|
1 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
2 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
4 |
|
5 /* |
|
6 * Base64 decoding (ascii to binary). |
|
7 */ |
|
8 |
|
9 #include "nssb64.h" |
|
10 #include "nspr.h" |
|
11 #include "secitem.h" |
|
12 #include "secerr.h" |
|
13 |
|
14 /* |
|
15 * XXX We want this basic support to go into NSPR (the PL part). |
|
16 * Until that can happen, the PL interface is going to be kept entirely |
|
17 * internal here -- all static functions and opaque data structures. |
|
18 * When someone can get it moved over into NSPR, that should be done: |
|
19 * - giving everything names that are accepted by the NSPR module owners |
|
20 * (though I tried to choose ones that would work without modification) |
|
21 * - exporting the functions (remove static declarations and add |
|
22 * to nssutil.def as necessary) |
|
23 * - put prototypes into appropriate header file (probably replacing |
|
24 * the entire current lib/libc/include/plbase64.h in NSPR) |
|
25 * along with a typedef for the context structure (which should be |
|
26 * kept opaque -- definition in the source file only, but typedef |
|
27 * ala "typedef struct PLBase64FooStr PLBase64Foo;" in header file) |
|
28 * - modify anything else as necessary to conform to NSPR required style |
|
29 * (I looked but found no formatting guide to follow) |
|
30 * |
|
31 * You will want to move over everything from here down to the comment |
|
32 * which says "XXX End of base64 decoding code to be moved into NSPR", |
|
33 * into a new file in NSPR. |
|
34 */ |
|
35 |
|
36 /* |
|
37 ************************************************************** |
|
38 * XXX Beginning of base64 decoding code to be moved into NSPR. |
|
39 */ |
|
40 |
|
41 /* |
|
42 * This typedef would belong in the NSPR header file (i.e. plbase64.h). |
|
43 */ |
|
44 typedef struct PLBase64DecoderStr PLBase64Decoder; |
|
45 |
|
46 /* |
|
47 * The following implementation of base64 decoding was based on code |
|
48 * found in libmime (specifically, in mimeenc.c). It has been adapted to |
|
49 * use PR types and naming as well as to provide other necessary semantics |
|
50 * (like buffer-in/buffer-out in addition to "streaming" without undue |
|
51 * performance hit of extra copying if you made the buffer versions |
|
52 * use the output_fn). It also incorporates some aspects of the current |
|
53 * NSPR base64 decoding code. As such, you may find similarities to |
|
54 * both of those implementations. I tried to use names that reflected |
|
55 * the original code when possible. For this reason you may find some |
|
56 * inconsistencies -- libmime used lots of "in" and "out" whereas the |
|
57 * NSPR version uses "src" and "dest"; sometimes I changed one to the other |
|
58 * and sometimes I left them when I thought the subroutines were at least |
|
59 * self-consistent. |
|
60 */ |
|
61 |
|
62 PR_BEGIN_EXTERN_C |
|
63 |
|
64 /* |
|
65 * Opaque object used by the decoder to store state. |
|
66 */ |
|
67 struct PLBase64DecoderStr { |
|
68 /* Current token (or portion, if token_size < 4) being decoded. */ |
|
69 unsigned char token[4]; |
|
70 int token_size; |
|
71 |
|
72 /* |
|
73 * Where to write the decoded data (used when streaming, not when |
|
74 * doing all in-memory (buffer) operations). |
|
75 * |
|
76 * Note that this definition is chosen to be compatible with PR_Write. |
|
77 */ |
|
78 PRInt32 (*output_fn) (void *output_arg, const unsigned char *buf, |
|
79 PRInt32 size); |
|
80 void *output_arg; |
|
81 |
|
82 /* |
|
83 * Where the decoded output goes -- either temporarily (in the streaming |
