NULL) { |
|
693 goto no_memory; |
|
694 } |
|
695 |
|
696 ss->sec.peerKey = peerKey = PORT_ArenaZNew(arena, SECKEYPublicKey); |
|
697 if (peerKey == NULL) { |
|
698 goto no_memory; |
|
699 } |
|
700 |
|
701 peerKey->arena = arena; |
|
702 peerKey->keyType = ecKey; |
|
703 |
|
704 /* set up EC parameters in peerKey */ |
|
705 if (ssl3_ECName2Params(arena, ec_params.data[2], |
|
706 &peerKey->u.ec.DEREncodedParams) != SECSuccess) { |
|
707 /* we should never get here since we already |
|
708 * checked that we are dealing with a supported curve |
|
709 */ |
|
710 errCode = SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE; |
|
711 goto alert_loser; |
|
712 } |
|
713 |
|
714 /* copy publicValue in peerKey */ |
|
715 if (SECITEM_CopyItem(arena, &peerKey->u.ec.publicValue, &ec_point)) |
|
716 { |
|
717 PORT_FreeArena(arena, PR_FALSE); |
|
718 goto no_memory; |
|
719 } |
|
720 peerKey->pkcs11Slot = NULL; |
|
721 peerKey->pkcs11ID = CK_INVALID_HANDLE; |
|
722 |
|
723 ss->sec.peerKey = peerKey; |
|
724 ss->ssl3.hs.ws = wait_cert_request; |
|
725 |
|
726 return SECSuccess; |
|
727 |
|
728 alert_loser: |
|
729 (void)SSL3_SendAlert(ss, alert_fatal, desc); |
|
730 loser: |
|
731 PORT_SetError( errCode ); |
|
732 return SECFailure; |
|
733 |
|
734 no_memory: /* no-memory error has already been set. */ |
|
735 ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); |
|
736 return SECFailure; |
|
737 } |
|
738 |
|
739 SECStatus |
|
740 ssl3_SendECDHServerKeyExchange( |
|
741 sslSocket *ss, |
|
742 const SSL3SignatureAndHashAlgorithm *sigAndHash) |
|
743 { |
|
744 const ssl3KEADef * kea_def = ss->ssl3.hs.kea_def; |
|
745 SECStatus rv = SECFailure; |
|
746 int length; |
|
747 PRBool isTLS, isTLS12; |
|
748 SECItem signed_hash = {siBuffer, NULL, 0}; |
|
749 SSL3Hashes hashes; |
|
750 |
|
751 SECKEYPublicKey * ecdhePub; |
|
752 SECItem ec_params = {siBuffer, NULL, 0}; |
|
753 unsigned char paramBuf[3]; |
|
754 ECName curve; |
|
755 SSL3KEAType certIndex; |
|
756 |
|
757 /* Generate ephemeral ECDH key pair and send the public key */ |
|
758 curve = ssl3_GetCurveNameForServerSocket(ss); |
|
759 if (curve == ec_noName) { |
|
760 goto loser; |
|
761 } |
|
762 rv = ssl3_CreateECDHEphemeralKeys(ss, curve); |
|
763 if (rv != SECSuccess) { |
|
764 goto loser; /* err set by AppendHandshake. */ |
|
765 } |
|
766 ecdhePub = ss->ephemeralECDHKeyPair->pubKey; |
|
767 PORT_Assert(ecdhePub != NULL); |
|
768 if (!ecdhePub) { |
|
769 PORT_SetError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); |
|
770 return SECFailure; |
|
771 } |
|
772 |
|
773 ec_params.len = sizeof paramBuf; |
|
774 ec_params.data = paramBuf; |
|
775 curve = params2ecName(&ecdhePub->u.ec.DEREncodedParams); |
|
776 if (curve != ec_noName) { |
|
777 ec_params.data[0] = ec_type_named; |
|
778 ec_params.data[1] = 0x00; |
|
779 ec_params.data[2] = curve; |
|
780 } else { |
|
781 PORT_SetError(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE); |
|
782 goto loser; |
|
783 } |
|
784 |
|