|
84 * case, staged here before it goes to the output function) or what will |
|
85 * be the entire buffered result for users of the buffer version. |
|
86 */ |
|
87 unsigned char *output_buffer; |
|
88 PRUint32 output_buflen; /* the total length of allocated buffer */ |
|
89 PRUint32 output_length; /* the length that is currently populated */ |
|
90 }; |
|
91 |
|
92 PR_END_EXTERN_C |
|
93 |
|
94 |
|
95 /* |
|
96 * Table to convert an ascii "code" to its corresponding binary value. |
|
97 * For ease of use, the binary values in the table are the actual values |
|
98 * PLUS ONE. This is so that the special value of zero can denote an |
|
99 * invalid mapping; that was much easier than trying to fill in the other |
|
100 * values with some value other than zero, and to check for it. |
|
101 * Just remember to SUBTRACT ONE when using the value retrieved. |
|
102 */ |
|
103 static unsigned char base64_codetovaluep1[256] = { |
|
104 /* 0: */ 0, 0, 0, 0, 0, 0, 0, 0, |
|
105 /* 8: */ 0, 0, 0, 0, 0, 0, 0, 0, |
|
106 /* 16: */ 0, 0, 0, 0, 0, 0, 0, 0, |
|
107 /* 24: */ 0, 0, 0, 0, 0, 0, 0, 0, |
|
108 /* 32: */ 0, 0, 0, 0, 0, 0, 0, 0, |
|
109 /* 40: */ 0, 0, 0, 63, 0, 0, 0, 64, |
|
110 /* 48: */ 53, 54, 55, 56, 57, 58, 59, 60, |
|
111 /* 56: */ 61, 62, 0, 0, 0, 0, 0, 0, |
|
112 /* 64: */ 0, 1, 2, 3, 4, 5, 6, 7, |
|
113 /* 72: */ 8, 9, 10, 11, 12, 13, 14, 15, |
|
114 /* 80: */ 16, 17, 18, 19, 20, 21, 22, 23, |
|
115 /* 88: */ 24, 25, 26, 0, 0, 0, 0, 0, |
|
116 /* 96: */ 0, 27, 28, 29, 30, 31, 32, 33, |
|
117 /* 104: */ 34, 35, 36, 37, 38, 39, 40, 41, |
|
118 /* 112: */ 42, 43, 44, 45, 46, 47, 48, 49, |
|
119 /* 120: */ 50, 51, 52, 0, 0, 0, 0, 0, |
|
120 /* 128: */ 0, 0, 0, 0, 0, 0, 0, 0 |
|
121 /* and rest are all zero as well */ |
|
122 }; |
|
123 |
|
124 #define B64_PAD '=' |
|
125 |
|
126 |
|
127 /* |
|
128 * Reads 4; writes 3 (known, or expected, to have no trailing padding). |
|
129 * Returns bytes written; -1 on error (unexpected character). |
|
130 */ |
|
131 static int |
|
132 pl_base64_decode_4to3 (const unsigned char *in, unsigned char *out) |
|
133 { |
|
134 int j; |
|
135 PRUint32 num = 0; |
|
136 unsigned char bits; |
|
137 |
|
138 for (j = 0; j < 4; j++) { |
|
139 bits = base64_codetovaluep1[in[j]]; |
|
140 if (bits == 0) |
|
141 return -1; |
|
142 num = (num << 6) | (bits - 1); |
|
143 } |
|
144 |
|
145 out[0] = (unsigned char) (num >> 16); |
|
146 out[1] = (unsigned char) ((num >> 8) & 0xFF); |
|
147 out[2] = (unsigned char) (num & 0xFF); |
|
148 |
|
149 return 3; |
|
150 } |
|
151 |
|
152 /* |
|
153 * Reads 3; writes 2 (caller already confirmed EOF or trailing padding). |
|
154 * Returns bytes written; -1 on error (unexpected character). |
|
155 */ |
|
156 static int |
|
157 pl_base64_decode_3to2 (const unsigned char *in, unsigned char *out) |
|
158 { |
|
159 PRUint32 num = 0; |
|
160 unsigned char bits1, bits2, bits3; |
|
161 |
|
162 bits1 = base64_codetovaluep1[in[0]]; |
|
163 bits2 = base64_codetovaluep1[in[1]]; |
|
164 bits3 = base64_codetovaluep1[in[2]]; |
|
165 |
|
166 if ((bits1 == 0) || (bits2 == 0) || (bits3 == 0)) |
|
167 return -1; |
|
168 |
|
169 num = ((PRUint32)(bits1 - 1)) << 10; |
|
170 num |= ((PRUint32)(bits2 - 1)) << 4; |
|
171 num |= ((PRUint32)(bits3 - 1)) >> 2; |
|
172 |
|
173 out[0] = (unsigned char) (num >> 8); |
|
174 out[1] = (unsigned char) (num & 0xFF); |
|
175 |
|
176 return 2; |
|
177 } |
|
178 |
|
179 /* |
|
180 * Reads 2; writes 1 (caller already confirmed EOF or trailing padding). |
|
181 * Returns bytes written; -1 on error (unexpected character). |
|
182 */ |
|
183 static int |
|
184 pl_base64_decode_2to1 (const unsigned char *in, unsigned char *out) |
|
185 { |
|
186 PRUint32 num = 0; |
|
187 unsigned char bits1, bits2; |
|
188 |
|
189 bits1 = base64_codetovaluep1[in[0]]; |
|
190 bits2 = base64_codetovaluep1[in[1]]; |
|
191 |
|
192 if ((bits1 == 0) || (bits2 == 0)) |
|
193 return -1; |
|
194 |
|
195 num = ((PRUint32)(bits1 - 1)) << 2; |
|
196 num |= ((PRUint32)(bits2 - 1)) >> 4; |
|
197 |
|
198 out[0] = (unsigned char) num; |
|
199 |
|
200 return 1; |
|
201 } |
|
202 |
|
203 /* |
|
204 * Reads 4; writes 0-3. Returns bytes written or -1 on error. |
|
205 * (Writes less than 3 only at (presumed) EOF.) |
|
206 */ |
|
207 static int |
|
208 pl_base64_decode_token (const unsigned char *in, unsigned char *out) |
|
209 { |
|
210 if (in[3] != B64_PAD) |
|
211 return pl_base64_decode_4to3 (in, out); |
|
212 |
|
213 if (in[2] == B64_PAD) |
|
214 return pl_base64_decode_2to1 (in, out); |
|
215 |
|
216 return pl_base64_decode_3to2 (in, out); |
|
217 } |
|
218 |
|
219 static PRStatus |
|
220 pl_base64_decode_buffer (PLBase64Decoder *data, const unsigned char *in, |
|
221 PRUint32 length) |
|
222 { |
|
223 unsigned char *out = data->output_buffer; |
|
224 unsigned char *token = data->token; |
|
225 int i, n = 0; |
|
226 |
|
227 i = data->token_size; |
|
228 data->token_size = 0; |
|
229 |
|
230 while (length > 0) { |
|
231 while (i < 4 && length > 0) { |
|
232 /* |
|
233 * XXX Note that the following simply ignores any unexpected |
|
234 * characters. This is exactly what the original code in |
|
235 * libmime did, and I am leaving it. We certainly want to skip |
|
236 * over whitespace (we must); this does much more than that. |
|
237 * I am not confident changing it, and I don't want to slow |
|
238 * the processing down doing more complicated checking, but |
|
239 * someone else might have different ideas in the future. |
|
240 */ |
|
241 if (base64_codetovaluep1[*in] > 0 || *in == B64_PAD) |
|
242 token[i++] = *in; |
|
243 in++; |
|
244 length--; |
|
245 } |
|
246 |
|
247 if (i < 4) { |
|
248 /* Didn't get enough for a complete token. */ |
|
249 data->token_size = i; |
|
250 break; |
|
251 } |
|
252 i = 0; |
|
253 |
|
254 PR_ASSERT((out - data->output_buffer + 3) <= data->output_buflen); |
|
255 |
|
256 /* |
|
257 * Assume we are not at the end; the following function only works |
|
258 * for an internal token (no trailing padding characters) but is |
|
259 * faster that way. If it hits an invalid character (padding) it |
|
260 * will return an error; we break out of the loop and try again |
|
261 * calling the routine that will handle a final token. |
|
262 * Note that we intentionally do it this way rather than explicitly |
|
263 * add a check for padding here (because that would just slow down |
|
264 * the normal case) nor do we rely on checking whether we have more |
|
265 * input to process (because that would also slow it down but also |
|
266 * because we want to allow trailing garbage, especially white space |
|
267 * and cannot tell that without read-ahead, also a slow proposition). |
|
268 * Whew. Understand? |
|
269 */ |
|
270 n = pl_base64_decode_4to3 (token, out); |
|
271 if (n < 0) |
|
272 break; |
|
273 |
|
274 /* Advance "out" by the number of bytes just written to it. */ |
|
275 out += n; |
|
276 n = 0; |
|
277 } |
|
278 |
|
279 /* |
|
280 * See big comment above, before call to pl_base64_decode_4to3. |
|
281 * Here we check if we error'd out of loop, and allow for the case |
|
282 * that we are processing the last interesting token. If the routine |
|
283 * which should handle padding characters also fails, then we just |
|