785 rv = ssl3_ComputeECDHKeyHash(sigAndHash->hashAlg, |
|
786 ec_params, |
|
787 ecdhePub->u.ec.publicValue, |
|
788 &ss->ssl3.hs.client_random, |
|
789 &ss->ssl3.hs.server_random, |
|
790 &hashes, ss->opt.bypassPKCS11); |
|
791 if (rv != SECSuccess) { |
|
792 ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); |
|
793 goto loser; |
|
794 } |
|
795 |
|
796 isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0); |
|
797 isTLS12 = (PRBool)(ss->ssl3.pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2); |
|
798 |
|
799 /* XXX SSLKEAType isn't really a good choice for |
|
800 * indexing certificates but that's all we have |
|
801 * for now. |
|
802 */ |
|
803 if (kea_def->kea == kea_ecdhe_rsa) |
|
804 certIndex = kt_rsa; |
|
805 else /* kea_def->kea == kea_ecdhe_ecdsa */ |
|
806 certIndex = kt_ecdh; |
|
807 |
|
808 rv = ssl3_SignHashes(&hashes, ss->serverCerts[certIndex].SERVERKEY, |
|
809 &signed_hash, isTLS); |
|
810 if (rv != SECSuccess) { |
|
811 goto loser; /* ssl3_SignHashes has set err. */ |
|
812 } |
|
813 if (signed_hash.data == NULL) { |
|
814 /* how can this happen and rv == SECSuccess ?? */ |
|
815 PORT_SetError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); |
|
816 goto loser; |
|
817 } |
|
818 |
|
819 length = ec_params.len + |
|
820 1 + ecdhePub->u.ec.publicValue.len + |
|
821 (isTLS12 ? 2 : 0) + 2 + signed_hash.len; |
|
822 |
|
823 rv = ssl3_AppendHandshakeHeader(ss, server_key_exchange, length); |
|
824 if (rv != SECSuccess) { |
|
825 goto loser; /* err set by AppendHandshake. */ |
|
826 } |
|
827 |
|
828 rv = ssl3_AppendHandshake(ss, ec_params.data, ec_params.len); |
|
829 if (rv != SECSuccess) { |
|
830 goto loser; /* err set by AppendHandshake. */ |
|
831 } |
|
832 |
|
833 rv = ssl3_AppendHandshakeVariable(ss, ecdhePub->u.ec.publicValue.data, |
|
834 ecdhePub->u.ec.publicValue.len, 1); |
|
835 if (rv != SECSuccess) { |
|
836 goto loser; /* err set by AppendHandshake. */ |
|
837 } |
|
838 |
|
839 if (isTLS12) { |
|
840 rv = ssl3_AppendSignatureAndHashAlgorithm(ss, sigAndHash); |
|
841 if (rv != SECSuccess) { |
|
842 goto loser; /* err set by AppendHandshake. */ |
|
843 } |
|
844 } |
|
845 |
|
846 rv = ssl3_AppendHandshakeVariable(ss, signed_hash.data, |
|
847 signed_hash.len, 2); |
|
848 if (rv != SECSuccess) { |
|
849 goto loser; /* err set by AppendHandshake. */ |
|
850 } |
|
851 |
|
852 PORT_Free(signed_hash.data); |
|
853 return SECSuccess; |
|
854 |
|
855 loser: |
|
856 if (signed_hash.data != NULL) |
|
857 PORT_Free(signed_hash.data); |
|
858 return SECFailure; |
|
859 } |
|
860 |
|
861 /* Lists of ECC cipher suites for searching and disabling. */ |
|
862 |
|
863 static const ssl3CipherSuite ecdh_suites[] = { |
|
864 TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, |
|
865 TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, |
|
866 TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, |
|
867 TLS_ECDH_ECDSA_WITH_NULL_SHA, |
|
868 TLS_ECDH_ECDSA_WITH_RC4_128_SHA, |
|
869 TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, |