284 * have bad input and give up. |
|
285 */ |
|
286 if (n < 0) { |
|
287 n = pl_base64_decode_token (token, out); |
|
288 if (n < 0) |
|
289 return PR_FAILURE; |
|
290 |
|
291 out += n; |
|
292 } |
|
293 |
|
294 /* |
|
295 * As explained above, we can get here with more input remaining, but |
|
296 * it should be all characters we do not care about (i.e. would be |
|
297 * ignored when transferring from "in" to "token" in loop above, |
|
298 * except here we choose to ignore extraneous pad characters, too). |
|
299 * Swallow it, performing that check. If we find more characters that |
|
300 * we would expect to decode, something is wrong. |
|
301 */ |
|
302 while (length > 0) { |
|
303 if (base64_codetovaluep1[*in] > 0) |
|
304 return PR_FAILURE; |
|
305 in++; |
|
306 length--; |
|
307 } |
|
308 |
|
309 /* Record the length of decoded data we have left in output_buffer. */ |
|
310 data->output_length = (PRUint32) (out - data->output_buffer); |
|
311 return PR_SUCCESS; |
|
312 } |
|
313 |
|
314 /* |
|
315 * Flush any remaining buffered characters. Given well-formed input, |
|
316 * this will have nothing to do. If the input was missing the padding |
|
317 * characters at the end, though, there could be 1-3 characters left |
|
318 * behind -- we will tolerate that by adding the padding for them. |
|
319 */ |
|
320 static PRStatus |
|
321 pl_base64_decode_flush (PLBase64Decoder *data) |
|
322 { |
|
323 int count; |
|
324 |
|
325 /* |
|
326 * If no remaining characters, or all are padding (also not well-formed |
|
327 * input, but again, be tolerant), then nothing more to do. (And, that |
|
328 * is considered successful.) |
|
329 */ |
|
330 if (data->token_size == 0 || data->token[0] == B64_PAD) |
|
331 return PR_SUCCESS; |
|
332 |
|
333 /* |
|
334 * Assume we have all the interesting input except for some expected |
|
335 * padding characters. Add them and decode the resulting token. |
|
336 */ |
|
337 while (data->token_size < 4) |
|
338 data->token[data->token_size++] = B64_PAD; |
|
339 |
|
340 data->token_size = 0; /* so a subsequent flush call is a no-op */ |
|
341 |
|
342 count = pl_base64_decode_token (data->token, |
|
343 data->output_buffer + data->output_length); |
|
344 if (count < 0) |
|
345 return PR_FAILURE; |
|
346 |
|
347 /* |
|
348 * If there is an output function, call it with this last bit of data. |
|
349 * Otherwise we are doing all buffered output, and the decoded bytes |
|
350 * are now there, we just need to reflect that in the length. |
|
351 */ |
|
352 if (data->output_fn != NULL) { |
|
353 PRInt32 output_result; |
|
354 |
|
355 PR_ASSERT(data->output_length == 0); |
|
356 output_result = data->output_fn (data->output_arg, |
|
357 data->output_buffer, |
|
358 (PRInt32) count); |
|
359 if (output_result < 0) |
|
360 return PR_FAILURE; |
|
361 } else { |
|
362 data->output_length += count; |
|
363 } |
|
364 |
|
365 return PR_SUCCESS; |
|
366 } |
|
367 |
|
368 |
|
369 /* |
|
370 * The maximum space needed to hold the output of the decoder given |
|
371 * input data of length "size". |
|
372 */ |
|
373 static PRUint32 |
|
374 PL_Base64MaxDecodedLength (PRUint32 size) |
|
375 { |
|
376 return ((size * 3) / 4); |
|
377 } |
|
378 |
|
379 |
|
380 /* |
|
381 * A distinct internal creation function for the buffer version to use. |
|
382 * (It does not want to specify an output_fn, and we want the normal |
|
383 * Create function to require that.) If more common initialization |
|
384 * of the decoding context needs to be done, it should be done *here*. |
|
385 */ |
|
386 static PLBase64Decoder * |
|
387 pl_base64_create_decoder (void) |
|
388 { |