|
870 TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, |
|
871 TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, |
|
872 TLS_ECDH_RSA_WITH_NULL_SHA, |
|
873 TLS_ECDH_RSA_WITH_RC4_128_SHA, |
|
874 0 /* end of list marker */ |
|
875 }; |
|
876 |
|
877 static const ssl3CipherSuite ecdh_ecdsa_suites[] = { |
|
878 TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, |
|
879 TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, |
|
880 TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, |
|
881 TLS_ECDH_ECDSA_WITH_NULL_SHA, |
|
882 TLS_ECDH_ECDSA_WITH_RC4_128_SHA, |
|
883 0 /* end of list marker */ |
|
884 }; |
|
885 |
|
886 static const ssl3CipherSuite ecdh_rsa_suites[] = { |
|
887 TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, |
|
888 TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, |
|
889 TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, |
|
890 TLS_ECDH_RSA_WITH_NULL_SHA, |
|
891 TLS_ECDH_RSA_WITH_RC4_128_SHA, |
|
892 0 /* end of list marker */ |
|
893 }; |
|
894 |
|
895 static const ssl3CipherSuite ecdhe_ecdsa_suites[] = { |
|
896 TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, |
|
897 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, |
|
898 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, |
|
899 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, |
|
900 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, |
|
901 TLS_ECDHE_ECDSA_WITH_NULL_SHA, |
|
902 TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, |
|
903 0 /* end of list marker */ |
|
904 }; |
|
905 |
|
906 static const ssl3CipherSuite ecdhe_rsa_suites[] = { |
|
907 TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, |
|
908 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, |
|
909 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, |
|
910 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, |
|
911 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, |
|
912 TLS_ECDHE_RSA_WITH_NULL_SHA, |
|
913 TLS_ECDHE_RSA_WITH_RC4_128_SHA, |
|
914 0 /* end of list marker */ |
|
915 }; |
|
916 |
|
917 /* List of all ECC cipher suites */ |
|
918 static const ssl3CipherSuite ecSuites[] = { |
|
919 TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, |
|
920 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, |
|
921 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, |
|
922 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, |
|
923 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, |
|
924 TLS_ECDHE_ECDSA_WITH_NULL_SHA, |
|
925 TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, |
|
926 TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, |
|
927 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, |
|
928 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, |
|
929 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, |
|
930 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, |
|
931 TLS_ECDHE_RSA_WITH_NULL_SHA, |
|
932 TLS_ECDHE_RSA_WITH_RC4_128_SHA, |
|