|
389 return PR_NEWZAP(PLBase64Decoder); |
|
390 } |
|
391 |
|
392 /* |
|
393 * Function to start a base64 decoding context. |
|
394 * An "output_fn" is required; the "output_arg" parameter to that is optional. |
|
395 */ |
|
396 static PLBase64Decoder * |
|
397 PL_CreateBase64Decoder (PRInt32 (*output_fn) (void *, const unsigned char *, |
|
398 PRInt32), |
|
399 void *output_arg) |
|
400 { |
|
401 PLBase64Decoder *data; |
|
402 |
|
403 if (output_fn == NULL) { |
|
404 PR_SetError (PR_INVALID_ARGUMENT_ERROR, 0); |
|
405 return NULL; |
|
406 } |
|
407 |
|
408 data = pl_base64_create_decoder (); |
|
409 if (data != NULL) { |
|
410 data->output_fn = output_fn; |
|
411 data->output_arg = output_arg; |
|
412 } |
|
413 return data; |
|
414 } |
|
415 |
|
416 |
|
417 /* |
|
418 * Push data through the decoder, causing the output_fn (provided to Create) |
|
419 * to be called with the decoded data. |
|
420 */ |
|
421 static PRStatus |
|
422 PL_UpdateBase64Decoder (PLBase64Decoder *data, const char *buffer, |
|
423 PRUint32 size) |
|
424 { |
|
425 PRUint32 need_length; |
|
426 PRStatus status; |
|
427 |
|
428 /* XXX Should we do argument checking only in debug build? */ |
|
429 if (data == NULL || buffer == NULL || size == 0) { |
|
430 PR_SetError (PR_INVALID_ARGUMENT_ERROR, 0); |
|
431 return PR_FAILURE; |
|
432 } |
|
433 |
|
434 /* |
|
435 * How much space could this update need for decoding? |
|
436 */ |
|
437 need_length = PL_Base64MaxDecodedLength (size + data->token_size); |
|
438 |
|
439 /* |
|
440 * Make sure we have at least that much. If not, (re-)allocate. |
|
441 */ |
|
442 if (need_length > data->output_buflen) { |
|
443 unsigned char *output_buffer = data->output_buffer; |
|
444 |
|
445 if (output_buffer != NULL) |
|
446 output_buffer = (unsigned char *) PR_Realloc(output_buffer, |
|
447 need_length); |
|
448 else |
|
449 output_buffer = (unsigned char *) PR_Malloc(need_length); |
|
450 |
|
451 if (output_buffer == NULL) |
|
452 return PR_FAILURE; |
|
453 |
|
454 data->output_buffer = output_buffer; |
|
455 data->output_buflen = need_length; |
|
456 } |
|
457 |
|
458 /* There should not have been any leftover output data in the buffer. */ |
|
459 PR_ASSERT(data->output_length == 0); |
|
460 data->output_length = 0; |
|
461 |
|
462 status = pl_base64_decode_buffer (data, (const unsigned char *) buffer, |
|
463 size); |
|
464 |
|
465 /* Now that we have some decoded data, write it. */ |
|
466 if (status == PR_SUCCESS && data->output_length > 0) { |
|
467 PRInt32 output_result; |
|
468 |
|
469 PR_ASSERT(data->output_fn != NULL); |
|
470 output_result = data->output_fn (data->output_arg, |
|
471 data->output_buffer, |
|
472 (PRInt32) data->output_length); |
|
473 if (output_result < 0) |
|
474 status = PR_FAILURE; |
|
475 } |
|
476 |
|
477 data->output_length = 0; |
|
478 return status; |
|
479 } |
|
480 |
|
481 |
|
482 /* |
|
483 * When you're done decoding, call this to free the data. If "abort_p" |
|
484 * is false, then calling this may cause the output_fn to be called |
|
485 * one last time (as the last buffered data is flushed out). |
|
486 */ |
|
487 static PRStatus |
|
488 PL_DestroyBase64Decoder (PLBase64Decoder *data, PRBool abort_p) |
|
489 { |
|
490 PRStatus status = PR_SUCCESS; |
|
491 |
|
492 /* XXX Should we do argument checking only in debug build? */ |
|
493 if (data == NULL) { |
|
494 PR_SetError (PR_INVALID_ARGUMENT_ERROR, 0); |
|
495 return PR_FAILURE; |
|
496 } |
|
497 |
|
498 /* Flush out the last few buffered characters. */ |
|
499 if (!abort_p) |
|
500 status = pl_base64_decode_flush (data); |
|
501 |
|
502 if (data->output_buffer != NULL) |