933 TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, |
|
934 TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, |
|
935 TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, |
|
936 TLS_ECDH_ECDSA_WITH_NULL_SHA, |
|
937 TLS_ECDH_ECDSA_WITH_RC4_128_SHA, |
|
938 TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, |
|
939 TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, |
|
940 TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, |
|
941 TLS_ECDH_RSA_WITH_NULL_SHA, |
|
942 TLS_ECDH_RSA_WITH_RC4_128_SHA, |
|
943 0 /* end of list marker */ |
|
944 }; |
|
945 |
|
946 /* On this socket, Disable the ECC cipher suites in the argument's list */ |
|
947 SECStatus |
|
948 ssl3_DisableECCSuites(sslSocket * ss, const ssl3CipherSuite * suite) |
|
949 { |
|
950 if (!suite) |
|
951 suite = ecSuites; |
|
952 for (; *suite; ++suite) { |
|
953 SECStatus rv = ssl3_CipherPrefSet(ss, *suite, PR_FALSE); |
|
954 |
|
955 PORT_Assert(rv == SECSuccess); /* else is coding error */ |
|
956 } |
|
957 return SECSuccess; |
|
958 } |
|
959 |
|
960 /* Look at the server certs configured on this socket, and disable any |
|
961 * ECC cipher suites that are not supported by those certs. |
|
962 */ |
|
963 void |
|
964 ssl3_FilterECCipherSuitesByServerCerts(sslSocket * ss) |
|
965 { |
|
966 CERTCertificate * svrCert; |
|
967 |
|
968 svrCert = ss->serverCerts[kt_rsa].serverCert; |
|
969 if (!svrCert) { |
|
970 ssl3_DisableECCSuites(ss, ecdhe_rsa_suites); |
|
971 } |
|
972 |
|
973 svrCert = ss->serverCerts[kt_ecdh].serverCert; |
|
974 if (!svrCert) { |
|
975 ssl3_DisableECCSuites(ss, ecdh_suites); |
|
976 ssl3_DisableECCSuites(ss, ecdhe_ecdsa_suites); |
|
977 } else { |
|
978 SECOidTag sigTag = SECOID_GetAlgorithmTag(&svrCert->signature); |
|
979 |
|
980 switch (sigTag) { |
|
981 case SEC_OID_PKCS1_RSA_ENCRYPTION: |
|
982 case SEC_OID_PKCS1_MD2_WITH_RSA_ENCRYPTION: |
|
983 case SEC_OID_PKCS1_MD4_WITH_RSA_ENCRYPTION: |
|
984 case SEC_OID_PKCS1_MD5_WITH_RSA_ENCRYPTION: |
|
985 case SEC_OID_PKCS1_SHA1_WITH_RSA_ENCRYPTION: |
|
986 case SEC_OID_PKCS1_SHA224_WITH_RSA_ENCRYPTION: |
|
987 case SEC_OID_PKCS1_SHA256_WITH_RSA_ENCRYPTION: |
|
988 case SEC_OID_PKCS1_SHA384_WITH_RSA_ENCRYPTION: |
|
989 case SEC_OID_PKCS1_SHA512_WITH_RSA_ENCRYPTION: |
|
990 ssl3_DisableECCSuites(ss, ecdh_ecdsa_suites); |
|
991 break; |
|
992 case SEC_OID_ANSIX962_ECDSA_SHA1_SIGNATURE: |
|
993 case SEC_OID_ANSIX962_ECDSA_SHA224_SIGNATURE: |
|
994 case SEC_OID_ANSIX962_ECDSA_SHA256_SIGNATURE: |
|
995 case SEC_OID_ANSIX962_ECDSA_SHA384_SIGNATURE: |
|
996 case SEC_OID_ANSIX962_ECDSA_SHA512_SIGNATURE: |
|
997 case SEC_OID_ANSIX962_ECDSA_SIGNATURE_RECOMMENDED_DIGEST: |
|
998 case SEC_OID_ANSIX962_ECDSA_SIGNATURE_SPECIFIED_DIGEST: |
|
999 ssl3_DisableECCSuites(ss, ecdh_rsa_suites); |
|
1000 break; |
|
1001 default: |
|
1002 ssl3_DisableECCSuites(ss, ecdh_suites); |
|
1003 break; |
|
1004 } |
|
1005 } |
|
1006 } |
|
1007 |
|
1008 /* Ask: is ANY ECC cipher suite enabled on this socket? */ |
|
1009 /* Order(N^2). Yuk. Also, this ignores export policy. */ |