|
503 PR_Free(data->output_buffer); |
|
504 PR_Free(data); |
|
505 |
|
506 return status; |
|
507 } |
|
508 |
|
509 |
|
510 /* |
|
511 * Perform base64 decoding from an input buffer to an output buffer. |
|
512 * The output buffer can be provided (as "dest"); you can also pass in |
|
513 * a NULL and this function will allocate a buffer large enough for you, |
|
514 * and return it. If you do provide the output buffer, you must also |
|
515 * provide the maximum length of that buffer (as "maxdestlen"). |
|
516 * The actual decoded length of output will be returned to you in |
|
517 * "output_destlen". |
|
518 * |
|
519 * Return value is NULL on error, the output buffer (allocated or provided) |
|
520 * otherwise. |
|
521 */ |
|
522 static unsigned char * |
|
523 PL_Base64DecodeBuffer (const char *src, PRUint32 srclen, unsigned char *dest, |
|
524 PRUint32 maxdestlen, PRUint32 *output_destlen) |
|
525 { |
|
526 PRUint32 need_length; |
|
527 unsigned char *output_buffer = NULL; |
|
528 PLBase64Decoder *data = NULL; |
|
529 PRStatus status; |
|
530 |
|
531 PR_ASSERT(srclen > 0); |
|
532 if (srclen == 0) { |
|
533 PR_SetError(PR_INVALID_ARGUMENT_ERROR, 0); |
|
534 return NULL; |
|
535 } |
|
536 |
|
537 /* |
|
538 * How much space could we possibly need for decoding this input? |
|
539 */ |
|
540 need_length = PL_Base64MaxDecodedLength (srclen); |
|
541 |
|
542 /* |
|
543 * Make sure we have at least that much, if output buffer provided. |
|
544 * If no output buffer provided, then we allocate that much. |
|
545 */ |
|
546 if (dest != NULL) { |
|
547 PR_ASSERT(maxdestlen >= need_length); |
|
548 if (maxdestlen < need_length) { |
|
549 PR_SetError(PR_BUFFER_OVERFLOW_ERROR, 0); |
|
550 goto loser; |
|
551 } |
|
552 output_buffer = dest; |
|
553 } else { |
|
554 output_buffer = (unsigned char *) PR_Malloc(need_length); |
|
555 if (output_buffer == NULL) |
|
556 goto loser; |
|
557 maxdestlen = need_length; |
|
558 } |
|
559 |
|
560 data = pl_base64_create_decoder(); |
|
561 if (data == NULL) |
|
562 goto loser; |
|
563 |
|
564 data->output_buflen = maxdestlen; |
|
565 data->output_buffer = output_buffer; |
|
566 |
|
567 status = pl_base64_decode_buffer (data, (const unsigned char *) src, |
|
568 srclen); |
|
569 |
|
570 /* |
|
571 * We do not wait for Destroy to flush, because Destroy will also |
|
572 * get rid of our decoder context, which we need to look at first! |
|
573 */ |
|
574 if (status == PR_SUCCESS) |
|
575 status = pl_base64_decode_flush (data); |
|
576 |
|
577 /* Must clear this or Destroy will free it. */ |
|
578 data->output_buffer = NULL; |
|
579 |
|
580 if (status == PR_SUCCESS) { |
|
581 *output_destlen = data->output_length; |
|
582 status = PL_DestroyBase64Decoder (data, PR_FALSE); |
|
583 data = NULL; |
|
584 if (status == PR_FAILURE) |
|
585 goto loser; |
|
586 return output_buffer; |
|
587 } |
|
588 |
|
589 loser: |
|
590 if (dest == NULL && output_buffer != NULL) |
|
591 PR_Free(output_buffer); |
|
592 if (data != NULL) |
|
593 (void) PL_DestroyBase64Decoder (data, PR_TRUE); |
|
594 return NULL; |
|
595 } |
|
596 |
|
597 |
|
598 /* |
|
599 * XXX End of base64 decoding code to be moved into NSPR. |
|
600 ******************************************************** |
|
601 */ |
|
602 |
|
603 /* |
|
604 * This is the beginning of the NSS cover functions. These will |
|
605 * provide the interface we want to expose as NSS-ish. For example, |
|
606 * they will operate on our Items, do any special handling or checking |
|
607 * we want to do, etc. |
|
608 */ |
|
609 |
|
610 |
|
611 PR_BEGIN_EXTERN_C |
|
612 |
|
613 /* |
|