|
1010 PRBool |
|
1011 ssl3_IsECCEnabled(sslSocket * ss) |
|
1012 { |
|
1013 const ssl3CipherSuite * suite; |
|
1014 PK11SlotInfo *slot; |
|
1015 |
|
1016 /* make sure we can do ECC */ |
|
1017 slot = PK11_GetBestSlot(CKM_ECDH1_DERIVE, ss->pkcs11PinArg); |
|
1018 if (!slot) { |
|
1019 return PR_FALSE; |
|
1020 } |
|
1021 PK11_FreeSlot(slot); |
|
1022 |
|
1023 /* make sure an ECC cipher is enabled */ |
|
1024 for (suite = ecSuites; *suite; ++suite) { |
|
1025 PRBool enabled = PR_FALSE; |
|
1026 SECStatus rv = ssl3_CipherPrefGet(ss, *suite, &enabled); |
|
1027 |
|
1028 PORT_Assert(rv == SECSuccess); /* else is coding error */ |
|
1029 if (rv == SECSuccess && enabled) |
|
1030 return PR_TRUE; |
|
1031 } |
|
1032 return PR_FALSE; |
|
1033 } |
|
1034 |
|
1035 #define BE(n) 0, n |
|
1036 |
|
1037 /* Prefabricated TLS client hello extension, Elliptic Curves List, |
|
1038 * offers only 3 curves, the Suite B curves, 23-25 |
|
1039 */ |
|
1040 static const PRUint8 suiteBECList[12] = { |
|
1041 BE(10), /* Extension type */ |
|
1042 BE( 8), /* octets that follow ( 3 pairs + 1 length pair) */ |
|
1043 BE( 6), /* octets that follow ( 3 pairs) */ |
|
1044 BE(23), BE(24), BE(25) |
|
1045 }; |
|
1046 |
|
1047 /* Prefabricated TLS client hello extension, Elliptic Curves List, |
|
1048 * offers curves 1-25. |
|
1049 */ |
|
1050 static const PRUint8 tlsECList[56] = { |
|
1051 BE(10), /* Extension type */ |
|
1052 BE(52), /* octets that follow (25 pairs + 1 length pair) */ |
|
1053 BE(50), /* octets that follow (25 pairs) */ |
|
1054 BE( 1), BE( 2), BE( 3), BE( 4), BE( 5), BE( 6), BE( 7), |
|
1055 BE( 8), BE( 9), BE(10), BE(11), BE(12), BE(13), BE(14), BE(15), |
|
1056 BE(16), BE(17), BE(18), BE(19), BE(20), BE(21), BE(22), BE(23), |
|
1057 BE(24), BE(25) |
|
1058 }; |
|
1059 |
|
1060 static const PRUint8 ecPtFmt[6] = { |
|
1061 BE(11), /* Extension type */ |
|
1062 BE( 2), /* octets that follow */ |
|
1063 1, /* octets that follow */ |
|
1064 0 /* uncompressed type only */ |
|
1065 }; |
|
1066 |
|
1067 /* This function already presumes we can do ECC, ssl3_IsECCEnabled must be |
|
1068 * called before this function. It looks to see if we have a token which |
|
1069 * is capable of doing smaller than SuiteB curves. If the token can, we |
|
1070 * presume the token can do the whole SSL suite of curves. If it can't we |
|
1071 * presume the token that allowed ECC to be enabled can only do suite B |
|
1072 * curves. */ |
|
1073 static PRBool |
|
1074 ssl3_SuiteBOnly(sslSocket *ss) |
|
1075 { |
|
1076 /* See if we can support small curves (like 163). If not, assume we can |
|
1077 * only support Suite-B curves (P-256, P-384, P-521). */ |
|
1078 PK11SlotInfo *slot = |
|
1079 PK11_GetBestSlotWithAttributes(CKM_ECDH1_DERIVE, 0, 163, |
|
1080 ss ? ss->pkcs11PinArg : NULL); |
|
1081 |
|
1082 if (!slot) { |
|
1083 /* nope, presume we can only do suite B */ |
|
1084 return PR_TRUE; |
|
1085 } |
|
1086 /* we can, presume we can do all curves */ |
|
1087 PK11_FreeSlot(slot); |
|
1088 return PR_FALSE; |
|
1089 } |
|
1090 |
|
1091 /* Send our "canned" (precompiled) Supported Elliptic Curves extension, |
|
1092 * which says that we support all TLS-defined named curves. |
|
1093 */ |
|
1094 PRInt32 |
|
1095 ssl3_SendSupportedCurvesXtn( |
|
1096 sslSocket * ss, |
|
1097 PRBool append, |
|
1098 PRUint32 maxBytes) |
|
1099 { |
|
1100 PRInt32 ecListSize = 0; |
|
1101 const PRUint8 *ecList = NULL; |
|
1102 |
|
1103 if (!ss || !ssl3_IsECCEnabled(ss)) |
|
1104 return 0; |
|
1105 |
|
1106 if (ssl3_SuiteBOnly(ss)) { |
|
1107 ecListSize = sizeof suiteBECList; |
|
1108 ecList = suiteBECList; |
|
1109 } else { |
|
1110 ecListSize = sizeof tlsECList; |
|
1111 ecList = tlsECList; |
|
1112 } |
|
1113 |
|
1114 if (append && maxBytes >= ecListSize) { |
|
1115 SECStatus rv = ssl3_AppendHandshake(ss, ecList, ecListSize); |
|
1116 if (rv != SECSuccess) |
|
1117 return -1; |
|
1118 if (!ss->sec.isServer) { |
|
1119 TLSExtensionData *xtnData = &ss->xtnData; |
|
1120 xtnData->advertised[xtnData->numAdvertised++] = |
|
1121 ssl_elliptic_curves_xtn; |
|
1122 } |
|
1123 } |
|
1124 return ecListSize; |
|
1125 } |
|
1126 |
|
1127 PRUint32 |
|
1128 ssl3_GetSupportedECCurveMask(sslSocket *ss) |
|
1129 { |
|
1130 if (ssl3_SuiteBOnly(ss)) { |
|
1131 return SSL3_SUITE_B_SUPPORTED_CURVES_MASK; |
|
1132 } |
|
1133 return SSL3_ALL_SUPPORTED_CURVES_MASK; |
|
1134 } |
|
1135 |
|
1136 /* Send our "canned" (precompiled) Supported Point Formats extension, |
|
1137 * which says that we only support uncompressed points. |
|
1138 */ |
|
1139 PRInt32 |
|
1140 ssl3_SendSupportedPointFormatsXtn( |
|
1141 sslSocket * ss, |
|
1142 PRBool append, |
|
1143 PRUint32 maxBytes) |
|
1144 { |
|
1145 if (!ss || !ssl3_IsECCEnabled(ss)) |
|
1146 return 0; |
|
1147 if (append && maxBytes >= (sizeof ecPtFmt)) { |
|
1148 SECStatus rv = ssl3_AppendHandshake(ss, ecPtFmt, (sizeof ecPtFmt)); |
|
1149 if (rv != SECSuccess) |
|
1150 return -1; |
|
1151 if (!ss->sec.isServer) { |
|
1152 TLSExtensionData *xtnData = &ss->xtnData; |
|
1153 xtnData->advertised[xtnData->numAdvertised++] = |
|
1154 ssl_ec_point_formats_xtn; |
|
1155 } |
|
1156 } |
|
1157 return (sizeof ecPtFmt); |
|
1158 } |
|
1159 |
|
1160 /* Just make sure that the remote client supports uncompressed points, |
|
1161 * Since that is all we support. Disable ECC cipher suites if it doesn't. |
|
1162 */ |
|
1163 SECStatus |
|
1164 ssl3_HandleSupportedPointFormatsXtn(sslSocket *ss, PRUint16 ex_type, |
|
1165 SECItem *data) |
|
1166 { |
|
1167 int i; |
|
1168 |
|
1169 if (data->len < 2 || data->len > 255 || !data->data || |
|
1170 data->len != (unsigned int)data->data[0] + 1) { |
|
1171 /* malformed */ |
|
1172 goto loser; |
|
1173 } |
|
1174 for (i = data->len; --i > 0; ) { |
|
1175 if (data->data[i] == 0) { |
|
1176 /* indicate that we should send a reply */ |
|
1177 SECStatus rv; |
|
1178 rv = ssl3_RegisterServerHelloExtensionSender(ss, ex_type, |
|
1179 &ssl3_SendSupportedPointFormatsXtn); |
|
1180 return rv; |