614 * A boring cover structure for now. Perhaps someday it will include |
|
615 * some more interesting fields. |
|
616 */ |
|
617 struct NSSBase64DecoderStr { |
|
618 PLBase64Decoder *pl_data; |
|
619 }; |
|
620 |
|
621 PR_END_EXTERN_C |
|
622 |
|
623 |
|
624 /* |
|
625 * Function to start a base64 decoding context. |
|
626 */ |
|
627 NSSBase64Decoder * |
|
628 NSSBase64Decoder_Create (PRInt32 (*output_fn) (void *, const unsigned char *, |
|
629 PRInt32), |
|
630 void *output_arg) |
|
631 { |
|
632 PLBase64Decoder *pl_data; |
|
633 NSSBase64Decoder *nss_data; |
|
634 |
|
635 nss_data = PORT_ZNew(NSSBase64Decoder); |
|
636 if (nss_data == NULL) |
|
637 return NULL; |
|
638 |
|
639 pl_data = PL_CreateBase64Decoder (output_fn, output_arg); |
|
640 if (pl_data == NULL) { |
|
641 PORT_Free(nss_data); |
|
642 return NULL; |
|
643 } |
|
644 |
|
645 nss_data->pl_data = pl_data; |
|
646 return nss_data; |
|
647 } |
|
648 |
|
649 |
|
650 /* |
|
651 * Push data through the decoder, causing the output_fn (provided to Create) |
|
652 * to be called with the decoded data. |
|
653 */ |
|
654 SECStatus |
|
655 NSSBase64Decoder_Update (NSSBase64Decoder *data, const char *buffer, |
|
656 PRUint32 size) |
|
657 { |
|
658 PRStatus pr_status; |
|
659 |
|
660 /* XXX Should we do argument checking only in debug build? */ |
|
661 if (data == NULL) { |
|
662 PORT_SetError (SEC_ERROR_INVALID_ARGS); |
|
663 return SECFailure; |
|
664 } |
|
665 |
|
666 pr_status = PL_UpdateBase64Decoder (data->pl_data, buffer, size); |
|
667 if (pr_status == PR_FAILURE) |
|
668 return SECFailure; |
|
669 |
|
670 return SECSuccess; |
|
671 } |
|
672 |
|
673 |
|
674 /* |
|
675 * When you're done decoding, call this to free the data. If "abort_p" |
|
676 * is false, then calling this may cause the output_fn to be called |
|
677 * one last time (as the last buffered data is flushed out). |
|
678 */ |
|
679 SECStatus |
|
680 NSSBase64Decoder_Destroy (NSSBase64Decoder *data, PRBool abort_p) |
|
681 { |
|
682 PRStatus pr_status; |
|
683 |
|
684 /* XXX Should we do argument checking only in debug build? */ |
|
685 if (data == NULL) { |
|
686 PORT_SetError (SEC_ERROR_INVALID_ARGS); |
|
687 return SECFailure; |
|
688 } |
|
689 |
|
690 pr_status = PL_DestroyBase64Decoder (data->pl_data, abort_p); |
|
691 |
|
692 PORT_Free(data); |
|
693 |
|
694 if (pr_status == PR_FAILURE) |
|
695 return SECFailure; |
|
696 |
|
697 return SECSuccess; |
|
698 } |
|
699 |
|
700 |
|
701 /* |
|
702 * Perform base64 decoding from an ascii string "inStr" to an Item. |
|
703 * The length of the input must be provided as "inLen". The Item |
|
704 * may be provided (as "outItemOpt"); you can also pass in a NULL |
|
705 * and the Item will be allocated for you. |
|
706 * |
|
707 * In any case, the data within the Item will be allocated for you. |
|
708 * All allocation will happen out of the passed-in "arenaOpt", if non-NULL. |
|
709 * If "arenaOpt" is NULL, standard allocation (heap) will be used and |
|
710 * you will want to free the result via SECITEM_FreeItem. |
|
711 * |
|
712 * Return value is NULL on error, the Item (allocated or provided) otherwise. |
|
713 */ |
|
714 SECItem * |
|
715 NSSBase64_DecodeBuffer (PLArenaPool *arenaOpt, SECItem *outItemOpt, |
|
716 const char *inStr, unsigned int inLen) |
|
717 { |
|
718 SECItem *out_item = NULL; |
|
719 PRUint32 max_out_len = 0; |
|
720 PRUint32 out_len; |
|
721 void *mark = NULL; |
|
722 unsigned char *dummy; |
|
723 |
|
724 if ((outItemOpt != NULL && outItemOpt->data != NULL) || inLen == 0) { |
|
725 PORT_SetError (SEC_ERROR_INVALID_ARGS); |
|
726 return NULL; |
|
727 } |
|
728 |
|
729 if (arenaOpt != NULL) |
|
730 mark = PORT_ArenaMark (arenaOpt); |
|
731 |
|
732 max_out_len = PL_Base64MaxDecodedLength (inLen); |
|
733 out_item = SECITEM_AllocItem (arenaOpt, outItemOpt, max_out_len); |
|
734 if (out_item == NULL) { |
|
735 if (arenaOpt != NULL) |
|
736 PORT_ArenaRelease (arenaOpt, mark); |
|
737 return NULL; |
|
738 } |
|
739 |
|
740 dummy = PL_Base64DecodeBuffer (inStr, inLen, out_item->data, |
|
741 max_out_len, &out_len); |
|
742 if (dummy == NULL) { |
|
743 if (arenaOpt != NULL) { |
|
744 PORT_ArenaRelease (arenaOpt, mark); |
|
745 if (outItemOpt != NULL) { |
|
746 outItemOpt->data = NULL; |
|
747 outItemOpt->len = 0; |
|
748 } |
|
749 } else { |
|
750 SECITEM_FreeItem (out_item, |
|
751 (outItemOpt == NULL) ? PR_TRUE : PR_FALSE); |
|
752 } |
|
753 return NULL; |
|
754 } |
|
755 |
|
756 if (arenaOpt != NULL) |
|
757 PORT_ArenaUnmark (arenaOpt, mark); |
|
758 out_item->len = out_len; |
|
759 return out_item; |
|
760 } |
|
761 |
|
762 |
|
763 /* |
|
764 * XXX Everything below is deprecated. If you add new stuff, put it |
|
765 * *above*, not below. |
|
766 */ |
|
767 |
|
768 /* |
|
769 * XXX The following "ATOB" functions are provided for backward compatibility |
|
770 * with current code. They should be considered strongly deprecated. |
|
771 * When we can convert all our code over to using the new NSSBase64Decoder_ |
|
772 * functions defined above, we should get rid of these altogether. (Remove |
|
773 * protoypes from base64.h as well -- actually, remove that file completely). |
|
774 * If someone thinks either of these functions provides such a very useful |
|
775 * interface (though, as shown, the same functionality can already be |
|
776 * obtained by calling NSSBase64_DecodeBuffer directly), fine -- but then |
|
777 * that API should be provided with a nice new NSSFoo name and using |
|
778 * appropriate types, etc. |
|
779 */ |
|
780 |
|
781 #include "base64.h" |
|
782 |
|
783 /* |
|
784 ** Return an PORT_Alloc'd string which is the base64 decoded version |
|
785 ** of the input string; set *lenp to the length of the returned data. |
|
786 */ |
|
787 unsigned char * |
|
788 ATOB_AsciiToData(const char *string, unsigned int *lenp) |
|
789 { |
|
790 SECItem binary_item, *dummy; |
|
791 |
|
792 binary_item.data = NULL; |
|
793 binary_item.len = 0; |
|
794 |
|
795 dummy = NSSBase64_DecodeBuffer (NULL, &binary_item, string, |
|
796 (PRUint32) PORT_Strlen(string)); |
|
797 if (dummy == NULL) |
|
798 return NULL; |
|
799 |
|
800 PORT_Assert(dummy == &binary_item); |
|
801 |
|
802 *lenp = dummy->len; |
|
803 return dummy->data; |
|
804 } |
|
805 |
|
806 /* |
|
807 ** Convert from ascii to binary encoding of an item. |
|
808 */ |
|
809 SECStatus |
|
810 ATOB_ConvertAsciiToItem(SECItem *binary_item, const char *ascii) |
|
811 { |
|
812 SECItem *dummy; |
|
813 |
|
814 if (binary_item == NULL) { |
|
815 PORT_SetError (SEC_ERROR_INVALID_ARGS); |
|
816 return SECFailure; |
|
817 } |
|
818 |
|
819 /* |
|
820 * XXX Would prefer to assert here if data is non-null (actually, |
|
821 * don't need to, just let NSSBase64_DecodeBuffer do it), so as to |
|
822 * to catch unintended memory leaks, but callers are not clean in |
|
823 * this respect so we need to explicitly clear here to avoid the |
|
824 * assert in NSSBase64_DecodeBuffer. |
|
825 */ |
|
826 binary_item->data = NULL; |
|
827 binary_item->len = 0; |
|
828 |
|
829 dummy = NSSBase64_DecodeBuffer (NULL, binary_item, ascii, |
|
830 (PRUint32) PORT_Strlen(ascii)); |
|
831 |
|
832 if (dummy == NULL) |
|
833 return SECFailure; |
|
834 |
|
835 return SECSuccess; |
|
836 } |