|
1181 } |
|
1182 } |
|
1183 loser: |
|
1184 /* evil client doesn't support uncompressed */ |
|
1185 ssl3_DisableECCSuites(ss, ecSuites); |
|
1186 return SECFailure; |
|
1187 } |
|
1188 |
|
1189 |
|
1190 #define SSL3_GET_SERVER_PUBLICKEY(sock, type) \ |
|
1191 (ss->serverCerts[type].serverKeyPair ? \ |
|
1192 ss->serverCerts[type].serverKeyPair->pubKey : NULL) |
|
1193 |
|
1194 /* Extract the TLS curve name for the public key in our EC server cert. */ |
|
1195 ECName ssl3_GetSvrCertCurveName(sslSocket *ss) |
|
1196 { |
|
1197 SECKEYPublicKey *srvPublicKey; |
|
1198 ECName ec_curve = ec_noName; |
|
1199 |
|
1200 srvPublicKey = SSL3_GET_SERVER_PUBLICKEY(ss, kt_ecdh); |
|
1201 if (srvPublicKey) { |
|
1202 ec_curve = params2ecName(&srvPublicKey->u.ec.DEREncodedParams); |
|
1203 } |
|
1204 return ec_curve; |
|
1205 } |
|
1206 |
|
1207 /* Ensure that the curve in our server cert is one of the ones suppored |
|
1208 * by the remote client, and disable all ECC cipher suites if not. |
|
1209 */ |
|
1210 SECStatus |
|
1211 ssl3_HandleSupportedCurvesXtn(sslSocket *ss, PRUint16 ex_type, SECItem *data) |
|
1212 { |
|
1213 PRInt32 list_len; |
|
1214 PRUint32 peerCurves = 0; |
|
1215 PRUint32 mutualCurves = 0; |
|
1216 PRUint16 svrCertCurveName; |
|
1217 |
|
1218 if (!data->data || data->len < 4 || data->len > 65535) |
|
1219 goto loser; |
|
1220 /* get the length of elliptic_curve_list */ |
|
1221 list_len = ssl3_ConsumeHandshakeNumber(ss, 2, &data->data, &data->len); |
|
1222 if (list_len < 0 || data->len != list_len || (data->len % 2) != 0) { |
|
1223 /* malformed */ |
|
1224 goto loser; |
|
1225 } |
|
1226 /* build bit vector of peer's supported curve names */ |
|
1227 while (data->len) { |
|
1228 PRInt32 curve_name = |
|
1229 ssl3_ConsumeHandshakeNumber(ss, 2, &data->data, &data->len); |
|
1230 if (curve_name > ec_noName && curve_name < ec_pastLastName) { |
|
1231 peerCurves |= (1U << curve_name); |
|
1232 } |
|
1233 } |
|
1234 /* What curves do we support in common? */ |
|
1235 mutualCurves = ss->ssl3.hs.negotiatedECCurves &= peerCurves; |
|
1236 if (!mutualCurves) { /* no mutually supported EC Curves */ |
|
1237 goto loser; |
|
1238 } |
|
1239 |
|
1240 /* if our ECC cert doesn't use one of these supported curves, |
|
1241 * disable ECC cipher suites that require an ECC cert. |
|
1242 */ |
|
1243 svrCertCurveName = ssl3_GetSvrCertCurveName(ss); |
|
1244 if (svrCertCurveName != ec_noName && |
|
1245 (mutualCurves & (1U << svrCertCurveName)) != 0) { |
|
1246 return SECSuccess; |
|
1247 } |
|
1248 /* Our EC cert doesn't contain a mutually supported curve. |
|
1249 * Disable all ECC cipher suites that require an EC cert |
|
1250 */ |
|
1251 ssl3_DisableECCSuites(ss, ecdh_ecdsa_suites); |
|
1252 ssl3_DisableECCSuites(ss, ecdhe_ecdsa_suites); |
|
1253 return SECFailure; |
|
1254 |
|
1255 loser: |
|
1256 /* no common curve supported */ |
|
1257 ssl3_DisableECCSuites(ss, ecSuites); |
|
1258 return SECFailure; |
|
1259 } |
|
1260 |
|
1261 #endif /* NSS_DISABLE_ECC */ |